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On spray formation
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We depict and analyse the successive steps of atomization of a liquid jet when a fast gas
stream blows parallel to its surface. Experiments performed with various liquids in a
fast air flow show that the liquid destabilization proceeds from a two-stage mechanism:
a shear instability first forms waves on the liquid. The transient acceleration experi-
enced by the liquid suggests that a Rayleigh–Taylor type of instability is triggered
at the wave crests, producing liquid ligaments which further stretch in the air stream
and break into droplets. The primary wavelength λ∼ δ(ρ1/ρ2)

1/2 is set by the vorticity
thickness δ, in the fast air stream and the liquid/gas density ratio ρ1/ρ2. The transverse
corrugations of the crests have a size λ⊥ ∼ δWeδ

−1/3(ρ1/ρ2)
1/3, where Weδ = ρ2u

2
2δ/σ

is the Weber number constructed on the gas velocity u2 and liquid surface tension
σ . The ligament dynamics gives rise, after break-up, to a well-defined droplet size
distribution whose mean is given by λ⊥. This distribution bears an exponential tail
characteristic of the broad size statistics in airblast sprays.

1. Introduction
The disintegration and dispersion of a liquid volume by a gas stream is a pheno-

menon which embraces many natural and industrial operations. The entrainment of
spume droplets by the wind over the ocean, the generation of pharmaceutical sprays
or the atomization of liquid propellants in combustion engines are among obvious
examples (Lefebvre 1989; Bayvel & Orzechowski 1993). In order to compute the rate
of exchanges of solutes between the ocean and the atmosphere, or to estimate the
size of a combustion chamber, it is frequently desirable to have a precise knowledge
of the liquid dispersion structure, in particular its distribution of droplet sizes as a
function of the external parameters: wind speed, liquid surface tension, etc.

The problem has first been investigated in the simple configuration of a single drop
immersed in a flow moving relatively to itself (Hinze 1949; Kolmogorov 1949; Lane
1951). It was realized that the relevant parameter for the drop breakup criterion is
the Weber number (Weber 1931), constructed as the ratio of the drag, aerodynamic
pressure ρ2(u2 −u1)

2 and the capillary restoring pressure σ/d as We = ρ2(u2 −u1)
2d/σ ,

where ρ2 denotes the density of the destabilizing flow, u2 − u1 the contrast of
velocity between the flow and the droplet, d its diameter and σ the liquid surface
tension. The critical Weber number above which the droplet disintegrates is about 10
(Hanson, Domich & Adams 1963) and somewhat smaller when the destabilizing flow
is turbulent (Hinze 1955).
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The detailed breakup mechanism reveals a very rich zoology of phenomena (Pilch &
Erdman 1987). At moderate Weber number, the droplet deforms in a pancake
shape which flattens in a bag membrane eventually breaking into very small
droplets (originating from the membrane itself) and larger droplets (coming from
the membrane rim).

At higher Weber numbers, the droplet is no longer deformed as a whole, but is
rather ‘stripped’ at its surface, forming liquid fibres, or ligaments which produce the
stable droplets (Ranger & Nicholls 1969; Krzeczkowski 1980; Joseph, Belanger &
Beavers 1999).

The same qualitative succession of atomization regimes is observed when a liquid
jet flows in a faster coaxial stream (Faragó & Chigier 1992; Zaleski et al. 1996),
except that there is no critical Weber number for the jet disintegration since its
circular geometry suffers a capillary-driven instability (Plateau 1873; Rayleigh 1879).
However, the effect of the air on the liquid destabilization is manifested, as shown
on figure 1, first as a global wandering of the jet inducing bags and rims, then as
the air velocity is increased, via the formation of ligaments at a scale smaller than
the liquid jet diameter itself. In this ‘stripping’ regime, the typical droplet diameter
(often characterized by the mean Sauter diameter d32 representing the third over
the second moment of the size distribution P (d)) has been found to depend on
the velocity contrast like (u2 − u1)

−β , with β close to 1 (Yatsuyanagi, Sakamoto
& Sato 1994; Lasheras, Villermaux & Hopfinger 1998 and references therein). The
problem is, obviously, Galilean invariant and the same ‘stripping’ phenomenology
occurs when a liquid jet is moving in a still atmosphere, as can be seen from the
early instantaneous pictures of Hoyt & Taylor (1977). The droplet size was also
found to decrease with the velocity contrast, given by, in that case, the liquid velocity
(Wu & Faeth 1995).

A salient feature of natural sprays is the broadness of their droplet size distribution;
the distribution is highly skewed, the most probable droplet sizes being close to the
smallest ones and the probability of finding a drop size twice or three times larger
than the mean being not vanishingly small (Simmons 1977a, b; Anguelova & Barber
1999; Andreas, Pattison & Belcher 2001). Simmons (1997a, b) notes that, for a large
collection of industrial sprays, the distribution of sizes P (d) is, in shape, solely
determined by its mean, and that its tail is well fitted by an exponential fall-off.
The existing theories intended to model this fragmentation process essentially rely
on cascade ideas, following the early suggestion of Kolmogorov (1949) (see also
Novikov & Dommermuth 1997), leading to log-normal statistics of the fragment
sizes. Notable exceptions are the work of Longuet-Higgins (1992) which shows how
a simple geometrical model of ligament random break-up produces broad skewed
size distribution without resorting to sequential cascade arguments, and that of cohen
(1990, 1991) which shows how pure combinatoric and thermodynamic arguments lead
to a Poisson distribution for the fragment volumes.

As suggested by figure 1, at the root of the disintegration process is a shear between
the light fast stream and the slow dense liquid. Adapting an analysis of Rayleigh
(1880), Villermaux (1993, 1998a) has shown why and how, when the velocity profile
at the liquid–gas interface is not a pure discontinuity, the instability Kelvin and
Helmholtz analysis has to be altered to predict the most amplified wavelength and
growth rate. Using a plane liquid–gas shear layer, Raynal (1997) and Raynal et al.
(1997) have shown experimentally that the presence of a smooth cross-over between
the slow and the fast velocity is indeed a key ingredient to understanding the first
destabilization of the liquid.
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Figure 1. Breakup regimes of a slow dense liquid jet by a fast light coaxial stream. Top: at
low gas velocity, the liquid jet meanders in the gas stream, possibly forming bags. Bottom:
for higher gas velocities, the jet is peeled-off at its surface, disintegrating via a succession of
surface instabilities.

The present paper reports a comprehensive study of the atomization scenario,
from the primary destabilization of the liquid–gas interface, to the final drop size
distribution. Section 2 presents the experimental set-up, § 3 gives a general overview
of the chronology of the mechanisms and presents results, § 4 is devoted to the analysis
of the interface destabilization, and § 5 discusses the drop formation statistics. The –
practically important – effect of a pre-existing turbulence in the gas, or the liquid, or
both is examined in the Appendices.

2. Experimental set-up
The flow configuration was designed to realize a round liquid jet surrounded by a

tangential (coaxial) air flow (figure 2). The choice of the axisymmetric geometry was
made for visualization purposes. It has, also, a direct relevance for practical questions
regarding liquid–gas propellant engines.

The convergence of the flow in the injector reduces the intensity of pre-existent
turbulence. The contraction of the cross-section is of a factor 6.9 for the liquid jet and
6 for the gas jet. The liquid flow velocity is measured by a rotameter (manufacturer
Kobold) with an accuracy of 2%, and the air velocity by a turbine flowmeter
(McMillan) with an accuracy of 3%. The liquids were: tap water; ethanol 95%; and
a solution of glycerol in water (66% in mass) whose properties are given in table 1.

The air (pressurized up to 6 bars at the inlet) flows through the outer chamber,
and a boundary layer develops on the wall of the injector. The velocity profiles at the
exit, we obtained by standard hot-wire anemometry (figure 3a).

The boundary-layer thickness in the gas is defined by the vorticity thickness δ

δ =
Umax − Umin

dU/dy|max

(2.1)
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Surface tension (mN m−1) Density Viscosity (centiPoise)
Water 69 ± 1 1 1.14 ± 0.01
Ethanol 25 ± 1 0.79 1.34
Glycerol 66% 70 ± 1 1.16 14.0 ± 0.2

Table 1. Liquid properties measured at 20 ◦C.

Gas

Gas

Liquid

U2

U1

Figure 2. Injector geometry: the inner diameter is D1 = 7.8 mm, the annulus gap has a width
of h =1.7 mm.
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Figure 3. (a) Velocity profiles on a radius through the outer air jet. Maximal air velocities of
2.1, 4.3, 5.4, 8.7, 14, 42 and 90 m s−1. (b) Vorticity thickness as a function of Re= humax/ν2:
�, boundary layer on the splitting plate; �, outer wall; —, 5.6Re−1/2.

and decreases with air velocity. Expressed as a function of the Reynolds number
based on the gas gap thickness h of the crown at exit, Re =hu2/ν2, it varies according
to

δ/h � 5.6 Re−1/2, (2.2)

as expected for a laminar boundary layer (figure 3b). As will be emphasized below,
this quantity is a key parameter controlling the instabilities at the liquid surface.
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Figure 4. Growth of axisymmetric instability (u1 = 0.5m s−1, u2 = 15 m s−1).

The liquid jet was made visible by backward illumination through a diffusive screen.
Two imaging techniques were used. For length and displacement measurements,
a high-resolution camera (Orca, Hamamatsu, 1284 × 1024 pixels) was mounted in
combination with a couple of 5 µs xenon flash lamps (FXP 850, EG&G ElectroOptics).
To follow the entire evolution of the motion, a high-speed camera (Hs Motion
Analyser, Kodak, up to 4500 images per second with full resolution 256 × 256 pixels)
is combined with a continuous 1000 W halogen spot. The resulting digital images
were analysed with the NIH Image freeware. Droplet size statistics typically involved
2000 objects.

3. Disintegration chronology, and results
When emerging in a still atmosphere (gas velocity u2 = 0), the liquid jet (velocity u1)

suffers a capillary Plateau–Rayleigh instability. Axisymmetric undulations grow along
the jet with a wavelength 4.51D1 at onset, eventually breaking the jet in droplets.

Adding a coflowing stream of air with velocity u2, large in comparison to u1, induces
a new axisymmetric destabilization of the liquid jet, which eventually overcomes the
Plateau–Rayleigh instability, when u2 is increased.

3.1. Axisymmetric instability

The wavelength of the liquid jet undulations in the presence of air flow are measured
on still pictures (figure 4). This wavelength is clearly distinct from that due to the
capillary instability since it is a function of the air velocity. It is not, either, due to a
pulsation of the axial liquid velocity which would actually lead to similar undulations
(Meier, Klöpper & Grabitz 1992). At u2 = 15 m s−1 the wavelength is of the order of
D1 and decreases with larger air velocity proportionally to the vorticity thickness δ

(figure 5a). The liquid velocity affects the wavelength slightly; larger wavelengths are
obtained with smaller u1.

The passage frequencies of the undulations were measured aiming a laser round
beam perpendicular to the jet axis such that the beam (about 2 mm in diameter)
intersects the liquid surface at a fixed downstream position (typically one liquid
diameter). The beam impacts on a photodiode and is deflected by the passage of an
undulation, resulting in a modulation of the signal received by the photodiode.
The temporal spectrum of the photodiode signal displays a peak at the mean
undulations passage frequency. This frequency increases rapidly with air velocity,
like u

3/2
2 (figure 5b).
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Figure 5. (a) Ratio of the wavelength of the initial instability to the thickness of the air
boundary layer as a function of the air Reynolds number Re= hu2/ν2 (� , u1 = 0.45 m s−1,
�, 0.94m s−1, �, 2 m s−1). (b) Frequency of occurrence of the undulations; �, u1 = 0.20 m s−1;
�, 0.32 m s−1; �, 0.45 m s−1; �, 0.80 m s−1; �, 1.69 m s−1.
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Figure 6. (a) Superposition of the liquid contours (u1 = 1m s−1, u2 = 33m s−1). (b) Deviation
of the jet radius as a function of the downstream distance x. From bottom to top, air velocities
are 18, 21, 25, 27, 29, 30, 33, 38, 48 and 57 m s−1, u1 = 0.94 m s−1.

The downstream growth of the undulations is measured by superimposing a large
collection of instantaneous contours of the liquid surface (figure 6a). The undulations
amplitude is estimated by the r.m.s. deviation of the jet radius at a fixed downstream
position σrms = 〈(ri −〈ri〉)2〉1/2, 〈.〉 being an ensemble average over many instantaneous
pictures. If the jet oscillations were perfectly sinusoidal with an amplitude a(x), their
r.m.s. deviation would be σrms = a/

√
2. The amplitude of the observed oscillations

display an initial exponential growth which saturates when the amplitude approaches
5% of the liquid jet diameter D1 (figure 6b).

3.2. Transverse instability: the birth of digitations

Above a critical velocity (of about 20 m s−1), the undulations are no longer axisym-
metric and display transverse azimuthal modulations. These modulations grow in
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Figure 7. Development of digitations (u1 = 0.6 m s−1, u2 = 35 m s−1).

(a)

(b)

(c)

(d )

Figure 8. Transverse modulation, (a) u2 = 24m s−1; (b) u2 = 27 m s−1; (c) u2 = 32m s−1;
(d ) u2 = 24m s−1 in oblique view.

amplitude and eventually degenerate in liquid ligaments which are further accelerated
in the fast air stream (figures 7 and 8).

Photographs taken from the side allow us to estimate the number n of liquid
ligaments at the crest of the primary undulations. Their number increases with air
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Figure 9. Average transverse spacing of the digitations; �, water; �, ethanol; u1 = 0.94 m s−1.

Figure 10. Double flashes on one exposure. u1 = 0.45 m s−1, u2 = 19 m s−1, �t = 2 ms.

velocity. The ligaments are fairly equally distributed around the liquid jet and their
mean spacing λ⊥ = πD1/n decreases approximately as u−1

2 (figure 9). Surface tension
plays a role in setting the absolute value of this spacing; with ethanol, whose surface
tension is smaller than that of water, the spacing is smaller. The jets made of a mixture
of water and glycerol (66% by weight, 14 times more viscous than pure water) do not
present an appreciably different spacing from that of water for a given air velocity.

3.3. Ligament development

After the onset of the primary, shear instability causing the axisymmetric disturbances,
the acceleration of the liquid surface protrusions by the air presents two stages.
First, the crest of the primary transverse modulations are displaced as a whole
relative to the liquid bulk and, secondly, the azimuthal modulations are elongated
into ligaments.

3.3.1. Acceleration of the modulations

The acceleration of the crests is estimated by their displacement on double exposure
pictures (figure 10). The delay �t between the exposures is adjustable and is of the
order of a millisecond. This method allows us to use a high-resolution camera with a
slow framing rate providing high-precision measurements. The velocity between the
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Figure 11. (a) Axial velocity of the crest as recorded on double flash photographs,
u1 = 0.94 m s−1. �, u2 = 21 m s−1; �, u2 = 28m s−1; �, u2 = 34 m s−1. —, linear trend. (b)
Variation of the velocity of the crest, according to slopes of the previous graph; �,
u1 = 0.45 m s−1; �, u1 = 0.94 m s−1.

two positions of the crest x1 and x2 is defined as vx = (x2 − x1)/�t and is plotted as a
function of downstream distance x1 on figure 11(a).

The velocity of the liquid is initially that of the liquid u1 since the surface is smooth
and not yet perturbed by any instability waves. When the amplitude of undulations
is high enough, aerodynamic drag comes into play and the liquid is accelerated. The
velocities have a large dispersion from crest to crest, but an initial linear growth
with the downstream distance is nevertheless easily noticeable. The spatial increase of
velocity, dvx/dx, is proportional to u2

3 and inversely proportional to u1 (figure 11b).

3.3.2. Elongation of the modulations

The dynamics of the ligaments coming from the azimuthal destabilization of the
wave crest is followed using high-speed imaging. The temporal evolution of the length
L is shown on figure 12(a).

A selection of representative ligaments for different air velocities shows (figure 12b)
that the rate of stretch and the thickness of the ligaments at breakup depend strongly
on the air velocity.

3.4. Ligament breakup

The liquid ligaments are stretched in the air stream and their diameter decreases until
they break into drops (figure 13).

The ligament length Lb and diameter ξb just before breakup can be measured on
double exposed high-resolution photographs, when the breakup occurs between the
two flashes. The evolution of these lengthscales with the gas velocity u2 is shown on
figure 14; at breakup, the ligament length does not vary much, while the diameter
strongly decreases with u2 (figure 15).

The liquid volume contained in one ligament is found by adding the volume of all
the droplets resulting from the ligament breakup. The identification of the droplets
produced by the same ligament is performed on the two exposure photographs. The
volume of each droplet is measured from its surface S on the image, assuming that
it is close to a sphere of diameter d , such that S = πd2/4. The total volume of the
ligament, difficult to follow during its elongation, is in that way accurately measured
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Figure 12. (a) Ligament elongation (�t = 1 ms, u1 = 1 m s−1, u2 = 25m s−1). (b) Length of the
ligaments with time. The end of the curve corresponds to their breakup. �, u2 = 25 m s−1; �,
u2 = 29 m s−1; �, u2 = 34m s−1; �, u2 = 40 m s−1; �, u2 = 50 m s−1.

Figure 13. Breakup of a ligament.

as the sum of the droplet volumes, v0 =
∑

i πd3
i /6. In what follows, we express the

total ligament volume by the size d0 which is the diameter of the equivalent sphere
containing all the ligament volume

v0 = 1
6
πd0

3. (3.1)

The average (among a set of ligaments obtained for given operating conditions)
ligament ‘size’ 〈d0〉 defined that way is found to decrease with the air velocity like
u−1

2 , thus following an evolution parallel to that of λ⊥

〈d0〉 � 0.23λ⊥, (3.2)

as figures 9 and 15 show, where 0.23 is the observed prefactor.
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Figure 14. Aspect of ligaments before breakup. (a) u2 ∼ 20 m s−1; (b) 35 m s−1; (c) 50 m s−1.
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Figure 15. Evolution of length Lb and diameter ξb of the ligaments before breakup, along
with their volume expressed by their size d0 (water).

3.5. Droplet sizes from one ligament

For given operating conditions, the ligament sizes d0 are found to be distributed
around the mean in a somewhat symmetric bell-shaped distribution (figure 16a).
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Figure 16. (a) Probability density function of the ligaments size pL(d0), for the same
flow condition. 111 measurements distributed in 8 bins, u1 = 0.45 m s−1, u2 = 29 m s−1. (b)
Distribution pB (d/d0) of the droplet sizes after breakup compared to the ligament size;
—, 29 m s−1; – – –, 38m s−1; · · ·, 50 m s−1.

The droplet diameters d are more broadly distributed and present a skewed
distribution. When the sizes are rescaled by d0, which depends on u2 as explained
above, their distribution pB(d/d0) keeps roughly the same shape for various air flows
(figure 16b). The average droplet size resulting from the breakup of a ligament is
d � 0.4d0.

3.6. In the spray

The breakup process described above is often referred to as ‘primary breakup’. If drops
produced by this process are big enough (precisely, if the Weber number constructed
with their size and the relative velocity they have with the air stream is larger than
about 10 (Hanson et al. 1963), they may break again, in a ‘secondary atomization’
process. That second stage is virtually absent in the present case. The reason for this
lies in the axisymmetric configuration of the air jet, which expands and therefore
slows down for downstream distances larger that about 4–5 air gap thicknesses e

(the length of the air jet potential core). The velocity contrast between the gas and
the primary droplets thus shrinks rapidly and the distribution of droplet sizes issuing
from the ligament breakup is essentially frozen (Marmottant 2001). The global size
distribution function p(d) in the spray is thus a mixture of the contributions coming
from different ligaments, each characterized by their own frozen size distribution
pL(d/d0).

The window for measuring the global size distribution function p(d) in the spray
was chosen downstream of the ligament breakup region, far enough first to let the
biggest droplets relax towards a spherical shape, and second to let the spray dilute in
the air stream, therefore maximizing the efficiency of our droplet detection procedure
(figure 17).

The procedure is described in Appendix A. We use a large-aperture small depth
of field (of the order of 1 mm) lens and an image analysis algorithm which detects
in-focus and isolated droplets only. Their size is computed from their projected area
on the images, provided their projected shape is close enough to a disk. Statistics
typically involved 2000 uncorrelated images of the spray, representing a set of 104

different droplets for each case.
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(a)                                                                                                ( b)

Figure 17. (a) Images in the spray after ligament breakup, (b) sample of the images used to
detect droplets.
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Figure 18. Droplet size distributions in the spray: (a) water (b) glycerol solution.

The droplet size distribution p(d) (figure 18) displays an exponential fall-off at
large diameters solely parameterized by the average ligament size 〈d0〉:

p(d) ∼ exp(−nd/〈d0〉), (3.3)

the parameter n ≈ 3.5 being slowly increasing with the air velocity. The mean droplet
size in the spray, d10 =

∫
dp(d) dd , decreases like u−1

2 (figure 19a), like λ⊥ and 〈d0〉.
For water, the proportionality relation is d10 � 0.10λ⊥, for ethanol d10 � 0.08λ⊥. These
values are consistent with observations at the scale of each ligament, which concluded
in a mean droplet size of 0.4d0 after a ligament breakup, together with an average
ligament size of 〈d0〉 � 0.23λ⊥.

The use of a viscous glycerol solution instead of pure water changes both the
ligament aspect ratio at breakup (see e.g. figure 34b), the droplet size and its
dependence on the air velocity (figure 18b). Ligaments are more elongated, thinner in
diameter and break into smaller droplets. This difference relative to the pure water
case amplifies with increasing air velocity (figure 19b).

4. Analysis
The experimental findings of the previous section suggest that a succession of

instabilities is responsible for the transformation of the liquid from a round jet to a
set of dispersed droplets. We examine now the underlying physical mechanisms.
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Figure 19. Mean diameter in the spray; (a) water, �, u1 = 0.45 m s−1; �, u1 = 0.94 m s−1; and
ethanol, �, u1 = 0.5 m s−1. (b) water, and glycerol solution, �, u1 = 0.35 m s−1.

4.1. Shear instability

Two initially parallel streams having different velocities are naturally unstable: this
is the Kelvin–Helmholtz paradigm. The mode selection of the instability involves
detailed properties of the separation interface between the streams, such as its surface
tension or its thickness if the crossover between the fast and slow stream is not
made abruptly. Both of these ingredients exist and we give below a discussion of the
relevant limit in the present case.

4.1.1. Thin vorticity layer: the Kelvin–Helmholtz limit

Consider a velocity discontinuity, thus presenting a vanishingly small vorticity
thickness (δ → 0), separating two potential flows with constant velocity. The dispersion
relation of two-dimensional small-amplitude waves ξ = |ξ |exp(ikx − iωt) is

ω = k
ρ1u1 + ρ2u2

ρ1 + ρ2

± i
k

ρ1 + ρ2

√
ρ1ρ2(u2 − u1)2 − (ρ1 + ρ2)σk, (4.1)

in the absence of gravity (Chandrasekhar 1961). Assuming a spatially uniform
perturbation (Im(k) = 0), the temporal growth rate ωi =Im(ω), is proportional to
k for small wavenumbers and surface tension is stabilizing at large k, i.e. for

k > kc =
ρ1ρ2

ρ1 + ρ2

(u2 − u1)
2

σ
.

For a liquid–gas interface (ρ1 � ρ2), with a large velocity difference (u2 � u1), the
most amplified mode and group velocity are

km =
2

3

ρ2u
2
2

σ
,

∂ω

∂k
= u1 +

ρ2

ρ1

u2. (4.2)

The above result is, however, of little practical interest in a large variety of situations.

4.1.2. Non-zero vorticity layer: the Rayleigh limit

A way to produce a shear between two parallel streams is to accelerate them in
distinct channels separated by a rigid boundary. The method implies the formation
of boundary layers at the wall of the conveying channels resulting in thickened
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Figure 20. Linear velocity profile used in the instability analysis.

velocity profiles at their merging location. Additional lengthscales to the one formed
by the ratio of surface tension to inertia σ/ρ2u

2
2 appear in the problem, namely the

boundary-layer thicknesses δ and δ1 (figure 20). The impact of a finite-size vorticity
thickness at the interface between two streams of equal densities was first analysed
by Rayleigh (1880) showing that the selection of mode is actually realized by this
thickness. Rayleigh showed also that the instability of inflectional velocity profiles
has not, by contrast with the boundary-layer type of profile, a viscous origin, and the
way in which viscosity weakens the growth rate at very low Reynolds number was
quantified later (see e.g. Betchov & Szewczyk 1963).

One of the subtleties of the present problem is that it incorporates two phases,
with (very) different densities and viscosities and thus, a priori, different vorticity
thicknesses. However, only one is important in the present limit of a fast gas phase
contacting a nearly quiescent liquid through a thick layer δ.

A very short time after the streams have merged, the overall velocity profile can
be sketched as in figure 20. The continuity of viscous stress τ across the interface is
written as

τ = η2

u2 − ui

δ
= η1

ui − u1

δ1

, (4.3)

with η1 and η2 the viscosities of each phase and ui the velocity at the interface. In this
parallel stream approximation, the liquid layer can only grow by viscous diffusion so
that δ1 ∼

√
ν1t .

Since u2 � u1, we have η2(u2 − ui)/δ ≈ η2u2/δ and ui − u1 = (η2u2/η1δ)
√

ν1t . The
Reynolds number based on the gas shear-layer thickness Reδ = u2δ/ν2 is of the order
of 500 in the present experiment, much larger that the value below which the damping
role of viscosity starts to be effective which is about 100 (Betchov & Szewczyk 1963;
Villermaux 1998b). It takes some time, however, for the liquid shear layer to reach
this condition. With Re1 = (ui −u1)δ1/ν1 = Reδ(η2/η1)(ν2t/δ), this time, for a water–air
system and with Reδ = u2δ/ν2 = 500 is approximately

ν2t

δ2
= 10. (4.4)

As will be show below, the growth rate of the overall inflectional profile, neglecting
completely the contribution of the liquid layer (i.e. setting δ1 = 0), is ρ2u2/ρ1δ so that
the instability based on the gas profile solely has, by the time the above condition
is reached, developed by 10 × (δ2/ν2)(ρ2u2/ρ1δ) = 5 turnover times. This is, by far,
enough to study a generic profile such as that of figure 20 with δ1 = 0. This broken
line profile is a caricature of the actual continuous velocity profile known, in one-
phase flows, to capture all the physics (wavenumber cut-off, growth rate) of the
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instability (Huerre & Rossi 1998). This type of profile has an analytic dispersion
relation which is conveniently manipulated. Using dimensionless variables κ = kδ and
Ω = ωδ/(u2 − u1), the dispersion relation is (Villermaux 1993, 1998a; Raynal et al.
1997)

e−2κ =

[
1 − 2

(
Ω + κ

u2/u1

u2/u1 − 1

)]

×
1 +

(
ρ1

ρ2

+ 1

) (
Ω +

κ

u2/u1 − 1

)
− κ3

We

(
Ω +

κ

u2/u1 − 1

)−1

1 +

(
ρ1

ρ2

− 1

)(
Ω +

κ

u2/u1 − 1

)
− κ3

We

(
Ω +

κ

u2/u1 − 1

)−1
, (4.5)

where We = ρ2(u2 − u1)
2δ/σ is the Weber number based on the gas shear-layer

thickness δ.

4.1.3. Thick vorticity layer

The vanishingly small vorticity-layer limit has been studied in § 4.1.1. Conversely,
in the large Weber number We limit, corresponding for instance to a thick vorticity
layer, factors containing 1/We are negligible and the stability properties of the layer
are then described by the dispersion equation studied by Villermaux (1993, 1998a) as
a direct extension of the Rayleigh approach, incorporating density differences

e−2κ = [1 − (2Ω∗ + κ)]
1 + 1

2
(ρ1/ρ2 + 1)(2Ω∗ − κ)

1 + 1
2
(ρ1/ρ2 − 1)(2Ω∗ − κ)

, (4.6)

with Ω∗ = Ω − 2κ(u2 + u1)/(u2 − u1) in the reference frame moving at the average
velocity (u1 + u2)/2. Setting ω = ωr + iωi , the temporal stability analysis of 4.6 displays
a growth rate ωi(k) tangent to the velocity discontinuity dependence at small k (i.e.
ωi(k) ∼ k(ρ2/ρ1)

1/2(u2 − u1), see (4.1)) and an overall bell-shape with a cut-off at
kc = 2(ρ2/ρ1)

1/2/δ.
The most amplified wavenumber and associated growth rate are (for u2 � u1)

km � 1.5

(
ρ2

ρ1

)1/2
1

δ
, ωi(km) � ρ2

ρ1

u2

δ
. (4.7)

The group velocity at km is very well represented by a convection velocity uc

estimated from stress continuity at the interface (Bernal & Roshko 1986; Dimotakis
1986) (

∂ω

∂k

)
km

� uc =

√
ρ1 u1 +

√
ρ2 u2√

ρ1 +
√

ρ2

, (4.8)

within 10% accuracy in the air/water case with ρ2/ρ1 = 1.2/1000.
The wavelength λ is prescribed by the vorticity thickness and density ratio

δ(ρ1/ρ2)
1/2, the passage frequency of the birthing surface undulations is given by

f ∼ uc/δ with a temporal growth rate ωi(km) ∼ u2/δ(ρ2/ρ1).
The transposition of the above results to a spatial growth, as is the case in

this convected flow, setting ω real and k = kr + iki , owing to the Gaster (1962)
transformation ki =ωi/uc, provided ωi(km)/f  1 in the temporal analysis.

We have

ωi(km)/f =
2π

1.5

(
ρ2

ρ1

)1/2
M1/2

M1/2 + 1
,
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Figure 21. Transition from a thin shear layer and a large layer as a function of the Weber
number at u2/u1 = 20; �, group velocity; �, most unstable wavenumber; - - -, We = (ρ2/ρ1)

1/2.

with M = ρ2u
2
2/ρ1u

2
1 the momentum ratio between the streams. Since ρ2  ρ1, and

M > 1 in the present experiments, ωi(km)/f  1 is never larger than about 0.14, thus
fulfilling the Gaster requirement.

4.1.4. Transition between the two limiting cases

The numerical solution of the complete dispersion equation, (4.5), shows, as
expected, a transition from the thin vorticity layer (We  1) to the thick vorticity
layer (We � 1). The selected wavenumber is indeed km = 2ρ2u

2
2/3σ for small We,

and tends to km = 1.5(ρ1/ρ2)
1/2/δ at large We. The group velocity ∂ω/∂k jumps from

nearly u1 to uc when the Weber number increases, after a discontinuous transition (see
figure 21).

That transition occurs for

We ∼
(

ρ2

ρ1

)1/2

. (4.9)

Even in the presence of surface tension, the shear does not affect the layer for
wavelengths shorter that δ(ρ1/ρ2)

1/2. The Rayleigh mode selection thus overcomes the
pure Kelvin–Helmholtz one as long as σ/ρ2u

2
2 <δ(ρ1/ρ2)

1/2, hence providing condition,
(4.9) above (Villermaux 1998a).

Note, finally, that this shear instability overcomes the capillary instability of the jet
itself as soon as its growth rate u2/δ × ρ2/ρ1 is larger than the capillary growth rate
(σ/ρ1D

3
1)

1/2, that is when Weδ � ρ1/ρ2 × (δ/D1)
3, a condition always fulfilled in these

experiments.

4.1.5. Comparison with experiments

In the experiments described in § 3, We(ρ1/ρ2)
1/2 was always larger than 50 so that

the large-vorticity-layer description holds. The ratio of the selected wavelength λ to δ

is indeed observed to be constant (see figure 5a).
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Figure 22. (a) Measured frequency as a function of the predicted dependency in the
parameters of the flow; �, u1 = 0.20m s−1; �, 0.32 m s−1; �, 0.45 m s−1; �, 0.80 m s−1; �,
1.69m s−1; × , results of Eroglu & Chigier (1991). (b) Estimation of the temporal growth
rate, according to the Gaster transformation of the spatial growth rate, as a function of the
theoretical prediction ωth

i . Lines show linear fits.

The small effect of the liquid velocity on this ratio is a convergence effect due
to gravity which enlarges the gas boundary-layer thickness at small liquid velocities
because the liquid surface is not parallel to the gas jet in that case. This, in turn,
increases the selected wavelength slightly.

The passage frequency f is well accounted for by a proportionality to uc/δ as
the good collapse obtained on figure 22a suggests. Also shown in this figure are
the frequency measurements of Eroglu & Chigier (1991). Those were made on a
similar coflowing set-up, with a convergent air channel. The liquid jet diameter
was D1 = 0.971 mm, and the annulus gap of h = 4.55mm at the exit. Assuming a
boundary-layer development in the gas stream similar to our case (equation (2.2)),
their results nicely fit ours, and extend them to higher frequencies. The frequency
f is proportional to the gas velocity raised at the power 3/2, this exponent being
decomposed in 1 for the dependence of uc on u2 at high gas velocity plus 1/2 for the
dependence of the shear-layer thickness δ on u2 (see equation (2.2)).

Using a planar air/water shear layer, Raynal et al. (1997) recovered these trends.
These authors were also able to measure the convection velocity uc which showed a
good agreement with equation (4.8).

The spatial growth of the undulations is initially exponential, σrms ∼ exp(kix). The
temporal growth rate, estimated by the Gaster relation ωi(km) = kiuc is proportional
to the predicted growth rate ωi(km) � u2/δ × ρ2/ρ1 (figure 22b).

The predictions of the stability analysis are consistent with the observed
dependencies on velocities and boundary-layer thickness; however, the prefactors
are not, as can be seen on table 2. The difference is attributed to the way the velocity
profile has been caricatured. The vorticity is not constant in the experimental boundary
layer, contrary to the linear profile used in the stability analysis. The effective linear
boundary-layer thickness to use in a prediction that matches experimental results is
4 to 6 times larger. This is consistent with the fact that experimental profiles are
smoother than a broken line profile. A stability analysis with a constant vorticity on
width δ thus gives a higher bound for the quantities shown on table 2.
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Experiments (E) Stability analysis (S) Ratio (S)/(E)

Wavelength λ/

(
δ

(
ρ1

ρ2

)1/2
)

1.0–1.4 4.2 4–3

Frequency 1/f

(
δ

uc

(
ρ1

ρ2

)1/2
)

1.4 4.2 3

Growth rate 1/ωi(km)

(
δ

u2

ρ1

ρ2

)
0.17 1 6

Table 2. Comparison with the the linear stability analysis with a linear velocity profile of
thickness δ.

4.2. Transverse destabilization

Several mechanisms have been proposed in related contexts to account for the
formation of corrugations, ligaments and then droplets at the surface of liquid jets
with and without coflow.

The azimuthal secondary instability of the primary wave crests differs from the
primary destabilization in two ways. First, the azimuthal wavelength λ⊥ depends on
surface tension when the distance between the primary crests λ does not and secondly,
λ⊥ is proportional to u−1

2 and not to δ ∝ u
−1/2
2 . A spanwise destabilization of the

mixing layer is therefore unlikely, because it would produce transverse wavelengths
proportional to the primary ones (see e.g. Bernal & Roshko 1986).

For a laminar jet issuing in a still atmosphere with a relative velocity �u, Wu, Ruff &
Faeth (1991) proposed that the boundary layer formed in the liquid with a depth
δ1 ∼

√
ν1t , and as it destabilizes and is torn-off from the liquid bulk, forms ligaments

and droplets. Assuming that it detaches at a distance of order of the diameter of the
injector, these authors infer that the ligament and drop size is D1Re−1/2

1 . This size
does not depend on liquid surface tension and varies proportionally to �u−1/2. This
provides satisfactory scaling relations for liquid density and viscosity, but not velocity
since their measurements rather show a variation of the droplet sizes like �u−0.77.

By analogy with drop breakup in an airstream, we can imagine that the balance
between aerodynamic pressure ρ2u

2
2 and capillary pressure σ/d sets a size for the

fragments peeled-off from the liquid d ∼ σ/(ρ2u
2
2) corresponding to a constant Weber

number constructed on d (Lasheras & Hopfinger 2000). Surface tension then plays a
role, although the detailed mechanism of breakup is not explicit. The dependence on
the relative velocity is very strong in that scenario, i.e. �u−2.

The crest shapes become singular as the primary waves grow in amplitude, marking
the birth of a liquid sheet, bounded by a rim. The capillary instability of the rim has
been proposed as a possible mechanism for the origin of the transverse modulations
(Villermaux 1998a). However, experiments show that this modulation occurs very
early, nearly concomitantly with the formation of the primary undulations, before a
sheet has developed significantly. Moreover, the capillary time constructed on λ, or
even a fraction of λ, is always larger than the primary instability turnover time.

Studying flapping liquid sheets, Villermaux & Clanet (2002) have proposed that the
unsteady motions at the sheet rim confer transient accelerations to the liquid which
trigger a Rayleigh–Taylor type of instability, producing indentations of the rim,
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ligaments, and then drops. Their scenario fits well with the measurements involving
different liquid surface tensions and ambient gas densities.

We suggest in the following that the accelerations that the liquid interface suffers
perpendicular to itself at the passage of the travelling primary undulations become
rapidly large enough to produce a secondary instability.

4.2.1. Surface acceleration

According to the analysis of § 4.1.3, the surface undulations coming from the
primary shear instability propagate with a group velocity uc ≈ u1 + u2(ρ2/ρ1)

1/2 (since
ρ2/ρ1  1) in the laboratory frame, a velocity which is larger than the liquid bulk
velocity u1. The discussion of § 4.1.2 also suggests that the interfacial velocity ui is not
appreciably different from u1 after one instability turnover time. We therefore neglect
the friction acceleration of the surface, and set ui ≈ u1.

The undulations of wavelength λ, moving at a velocity uc − u1 have a pulsation

ωL = ω − ku1 = 2π
uc − u1

λ
≈ 2π

√
ρ2

ρ1

u2

λ
, (4.10)

in the frame of the liquid, the ‘Doppler shift’ −ku1 being non-negligible at small gas
velocity only. We used (4.8) to express the group velocity.

The shear perturbation amplitude is initially growing with a growth rate ωi

(≈ 2/3 ωL) and saturates at an amplitude a (see figure 6b). Then transverse digitations
start to grow. The interface of elevation ξ = −a sin(ωLt), is then subjected to a
perpendicular acceleration

g =
d2ξ

dt2
= a ω2

L sin(ωLt). (4.11)

This acceleration is quite large in practice, with u1 = 1 m s−1 and u2 = 20 m s−1 the
wave frequency is 200 Hz in the laboratory frame and 100 Hz in the liquid frame. For
a typical wave amplitude of a = 1 mm, the acceleration of the surface is g = 400 m s−2,
much larger than the acceleration due to gravity.

4.2.2. Rayleigh–Taylor instability

The acceleration of the interface is oscillatory, alternatively aimed in the direction
of the gas and of the liquid (figure 23). When the acceleration is oriented towards
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the heavier phase, it is unstable in the sense of Rayleigh–Taylor (Rayleigh 1883;
Lewis 1950; Taylor 1950). Since elevation and acceleration are in phase opposition
(equation (4.11)), this situation occurs when the wave elevation is around its
maximum above the liquid. An azimuthal perturbation, transverse to the primary
crests b = b0 exp(imφ) (figure 24) can thus be amplified.

For a plane surface submitted to a constant acceleration level g, the Rayleigh–
Taylor instability as a temporal growth rate and a maximum amplified wavelength is
given by

ωi RT =

(
2

3
√

3

)1/2 (
ρ1g

3

σ

)1/4

, (4.12)

λRT = 2π

(
3σ

ρ1g

)1/2

, (4.13)

when ρ1 � ρ2 (see e.g. Chandrasekhar 1961). These orders of magnitude are useful
for the present experiment when the spacings of the azimuthal undulations are small
in comparison to the jet perimeter. The acceleration varies in the unstable subset of
one oscillating cycle, and the net growth of a perturbation can be estimated by

b1 = b0 exp

∫ TL/2

0

ωi RT (t) dt, (4.14)

where TL = 2π/ωL. Liquid ligaments will develop if the amplification factor b1/b0 is
large enough, that is if the duration and amplitude of the acceleration is large enough,
in other words if∫ TL/2

0

ωi RT (t) dt ∼ 1

ωL

(
ρ1g

3
max

σ

)1/4

∼
((a

λ

)3

Weλ

)1/4

, (4.15)

is larger than a critical value. Weλ = ρ2u
2
2/(σ/λ) stands for the Weber number

constructed on λ. This threshold is determined experimentally by the simultaneous
observation of the amplitude and wavelength of the primary undulations at the critical
conditions when ligaments appear (figure 25). The quantity a/λ× We

1/3
λ increases with

air velocity and ligaments begin to form when the air velocity exceeds about 21 m s−1,
when a/λ× We

1/3
λ is larger than about β = 0.5. The critical amplitude is thus

ac

λ
= βWe

−1/3
λ . (4.16)

Another possible derivation of the above critical condition consists in assuming that
the azimuthal instability will develop with a substantial net growth when the inverse
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Figure 25. �, measured maximum amplitude of longitudinal waves on the jet; �, expected
amplification of the Rayleigh–Taylor instability (at the power four), based on measured
quantities (see equation (4.15)). Solid symbols, no digitations grow; open, digitations, grow;
u1 = 1m s−1.

of the Rayleigh–Taylor growth rate based on the maximal acceleration level a(u2/λ)
2

is of the order of the transit time λ/uc of the wave responsible for the acceleration of
the interface.

At this amplitude, the maximum acceleration of the interface is gmax = acω
2
L, and

according to (4.13) the selected wavelength is of the order

λ⊥ = 2π

(
3σ

ρ1gmax

)1/2

= λWeλ
−1/3

(
3

β

)1/2

. (4.17)

Expressed as a function of the vorticity thickness δ (using the experimental value for
the wavelength λ� 1.2(ρ1/ρ2)

1/2δ, and the threshold parameter β = 0.5), the ligament
spacing is expected to scale as

λ⊥� 2.8 δ We
−1/3
δ

(
ρ2

ρ1

)−1/3

. (4.18)

Figure 26 shows that the experimental data collapse reasonably well on this
prediction, in trend and in absolute value. Particularly, the effect of surface tension is
well accounted for. According to (4.18), the spacing is independent of liquid viscosity,
as is indeed observed. At low Weber numbers, the measured wavelengths do not
match the prediction, because the assumption of plane interface does not hold when
the transverse wavelength is not small compared to the jet perimeter (see figure 9).
For smaller wavelengths, the plane interface hypothesis holds.

In the present particular geometry where the gas stream is an annular jet of
initial width e, the shear instability will develop with the expected features up to
the amplitude given in (4.16) provided the primary wavelength λ is smaller than the
downstream distance above which the gas stream decreases, that is, the gas potential
core length. It is about 5 or 6 times h long. With λ∼ 30 δ ∼ 170 h Re−1/2, this condition
yields a critical air velocity of 20 m s−1 (see figure 25).
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Figure 26. Transverse ligament size for three different liquids; �, water; �, ethanol;
�, glycerol solution. —, prediction of equation (4.18).

4.3. Acceleration of the crests

The discussion above is confined to small interface corrugation amplitudes since it is a
combination of results from linear stability analyses. This is an admissible restriction
as long as the discussion aims at predicting lengths and timescales. However, once
the amplitudes become appreciable, when the ligaments start to be accelerated in the
fast gaseous stream, the dynamics, although it still relies on a balance of aerodynamic
and capillary forces, has to be reformulated.

In a first phase, the crests of the liquid undulations are accelerated with respect to
the liquid bulk as a whole, without much deformation. If vx denotes the crest velocity
in the streamwise direction, a force balance on the crest is written as

ρ1v0

dvx

dt
= 1

2
ρ2u

2
2CDS − σP, (4.19)

where S is the surface of the crest facing the air flow and P the perimeter connecting
the crest to the bulk of the liquid. The drag coefficient CD does not depend much on
u2 at high Reynolds number (Schlichting 1987) which, estimated at the scale λ⊥, is of
order 8000.

The longitudinal and transverse dimensions of a corrugation are of the order of
λ⊥ and height above the bulk ac ∼ λ⊥ at onset so that its volume scales as v0 ∼ λ3

⊥,
its surface as S ∼ λ2

⊥ and perimeter as P ∼ λ⊥. Given these estimates, the ratio of
aerodynamic forces to capillary forces in equation (4.19) is of order Weλ⊥ , whose value
is typically larger than 50. Capillarity is thus negliglible and the crest acceleration is
given by

dvx

dt
∼ ρ2u2

2

ρ1λ⊥
. (4.20)

To this temporal acceleration corresponds a spatial acceleration dvx/dt =
vx(dvx/dx). Initially vx = u1, and then dvx/dx = dvx/dt/u1. Since λ⊥ ∼ u−1

2 , the spatial
increase of the velocity dvx/dx thus scales as u2

3/u1, as expected from figure 11(b).
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4.4. Ligament dynamics

The subsequent evolution of the interface corrugations obeys the very same dynamics.
The air drag pulls a crest from the liquid bulk, by amplifying its length and preserving
its azimuthal symmetry, therefore forming a ligament of increasing length L (figure 27).
If the characteristic elongation time tL = (d lnL/dt)−1 is small compared to the
emptying time of the ligament, given by the capillary time based on its initial
size λ⊥, i.e. tσ = (ρ1λ

3
⊥/σ )1/2, the ligament stretches in the air stream at constant

volume (Marmottant & Villermaux 2004). We have called this volume v0 = πd3
0/6,

with 〈d0〉 � 0.23λ⊥.
The axial momentum of a volume in uniform extension is p = ρ1v0(dL/dt)/2 and

the balance of the forces acting on a ligament is

1
2
ρ1v0

d2L

dt2
= 1

2
ρ2u

2
2CDS − σP, (4.21)

with S � πd2
0/4 and P � πd0 the initial area and perimeter of the ligament cross-

section, respectively.
The ratio of aerodynamic forces to capillary forces given by Wed0

CD/8 is, again,
large, since Wed0

is always larger than 15, and CD of order unity (remember that
the drag acts essentially at the tip of the ligament (Schlichting 1987). Capillarity is
thus neglected in equation (4.21) which reduces to d2L/dt2 = 3CD(ρ2u

2
2/ρ1d0)/2. The

ligament length follows a pure parabolic growth

L − L0

d0

� 3CD

4

(
t

ta

)2

, (4.22)

with a characteristic time of acceleration

ta =
d0

u2

(
ρ1

ρ2

)1/2

, (4.23)

and L0 � d0. Even though a more complete description, including the thinning of
the ligament cross-section can be made, we see in figure 28 that the above trend is
approximately followed, for different air velocities.

4.5. Ligament breakup

4.5.1. Breakup length and diameter

The ligaments detach from the liquid bulk by a pinching of their base. The time tb
it takes for the pinchoff to be completed is, as measured from time-resolved movies,
close to the capillary time based on the ligament size d0 (figure 29a), independent of
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its rate of elongation

tb � tσ =
(
ρ1d

3
0

/
σ
)1/2

. (4.24)

The reason of this distinct feature, also encountered in a different context
(Marmottant & Villermaux 2004) is the existence at the ligament foot of a singular,
unstreched region which behaves like a liquid bridge emptying on a capillary timescale.

The length Lb and thickness ξb at the breakup time are thus expected, from
equations (4.22) to be

Lb/d0 ∼ (tσ /ta)
2 ∼ Wed0

, (4.25)

ξb/d0 ∼ (tσ /ta)
−1 ∼ We

−1/2
d0

, (4.26)

with Wed0
= ρ2u

2
2d0/σ . The thickness ξb was inferred from the assumption of constant

volume v0 = Lπξ 2/4 = πd0
3/6. Since d0 is proportional to u−1

2 we have

Lb ∼ u2
0 = const, (4.27)

ξb ∼ u
−3/2
2 . (4.28)
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Figure 30. (a) Growth rate of the Plateau–Rayleigh instability as a function of Reynolds
number. (b) – – –, wavenumber of maximum growth; —, capillary time to inviscid capillary
time (f (Reξ )).

These two dependencies are seen on the figure 15 to fit all the more the experimental
observations that the air velocity is high. Rewriting d0 ∼ λ⊥ ∼ δWe

−1/3
δ (ρ1/ρ2)

1/3 in
(4.26), we have

ξb ∼ δ We
−2/3
δ (ρ1/ρ2)

1/6. (4.29)

Figure 29(b) shows that equation (4.29) also accounts for surface tension effects. It
is useful to note that a dependence such as ξb � 4 σ/ρ2u2

2 corresponding to a constant
Weber number based on ξb (i.e. Weξb

� 4) would fit the experimental data equally well.
This would correspond to an effective drag force proportional to ρ2u

2
2ξ

2
b .

4.5.2. Viscous slowing

An increased liquid viscosity delays the pinching of the ligaments and their further
breakup by slowing the capillary time. Ligaments thus break when they are more
elongated, and therefore produce smaller droplets (see figure 19).

The capillary instability of an unstretched liquid cylinder is sensitive to viscosity in
growth rate, and mode selection (see Chandrasekhar 1961; Eggers 1997). The growth
rate ωi in the range of unstable wavenumbers (whose limits are not affected by
viscosity) is

ωi �
√

σ

ρ1ξ 3

(√
4x2(1 − x2) + 9

2
Re−2x4 − 3

√
2Re−1x2

)
, (4.30)

where x = kξ/2 is the wavenumber made dimensionless with the cylinder diameter ξ

and Reξ =
√

ξσ/2ρ1ν
2
1 a Reynolds number. The inverse of the maximal growth rate

giving the effective breakup time is

tσ =
1

ωm
i

=

√
ρ1ξ 3

σ
f (Re), (4.31)

the function f (Reξ ), plotted in figure 30(b) being a decreasing function of Re,
eventually approaching 1.

Experiments show that ligament diameters at breakup and mean droplet sizes
(figures 19b and 29b) are somewhat smaller with a viscous glycerol solution than
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with pure water, the difference increasing with air speeds. This is consistent with the
fact that, the ligament size being a decreasing function of air speed, the Reynolds
number Reξ based on their size decreases, and therefore may reach values for which
viscosity affects the breakup time through equation (4.31). For given conditions of
air speed and liquid physical properties, ligaments break provided their capillary time
is equal, that is, in particular, with a glycerol solution 12 times (kinematic viscosity)
more viscous than pure water

tσ
(
ξ

gly
b , 12 ν1

)
= tσ

(
ξwater
b , ν1

)
. (4.32)

Ligament diameters ξ
gly
b realizing the above condition are of course smaller than

those in pure water, as shown on figure 31(a). The mean droplet size in the spray
follows a similar trend. This size is therefore not solely determined by the initial
corrugation size λ⊥ (or, equivalently, d0), but also, through a weak correction, by the
aspect ratio of the ligament at breakup.

5. Fragmentation
The broad size statistics is a fundamental characteristic of natural sprays formed

in an uncontrolled way. Spume droplets, rain drops and fuel sprays all display a
wide range of sizes, always with an exponential tail at large sizes. This may, at this
stage, appear at odds with the fact that it is possible to identify typical lengthscales
in the early stages of the interface destabilization process. The primary wavelength λ,
the transverse width λ⊥ of the digitations formed at the crest of the primary waves
contain, in themselves, all the information on their formation process: their size is the
typical size generated by the instability giving birth to them; but what is the typical
droplet size in the spray on figures 17 and 18? The distribution is a continuous
decreasing function of the size, and it is clear that the whole shape of the distribution
has to be understood for itself.
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Figure 32. Double flash exposure of a ligament just before, and after breakup, and resulting
droplets as captured by the detection algorithm.

5.1. Droplet sizes from ligaments

A key observation is that, although the ligaments detach from the liquid bulk with
thickness ξb (∝u

−3/2
2 ), they give rise to drops whose size is substantially larger, and

scale as d0 (∝u−1
2 ). In other words, no matter how thin a ligament is at breakup, it

will form drops of the order of the size of the initial liquid surface corrugation which
sets the ligament volume (see figure 16b).

As long as the ligament is attached to the liquid bulk and is stretched as described
in § 4, the capillary instability of the ligament core is strongly damped. This is true for
all modes whose instability rate is smaller than the stretching rate, as demonstrated
by Frankel & Weihs (1985). However, as soon as the ligament has detached and is
not (or much less) stretched, the capillary instability develops on a short timescale of
the order, at most, of the capillary time based on the initial ligament size.

The reorganization of the liquid volume in the ligament while it stretches is a
superposition of remnant motions from the liquid bulk, motions due to the transient
growth and damping of capillary waves, motions induced by the deformation of
the ligament owing to perturbations in the gas stream, etc. . . These are so complex
that they are out of reach of a microscopic analysis. However, capillary forces are
ultimately dominant and the liquid ligament fragments in several blobs.

We suggest that the blobs, just before breakup, interact, and that the interaction
is of a coalescence or aggregation type. This view succeeds at predicting the overall
drop size distribution in the spray. When two liquid blobs of slightly different sizes d1

and d2 are connected to each other, the smaller one (say d1) aggregates the larger one
owing to the Laplace pressures difference ∝ σ (1/d1 − 1/d2). The time it takes for the

coalescence to be completed is of order
√

ρd3
1/σ which is, also, the time it takes for

the neck connecting the two blobs to destabilize and break. The resulting ‘coalescence
cascade’ due to the confusion of these two timescales is nicely shown in Thoroddsen &
Takehara (2000). For this reason, the blobs constitutive of the ligament tend, as they
detach, to coalesce, thereby forming larger and larger blobs along the ligament. This
is why the final drop size is larger than the thickness of the ligament ξb just after it
has been released from the liquid bulk (figure 32).

Let N(d, t) be the number of blobs constitutive of the ligament whose size is within
d and d + dd at time t during the interaction period. The number of blobs of the
same size an instant of time later N(d, t + �t) will result from the interaction of
blobs of various sizes in the distribution N(d, t). Provided the interaction is made
at random, this evolution mechanism selects distributions N(d, t) which are stable in
shape by self-convolution.
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A detailed evolution equation for N(d, t) is derived in Villermaux, Marmottant &
Duplat (2004); it will be sufficient here to state that the distribution of blob sizes along
the ligament at breakup N(d, t = tb) =N(d) or, alternatively, its probability density
function pB(d) = N(d)/

∫
N(d) dd is written as the nth-convolution

pB(d) = p1(d)⊗n (5.1)

of an elementary distribution p1(d) reflecting the distribution of sizes along the
ligament just after it has detached from the liquid bulk, i.e.

p1(d) =
1

ξb

exp

(
− d

ξb

)
. (5.2)

The exponential shape of p1(d) is the most probable shape when only its average ξb

is prescribed (Boltzmann distribution). It is also the distribution of intervals between
random cuts of mean frequency 1/ξb along the ligament (Poisson distribution of
intervals). The precise form of p1(d) is, however, of little importance as it can be
shown that the final distribution pB(d) given by the evolution of N(d, t) by self-
convolution is attractive whatever the initial condition may be (Villermaux et al.
2004). This final distribution is a gamma distribution (Feller 1971)

pB(x) =
nn

�(n)
xn−1 e−nx, (5.3)

with x = d/〈d〉, and 〈d〉 = nξb. The number of convolutions is, at most, such that the
final average diameter 〈d〉 restores d0, or a fraction of d0, and is therefore expected to
be an increasing function of d0/ξb in the present experiments. The detailled functional
dependence is given in Villermaux et al. (2003).

The gamma shape closely fits the experimental distributions pB(d/d0), with an order
n which indeed increases slightly with the air velocity, as does the ratio d0/ξb ∼ u

1/2
2

(figure 33). This process suggests that thinner ligaments formed by faster winds
produce drops which are less distributed in size (the standard deviation of the gamma
distribution is ∼ 1/

√
n).

5.2. Droplet sizes in the spray

The distribution of sizes from ligaments pB(d/d0) has a universal gamma shape
parameterized by the ligament initial size d0 and the order n (figure 34a). However,
for given operating conditions, the diameter d0 is itself distributed although this
distribution pL(d0) is narrower than pB(d/d0) (figure 16).

The size distribution in the spray p(d) is thus the composition of the distribution
of ligament size pL(d0) and of the distribution of sizes after the breakup pB(d/d0)

p(d) =

∫ ∞

d0=0

pL(d0) pB

(
d

d0

)
d(d0)

d0

. (5.4)

This superposition is simply a convolution of the distributions in units of the
logarithms of the diameters, y = ln(d/〈d0〉) and y0 = ln(d0/〈d0〉)

pln(y) =

∫ ∞

y0=−∞
pln

L (y0) pln
B (y − y0) dy0. (5.5)

It is seen in figure 35 that the convolution operation stretches the large
excursion wing of pB(d/d0) over nearly the whole range of sizes d , and recovers
the size distribution in the spray p(d). That distribution was found to be
p(d) ∼ exp(−nd/〈d0〉), with n � 3.5 slowly increasing with the gas velocity (figure 34b),
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Figure 33. Droplet sizes distribution after ligament breakup, d0 being the size of the ligament
volume when in a sphere, (a) u2 = 29 m s−1; (b) u2 = 38 m s−1; (c) u2 = 50 m s−1. Lines: fit with
the gamma function. (d) Evolution of n with the ratio of the mean droplet size to the ligament
breakup thickness. Linear fit: interrupted line.

as the ratio d0/ξb, see equation (3.3). The exponential shape of the global distribution,
and the value of n are thus now understood as being the large sizes behaviour, and the
order of the gamma distributions coming from the ligament breakup. That appears
as the crucial step building-up the broad statistics in the spray.

A useful analytical illustration consists in considering a model ligament diameter
distribution pL(d0) as a uniform distribution between d0 = 0 and d0 = s, i.e. pL(d0) = 1/s

for 0 � d0 � s, then

p(d) ∼
∫ ∞

0

(
d

d0

)n−1
exp (−nd/d0)

sd0

d(d0) ∼ �(n − 1, nd/s), (5.6)

where �(n − 1, nd/s) is an incomplete gamma function whose asymptotic behaviour
is exp(−nd/s) at large d/s.

6. Conclusions
The present experiments show that the atomization of a liquid volume over which

blows a fast gas stream involves a succession of changes of the liquid topology, each
associated with distinct instabilities.

The first instability is a shear instability of a Kelvin–Helmholtz type. It is controlled
by the boundary-layer thickness δ of the gas, and produces interfacial undulations,
whose selected wavelength is proportional to δ.
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variation of the Gamma parameter n fitted on the distributions of figure 33: in the box are
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When the amplitude of these undulations is large enough, the present findings
suggest that these undulations undergo a transverse destabilization, of a Rayleigh–
Taylor type, caused by the accelerations imposed on the liquid-gas interface by the
passage of the primary undulations. These transverse corrugations have a wavelength
given by λ⊥ � 3δWeδ

−1/3(ρ1/ρ2)
1/3. This last instability sets the volume of liquid which

will eventually be atomized; the modulation of the crests is further amplified by the
air stream forming ligaments of total volume λ3

⊥, which ultimately break in the air
stream under a capillary instability.

Although the ligament is stretched by the gas stream, the final drop size is larger than
the thickness of the ligament just after it has been released from the liquid bulk, and
is given, up to a proportionality factor, by λ⊥. This is due to a coalescence mechanism
between the blobs constitutive of the ligament, an aggregation process which has
also its counterpart on the shape of the size distribution in the resulting spray p(d),
characterized by an exponential fall-off. This distribution is the composition of the
relatively narrow distribution of the ligament sizes pL(d0) and of the distribution of
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(a)                                                        (b)

(c)                                                        (d )

Figure 36. (a) After division by the image of the back field. (b) Gradient image.
(c) Threshold on the gradient. (d) Surface measurements of in focus droplets.

drop sizes coming from the ligament breakup, found to be very well represented by
a gamma distribution pB(x = d/d0) = nn xn−1 e−nx/�(n).

The exponential shape of the overall distribution p(d) ∼ exp(−nd/〈d0〉) is the large
excursion behaviour of the Gamma distributions coming from the ligament breakup,
a step which thus appears as a crucial one building-up the broad statistics of sprays.

Jean-Paul Barbier-Neyret designed the flash illumination system at the Laboratoire
des Ecoulements Géophysiques et Industriels in Grenoble where this study first
started. He is gratefully acknowledged. This work has been supported by the Société
Europénne de Propulsion (SEP) under contract 910023.

Appendix A. Droplet detection algorithm
We summarize here the different steps of the droplet detection procedure on raw

images of the spray (Marmottant 2001). These steps are illustrated in figure 36.
(a) Division by the image of the back field. This operation homogenizes the

illumination behind the droplets. It uses an image of the bare back field we take
prior to the recording of images with the spray. The division gives the attenuation
coefficient, which is 1 when looking at a black object and 0 on the background. We
preferred this method to the subtraction method because the attenuation difference
is not uniform: when in front of a darker part of the screen a black object, has a
smaller attenuation coefficient;

(b) A gradient filter is applied to enhance droplets rims. The nearer the droplet
to the focal plane, the greater the gradient at its rim. The gradient is estimated by
the variance of the intensity I of the 8 pixels all around a given pixel. We use the
absolute value Σ = 〈|〈I − 〈I 〉|〉, where 〈.〉 is the average over the 8 neighbours. This
finite difference expression provides an estimation of the modulus of a gradient that
was found isotropic enough on droplets images. It was, for this reason, preferred to
the classical Roberts or Sobel filters. It provides, in particular, a uniform gradient on
a circular rim.

(c) Selection of a threshold on Σ to specify to which degree a droplet should be in
focus to be detected. Since the gradient on the rim decreases with the distance to the
focal plane, tuning the value of the threshold allows us to specify a depth of selection
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Figure 37. Gradient intensity on the rim as a function of defocus distance (rim of a ball
bearing).

around the focal plane. This depth was calibrated experimentally with a millimetre
ball bearing, displaced along the axis of view. This method provides the gradient on
a rim as a function of the distance to the in-focus plane (figure 37);

(d) The droplets which are sufficiently in-focus all around their perimeter are
selected, and their projected surface S measured on the image after division (step (a)).
For that purpose, a threshold at half value on the grey scale was performed, which
proves to give a droplet boundary that is less dependent on defocus, compared to the
procedure that sets the edge at maximum gradient value (Bongiovanni, Chevaillier &
Fabre 1997). The ‘diameter’ d of the nearly spherical droplets is defined from
S = πd2/4.

Appendix B. Turbulent conditions
The coaxial convergent injector we used in the previous experiments was designed

to realize streams as laminar as possible. We will call this injector LL (laminar in the
liquid and laminar in the gas).

However, in practical applications, Reynolds numbers can be as high as 105 with
both liquid and gas streams turbulent. The impact of turbulence in a single liquid jet
was studied by Mansour & Chigier (1994) and Wu & Faeth (1993), (1995). The case
of turbulent coaxial jets has not received much attention except for the qualitative
observations of Mayer (1994).

The issue is to determine if the break-up scenario we described is modified by
the initial fluctuations due to turbulence. We have thus handled experiments using
injectors with turbulence in the liquid jet and not in the gas jet, and then in both
liquid and gas jets.

B.1. Injectors

B.1.1. Injector TL

Injector TL was designed to introduce turbulences in the liquid jet (turbulent liquid
and laminar gas). It was realized from injector LL by the addition of obstacles
(figure 38). A disk with a irregular hole of diameter 3 mm was placed in the incoming
liquid to promote perturbations. A tube of diameter 10 mm with protrusions was also
introduced to induce maximize initial perturbations.
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Figure 38. Injector TL. The exit diameter for the liquid is D1 = 7.6 mm, the annular jet of
gas has an outer of diameter D2 = 11.4 mm.
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Figure 39. Injector TT.

B.1.2. Injector TT

Injector TT was designed to produce turbulences in the gas as well (turbulent liquid
and turbulent gas). It is composed of two long coaxial cylinders (figure 39). Their
length is 37 times the inner diameter D1, so as to allow a fully developed turbulence to
be established at exit. Protrusions in the central tube are placed to induce turbulences
at the smallest velocities. The exit diameters are the same as with the convergent
injector LL or its TL version.

The turbulence intensity in the central jet was characterized by anemometry at the
tube exits (figure 40). The turbulence intensity urms/u is about 8% at the centre, and
reaches 17% at the boundary of the central jet for Re =104, which is consistent with
known measurements in tubes (Schlichting 1987).

The boundary-layer thickness in the annular gas jet can be determined from the
air velocity profiles across the gap between the inner and outer exits (figure 41a), as
with the laminar flow injector. The most convenient way to estimate the thickness
of the boundary layer is to measure the vorticity thickness, δ = umax/(du/dy)|max,
ratio of the maximum velocity at the centre and of the maximum velocity gradient
(figure 41b). For small Reynolds numbers the vorticity thickness appears to
be constant. The flow then approaches a Poiseuille flow, of parabolic profile
u(y) = umax4y(h − y)/e2. Indeed, the annulus gap is long enough to allow the
development of such a profile (the tube length is 140 gap width when the Poiseuille
development length ≈ 0.035 hRe2 is about 35h at Re2 = 1000). The velocity gradient
at the edge is (du/dy)|y=0 = 4umax/h, and thus proportional to maximum velocity,
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Figure 41. (a) Air profile in the gas across the exit crown of injector TT, with umax increasing
from 1.5 m s−1 to 54.5 m s−1. (b) Boundary-layer thickness δ in the air on the wall that separates
air from liquid as a function of Re2 = umaxh/ν2. Interpolation of δ by 0.35 h for small Reynolds

numbers, and by 74 Re
−3/4
2 for large Reynolds numbers.

which gives a constant vorticity thickness of δ = h/4, close to experimental findings
for Re2 < 1000.

For Re2 > 1000, the flow is turbulent in the channel and the friction velocity at the
wall uτ , defined by ρ2u

2
τ = µ2(du/dy)|y=0 is, according to Blasius (Schlichting 1987)

uτ

u2

=
0.164

Re1/8
2

, (B 1)

giving a boundary-layer thickness δ which scales as

δ

h
=

37.2

Re3/4
2

, (B 2)

a trend consistent with our measurements with, however, a different prefactor of 74.

B.2. Wavelength of the primary instability

Figure 42 shows that, with no air flow, the disturbances at the liquid surface are alike
with injectors TL and TT, whereas the injector LL does not disturb liquid surfaces
up to Re1 = 19 000 .
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Figure 42. Surface profile with injectors LL (laminar in liquid and in gas), TL (turbulent
liquid, laminar gas) and TT (turbulent in liquid and in gas) as a function of liquid Reynolds
number Re1 = u1D1/ν1, with no air flow.

With the air stream, the measurement of the wavelength separating successive
axisymmetric crests was performed on a water jet of 2 m s−1, varying Re2 = hu2/ν2.
With the turbulent air flow of injector TT, the wavelength λ was proportional to
Re−3/4

2 , and thus the ratio λ/δ was found to be constant. With injectors TL and LL,
the wavelength is proportional to Re−1/2

2 , and the ratio λ/δ is of the same order
(figure 43).

The presence of turbulent disturbances in the liquid or in the gas thus does not
modify the selection of the primary wavelength, which is, in law, and in absolute value,
prescribed by δ, whether this lengthscale is ruled by laminar or turbulent scalings.
This is a direct consequence of the large momentum ratio M = ρ2u

2
2/ρ1u

2
1 between

the streams (see Villermaux 1998a, b for a discussion on that point). Indeed, the
pressure scale responsible for the corrugations of the liquid interface from the liquid
turbulent motions is ρ1u

2
rms when the pressure scale responsible for the amplication of

the primary disturbaces is ρ2u
2
2. When M > 1, and with urms ≈ 0.08u1, it is clear that

ρ2u
2
2 � ρ1u

2
rms ; the liquid, whether it be turbulent or not, is destabilized in a passive

way.

B.3. Droplet sizes in the spray

The drops formed in the spray by the turbulent injector are characterized by the very
same phenomenology as those formed by a laminar injector. The size distribution
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Figure 44. (a) Distribution of droplet sizes issuing from the turbulent injector TT. (b) Mean
diameter of droplets in the spray at u1 = 2 m s−1, �, injector LL; �, injector TT.

exhibits the same exponential decay, and, as the gas stream velocity is increased, the
mean drop size, when normalized by the proper lengthscale δ setting the primary
instability wavelength, follows the same trend (figure 44). The mean drop size is
somewhat smaller, a small effect probably due to an incomplete convolution sequence
for restoring 〈d0〉.

In conclusion, turbulent fluctuations superimposed on both the liquid and the gas
streams do not modify the atomization process, from the initial primary destabilization
to the droplet size.
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