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How vortices mix
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The advection of a passive scalar blob in the deformation field of an axisymmetric
vortex is a simple mixing protocol for which the advection–diffusion problem is
amenable to a near-exact description. The blob rolls up in a spiral which ultimately
fades away in the diluting medium. The complete transient concentration field in
the spiral is accessible from the Fourier equations in a properly chosen frame. The
concentration histogram of the scalar wrapped in the spiral presents unexpected
singular transient features and its long time properties are discussed in connection
with real mixtures.

1. Introduction
A central question in scalar mixing is the satisfactory description of the histogram

or probability density function (PDF) P (c) of the concentration levels c of a
substance being mixed. The question is particularly interesting, and relevant to many
applications, when the substrate is stirred since in that case molecular diffusion is
altered, and in most cases enhanced, by the underlying substrate motions.

The interplay between molecular diffusion and simple deformation fields is a
classical problem. It has been solved in a closed form in a variety of situations such
as saddle point flow, simple shear in two dimensions (Ranz 1979; Moffatt 1983) and
in three dimensions (Villermaux & Rehab 2000), and in axisymmetric point vortex
(Rhines & Young 1983; Flohr & Vassilicos 1997) or spreading vortex flow (Marble
1988; Bajer, Bassom & Gilbert 2001).

Most attention has focused on the kinetics of the diffusion process in the presence
of stirring motion, particularly its dependence on the substrate rate of deformation γ ,
and diffusion properties of the scalar (diffusivity D). Regarding the characteristic time
ts after which fluctuations start to decay from an initial scalar spatial distribution, of
crucial importance is the rate at which material lines grow in time due to the substrate
motions (Villermaux 2002). If material lines grow as γ t , as is the case in a point vortex
flow, the mixing time of, say, a scalar blob of initial size s0 is ts ∼ γ −1Pe1/3; if material
surfaces in three dimensions grow as (γ t)2, then ts ∼ γ −1Pe1/5 and if material lines
are exponentially stretched as eγ t , then ts ∼ (2γ )−1 log Pe where Pe = γ s2

0/D is a
Péclet number.

The times ts given above are the relevant mixing times once the inverse of the
elongation rate γ −1 is smaller than the diffusive time of the blob based on its initial
size s2

0/D, that is for Pe > 1. In the limit Pe � 1, ts is essentially given by the time
needed to deform the blob γ −1, and molecular diffusion, although a crucial step in
the ultimate mixing, plays only a weak correction role in the kinetics of the process.

Experiments or numerical simulations addressing this problem quantitatively are
scarce, and are mostly limited to short times (i.e. t � ts), therefore reflecting more the
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Figure 1. Roll-up of a blob of fluorescent dye in a point vortex at (a) t = 0, (b) t = 2 s,
(c) t = 5 s and (d) t = 10 s. Each picture covers a field 4.8 × 4.8 cm2 wide and the circulation
of the vortex is 14.2 cm2 s−1. The data come from experiments described in § 2.

kinematics of the flow than its mixing properties (see, however Cetegen & Mohamad
1993 and Verzicco & Orlandi 1995).

Based on a spatially and temporally resolved experiment, we study the mixing
chronology of a blob of dye embedded in the displacement field of a diffusing, Lamb–
Oseen type vortex. The process is described, from the initial segregation of the blob to
a state where it is almost completely diluted in the surrounding medium, through the
evolution of the spatial scalar field, and associated transient evolution of the overall
concentration distribution P (c).

2. A diffusive spiral
2.1. Chronology

The phenomenon we analyse is illustrated on figure 1. A uniform blob of dye (the dark
patch shown on figure 1a) is deposited in a still transparent medium. Then a vortex is
formed by the roll-up of a vortex sheet in the vicinity of the blob, which wraps around
the vortex as seen on figure 1(b). Although it now has a thin transverse size, most of
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Figure 2. (a) Velocity field in the plane of the vortex at t = 10 s. (b) Radial profiles of the
azimuthal velocity measured at t = 5 s (�), t = 10 s (�) and t = 20 s �). Solid lines correspond
to the profiles expected from a Lamb–Oseen vortex defined by (2.1) with Γ = 14.2 cm2 s−1

and a0 = 0.3 cm. The dashed line corresponds to a point vortex defined by (3.1). (c) Core size
of the Lamb–Oseen vortex measured by a least-square fit of the two-dimensional measured
velocity field and compared to (2.2) (solid line).

the fluid particles constituting the blob still have the initial concentration. The blob
deforms in a spiral shape and after four turns (figure 1c), the dye concentration is no
longer uniform along the spiral: it is weaker near the centre of the vortex where the
spiral is very thin, and still close to the injection concentration in the outer region of
the spiral which is thicker. On figure 1(d), the spiral has made more than seven turns
and is about to vanish in the diluting medium. The thickness of the spiral is fairly
constant.

Molecular diffusion has clearly been enhanced by the vortex motion. The time lapse
between figures 1(a) and 1(d) is 10 s, whereas the time scale of pure diffusion based
on the initial size s0 of the blob s2

0/D is about 103 s.

2.2. Flow field

The vortex is formed by the impulsive flapping motion of a long flat plate in a
large tank of water initially at rest. The vorticity layer formed on the surface of the
plate rolls up and detaches from the plate end, producing an axisymmetric vortex
which remains two-dimensional long after the dye has been mixed. A thin uniform
argon-ion laser sheet is shone through the tank perpendicular to the plate, and the
two-dimensional motion of the vortex is analysed by particle image velocimetry (PIV)
using a Kodak 1008 × 1018 pixels digital camera aimed perpendicular to the laser
sheet. Further information on the set-up and PIV techniques can be found in Meunier
& Leweke (2002a) and Meunier & Leweke (2002b) respectively.

The dye is introduced, prior to the formation of the vortex, by a small tube
positioned below the laser sheet, and forming a slowly ascending column of dye,
aligned with the vortex axis. The dye concentration field (disodium fluoresceine with
initial concentration c0 ≈ 10−3 mol l−1) is recorded with the same camera and stored
on a disk. The overall framing rate allows a complete roll-up sequence to be temporally
resolved. The images are digitized on 8 bits and the resulting background subtracted
grey levels are proportional to the dye concentration.

Figure 2(a) shows an example of the axisymmetric velocity field obtained by PIV
after the vortex creation. The radial profiles of azimuthal velocity vθ shown on
figure 2(b) agree well with that of a Lamb–Oseen vortex, defined in the cylindrical
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Figure 3. Schematic of the scalar blob elongation: (a) initial state and (b) at time t .

coordinates (r , θ , z) by

vθ =
Γ

2πr

(
1 − e−r2/a2)

(2.1)

Here, Γ = 14.2 cm2 s−1 is the circulation of the vortex, and a its core size. This vortex
is an exact solution of the Navier–Stokes equations provided that

a2 = a2
0 + 4νt, (2.2)

where ν is the kinematic viscosity of the fluid, which is in close agreement with the
observed growth (figure 2c), a0 being the initial vortex radius equal to 0.3 cm.

The dashed line in figure 2(b) is the velocity profile of a point vortex with the same
circulation, defined by (3.1) below. It is tangent to the measured velocity profiles for
large radii (r/a0 > 3).

To decouple the problem of mixing from the (trivial) problem of the temporal
evolution of the velocity field itself, we have systematically deposited the blob of dye
far enough from the vortex core so that the velocity field remains that of a steady
point vortex throughout the whole mixing process.

3. Concentration field along the spiral
We consider the evolution of a blob of dye of initial size s0, in the two-dimensional,

incompressible flow of a point vortex of circulation Γ (see figure 3a), with azimuthal
velocity

vθ =
Γ

2πr
. (3.1)

We first describe the kinematics of the blob deformation. A fluid particle in the
blob located at a distance r from the centre of the vortex turns during time t by an
angle θ:

θ(r, t) =

∫ t

0

vθ

r
dt =

Γ t

2πr2
. (3.2)

A scalar strip of initial length dr, located at a distance r from the vortex centre
(figure 3a) is stretched so that its length at time t equals

dX =
√

dr2 + (rdθ)2 = dr

√
1 + r2

(
dθ

dr

)2

= dr

√
1 +

Γ 2t2

π2r4
. (3.3)

Meanwhile, the transverse, or striation thickness s(t) of the strip, in the ab-
sence of diffusion, decreases so that the surface s(t)dX remains constant in this
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two-dimensional flow:

s(t) =
s0 dr

dX
=

s0√
1 + Γ 2t2/(π2r4)

. (3.4)

We now describe the scalar dissipation of the blob. The displacement field results
locally in compression perpendicular to the strip, and extension along the strip. It
is convenient to introduce a frame of reference (O, X, Y ) with the X-axis locally
aligned with the spiral as shown on figure 3(b). In that frame, the velocity field is
prescribed by the temporal evolution of the striation thickness s(t) as

U = −X

s

ds

dt
and V =

Y

s

ds

dt
. (3.5)

The evolution equation for the dye concentration c is the convection–diffusion
equation in the (X, Y ) coordinates:

∂c

∂t
+ U

∂c

∂X
+ V

∂c

∂Y
= D

(
∂2c

∂X2
+

∂2c

∂Y 2

)
. (3.6)

The magnitude of the ratio of the two convective terms V ∂c/∂Y and U∂c/∂X is
proportional to the strip aspect ratio 1+ (Γ 2t2)/(π2r4): the concentration varies more
slowly along the spiral than in its transverse direction for Γ t/r2 > 1 so that (3.6)
becomes

∂c

∂t
+

Y

s

ds

dt

∂c

∂Y
= D

∂2c

∂Y 2
. (3.7)

A change of variables (see e.g. Ranz 1979; Marble 1988; Villermaux & Rehab
2000) consisting in counting transverse distances in units of the striation thickness
s(t) and time in units of the current diffusion time s(t)2/D transforms (3.7) into a
simple diffusion equation with

ξ =
Y

s(t)
and τ (r) =

∫ t

0

Ddt ′

s(t ′)2
=

Dt

s2
0

+
DΓ 2t3

3π2r4s2
0

giving
∂c

∂τ
=

∂2c

∂ξ 2
. (3.8)

If c0 is the initial concentration of the dye, the initial conditions at τ = 0 are

c = c0 for |ξ | < 1/2,

c = 0 for |ξ | > 1/2.

}
(3.9)

The concentration profile at any time and radial position along the spiral is

c(ξ, τ ) =
c0

2

[
erf

(
ξ + 1/2

2
√

τ

)
− erf

(
ξ − 1/2

2
√

τ

)]
. (3.10)

The maximal concentration is obtained at the profile centre ξ = 0:

cM (r, t) = c0 erf

(
1

4
√

τ

)
= c0 erf


 1

4
√

Dt
/
s2
0 + DΓ 2t3

/(
3π2r4s2

0

)

 . (3.11)

This relation can be examined from the experiment (Γ = 14.2 cm2 s−1, D = 5×
10−6 cm2 s−1 and s0 ≈ 0.22 cm). Figure 4(a) shows the maximal dye concentrations as
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Figure 4. Comparison of the maximal dye concentrations obtained experimentally (symbols)
and theoretically by (3.11) (solid lines). (a) Radial dependence at t = 5 s (�), t = 10 s (�) and
t = 20 s (�). (b) Temporal dependence for r/a0 = 4.4.

a function of the radius r at a fixed time, for three different times. The concentration
falls to zero more rapidly closer to the spiral centre since the rate of elongation is
higher there (see (3.3)).

Conversely, the temporal evolution of the concentration at a fixed r-location is
constant (figure 4b) up to the mixing time ts(r). This makes the argument of the error
function in (3.11) of order unity, i.e. τ = O(1):

ts(r) =
r2

Γ

(
3π2

16

)1/3 (
s0

r

)2/3 (
Γ

D

)1/3

(3.12)

and displays the expected Péclet number dependence Pe1/3, with Pe = Γ/D charac-
teristic of flows where material lines grow asymptotically linearly in time (see (3.3)).
After the mixing time, the maximal concentration cM decreases as t−3/2, in close
agreement with the trend shown on figure 4(b).

4. Probability density function
If A is the total surface area of the spiral with a non-zero concentration level,

the probability density function (PDF) of the scalar P (c) is the fraction of the
total area with concentration lying in the interval [c, c + dc]. It is convenient to
compute P (c) in the (r, ξ ) coordinates where ξ is defined in (3.8) so that with

dX =
√

1 + (Γ 2t2)/(π2r4) dr and dY = s dξ = s0 dξ/
√

1 + (Γ 2t2)/(π2r4), one has

P (c) dc =

∫∫
c(X,Y )∈[c, c+dc]

dX dY

A
=

∫∫
c(r,ξ )∈[c, c+dc]

s0 dr dξ

A
. (4.1)

The scalar spatial distribution is given in (3.10) as the difference of two error
functions. However, after the mixing time, that is when the spiral is very thin, this
difference approximates the derivative of the error function, providing a Gaussian
concentration profile:

c(ξ, r) = c0 erf

(
1

4
√

τ (r)

)
e−ξ 2/2σ 2

ξ , (4.2)
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Figure 5. (a) Perspective view and (b) contour plot of the concentration profile given in (4.2).
The white band corresponds to an iso-concentration c/c0 = 0.6. (c) Zoom of the end of the
spiral on figure 1 with the same construction.

where τ (r) is given by (3.8) and σξ (r) is the standard deviation of the original profile
c(Y ) given in (3.10):

σ 2 =

∫
Y 2c(Y ) dY

∫
c(Y ) dY

= s2(t)

∫
ξ 2c(ξ ) dξ

∫
c(ξ ) dξ

= s2(t)
1 + 24τ (r)

12
or σ 2

ξ =
1 + 24τ (r)

12
.

(4.3)

Note that the ‘spiral thickness’ σ first decreases as t−1, reaches a minimum at t = ts
and increases again as t1/2 after the mixing time, when the spiral is locally nearly
parallel to the vortex streamlines.

The shape of the iso-concentration lines c(r, ξ ) = c in the (r, ξ )-plane is shown in
figure 5:

ξ (r, c) = ±σξ (r)

√
2 log[erf(1/4

√
τ (r))] − 2 log(c/c0). (4.4)

This curve is defined for r > r∗
1 (c) only, that is above the smallest radius with the

concentration c at time t:

r∗
1 (c) =

[
16

3π2

DΓ 2t3

s2
0 [erf

−1(c/c0)]−2 − 16Dt

]1/4

. (4.5)

If the scalar blob was initially placed between the radii r1 and r2, the concentration
PDF is

P (c) =
2s0

A

∫ r2

max[r1,r
∗
1 (c)]

∣∣∣∣ ∂c

∂ξ

∣∣∣∣
−1

dr. (4.6)

The concentration profile across the spiral and the evolution of the maximal concen-
tration along the spiral set the global PDF.

The above relation is compared on figure 6 with the experimental histograms
recorded with a blob initially located between r1 = 1.65 cm and r2 = 2.1 cm. In the
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Figure 6. Probability density functions at (a) t = 5 s, (b) t = 8 s, (c) t = 10 s and (d) t = 13 s.
Solid lines correspond to the theoretical prediction given by (4.6) and dashed lines correspond
to the PDF of the spatial maxima of concentration, defined by (4.7).

early stages, (figure 6a), as long as most of the fluid particles constituting the spiral
have not yet reached the mixing time, the PDF is that of a Gaussian spatial profile
(1/c)

√
log(c/cM ) with cM = c0 displaying a characteristic ∪ shape.

Once diffusion becomes effective, the PDF nucleates a cusp located at the maximal
concentration cM (r1) obtained at the inner end of the spiral. The shape of the PDF
for cM (r1) < c < cM (r2) results from the superposition of the right-hand branches of
the ∪-shaped distributions parameterized by cM (r) with r1 < r < r2 (figure 6b–d) and
weighted by the probability of finding the maximal concentration cM , namely Q(cM ).
This distribution is the fraction of the spiral length dX with concentration in the
interval [cM, cM + dcM ]:

Q(cM ) =
1

L

∣∣∣∣dcM

dX

∣∣∣∣
−1

, (4.7)

where L is the spiral length L =
∫ r2

r1
dX. It is defined in the range [cM (r1), cM (r2)] and

shown as the dashed line on figure 6. At short times, P (c) and Q(cM ) are very different
because the low concentration levels at a small radii r and ξ = 0 are as numerous as
the same levels at the edges of the Gaussian transverse profile (ξ 
= 0) at a higher r .
The spatial distribution c(ξ ) contaminates the whole distribution P (c), inducing the
characteristic ∪ shape. At later stages (figure 6d), the low levels of concentration from
the edges of the Gaussian profile at large radii are sparse in comparison to those at
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the centre of the spiral and ξ = 0. Therefore, Q(cM ) becomes a decreasing function
of c and gets closer to P (c). In the final stages, when Γ t/r2 � 1 and for ts(r) > 1 for
all r , these two distributions are both given by

P (c) ≈ Q(cM = c) ∼
(

r̃4s2
0

DΓ 2t3

)1/4
1

c3/2
, (4.8)

where r̃ =(1/r1 + 1/r2)
−1.

5. Conclusions and implications
In the simple displacement field of a two-dimensional vortex, a direct connection

exists between the microscopic equations of diffusion and the resulting global statistics
of the mixture through the scalar concentration PDF P (c) which, therefore, appears
as a reformulation of the microscopic convection–diffusion problem.

This one-to-one connection is possible because the flow solely causes a spatial
mapping of the fluid particles with no interaction between the particles themselves.
The concentration of a given fluid element evolves due to molecular diffusion and
not because it interacts with a nearby element; indeed, the arms of the spiral never
reconnect. This situation would lead to a completely different route for the evolution
of P (c). It is, in this respect, useful to learn that the distribution Q(cM ) tends
asymptotically towards P (c), a hidden assumption made when considering mixture
evolution by particle interaction (Curl 1963; Pope 1985; Pumir, Shraiman & Siggia
1991; Villermaux 2002).

The simple stirring protocol considered here also provides an exact estimation of the
scalar dissipation rate χ = −(d/dt)〈c2〉 = 2D〈(∇c)2〉, a quantity sometimes modelled
in an ad hoc way. Here 〈·〉 denotes a spatial integration, therefore

χ = 2D

∫ r2

r1

dX

s(t)

∫ +∞

−∞

(
∂c

∂ξ

)2

dξ. (5.1)

With c(ξ ) given in (3.10) and∫ +∞

−∞

(
∂c

∂ξ

)2

dξ ∼ 1 − e−1/8τ (r)

√
τ (r)

,

one sees that as soon as Γ t/r2 > 1

χ ∼ (Γ/s0)
√

Dt when t < ts(r) for all r,

χ ∼ s0/(
√

DΓ )t−5/2 when t > ts(r) for all r.

}
(5.2)

As long as most of the fluid particles in the spiral have not reached the mixing time
(i.e. when t < ts(r) and τ (r) � 1), χ reflects both the diffusive smoothing (∼1/

√
Dt)

at the edges of the concentration profile c(ξ ) and the increase of the concentration
support length (∼Γ t). When the mixing time has been reached all along the spiral
(i.e. when t > ts(r) and τ (r) > 1), the maximal concentration cM decays as t−3/2, the
profile thickness σ increases again by pure diffusion as t1/2 and the spiral length still
increases like Γ t , thus, since χ ∼ (cM/σ )2σΓ t , providing the t−5/2 time dependence in
(5.2).
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