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Van Hove singularities in Probability Density Functions of scalars
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Abstract

A general theory for the Probability Density Function (PDF) of a scalar stirred in an axisymmetric time-dependent flow is de-
rived. This theory reveals singularities, discontinuities and cusps occurring as soon as the spatial gradient of the scalar concentration
vanishes somewhere in the field. These singularities are similar to the Van Hove singularities obtained in the density of vibration
modes of a crystal. This feature, ubiquitous in convection–diffusion problems, is documented experimentally for the mixing of
a dye in a Lamb–Oseen vortex. To cite this article: P. Meunier, E. Villermaux, C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Singularités de Van Hove dans les densités de probabilité d’un scalaire. Nous dérivons une théorie générale pour la Densité
de Probabilité (PDF) d’un scalaire étiré dans un champ de vitesse axisymmétrique et dépendant du temps. Cette théorie révèle
des singularités (discontinuités et cusps), qui apparaissent dès lors que le gradient spatial du scalaire s’annule en un endroit du
champ. Ces singularités sont similaires aux singularités de Van Hove obtenue pour la densité des modes de vibration d’un cristal.
Ce phénomène, omniprésent dans les problèmes de diffusion–convection, est documenté expérimentalement pour le mélange d’un
colorant dans un vortex de Lamb–Oseen. Pour citer cet article : P. Meunier, E. Villermaux, C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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The interplay between molecular diffusion and simple deformation fields is a classical problem. It is solved in
closed form in a variety of situations such as the saddle point flow, the simple shear in two dimensions [1–3], in three
dimensions [4], and in the axisymmetric point vortex [5,6] or spreading vortex flow [7,8]. In particular, simple situa-
tions are liable of a complete description of the overall Probability Density Function (PDF) of the scalar concentration
from the Fourier equation [9].
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Fig. 1. Visualisation of the spiral formed by a dye lamellae wrapping around a Gaussian vortex. Images are obtained at t = 5 s, t = 50 s and t = 95 s
and cover 10 × 10 cm2 for a vortex of circulation Γ = 17 cm2 s−1.

Here, we discuss the condition under which the PDF presents a singularity. The phenomenon we analyse first is
illustrated on Fig. 1. A lamellae of weakly diffusive dye (D = 10−9 m2 s−1) with initial concentration c0 and width
s0 ≈ 2 mm is deposited in the velocity field of an axisymmetric, time-dependent vortex. The azimuthal velocity profile
is Gaussian, that of a Lamb–Oseen vortex [10]

vθ (r, t) = Γ

2πr

[
1 − exp

( −r2

a2
0 + 4νt

)]
(1)

with a circulation Γ = 17 cm2 s−1 and initial core size a0 = 1.3 cm. The lamellae first rolls-up around the vortex
(Fig. 1(a)), stretches and, conversely, gets thinner in its transverse direction. Diffusion is hasten by this stretching
motion [9] and indeed, Fig. 1(b) shows that the dye concentration is smaller where the elongation is higher, i.e. at
intermediate radii. Close to the vortex center in solid body rotation, and far from the vortex center where the velocity
magnitude is small and so is the stretching rate, the dye still bears a concentration close to the initial one. The process
goes on until at late stages (Fig. 1(c)), the dye has vanished in the diluting medium.

Compared to our first contribution on the topic [9], the set-up has been modified to allow the study of the late
stages. Previously, the vortex would experience an axial destabilization 15 seconds after its formation due to the end
effects. Here, the fluid is linearly stratified, stabilizing the vortex for 2 to 3 minutes. The dye is now injected by
slowly translating a thin iron wire coated with fluoresceine, forming a vertical sheet of dye aligned with the vortex
axis. A horizontal laser sheet allows the visualisation of a field cross-section, which is imaged from below (Fig. 1)
using a Kodak 8 bits 20482 pixels CCD array providing a 12 pixels/mm resolution. While our theory was limited to
a stationary point vortex vθ = Γ/2πr , we extend it here to the general case of a time-dependent axisymmetric flow
as in Eq. (1). Computing the stretching of a length element dr and using incompressibility, the distance between two
material points in the direction perpendicular to the lamellae (striation thickness) is

s(r, t) = s0

[
1 +

(
r

t∫
0

dt
∂(vθ/r)

∂r

)2]−1/2

where s0 is the initial lamellae thickness. In a frame of reference (O,x,y) tangent to the lamellae with y pointing
outwards, the convection–diffusion equation for the dye concentration c amounts to a pure diffusion equation ∂c/∂τ =
∂2c/∂ξ2, when the transverse coordinate y has been rescaled by the current striation thickness (ξ = y/s(t)) and time t

has been rescaled by the current diffusion time (dτ = D dt/s2). The dimensionless time τ is

τ(r, t) = Dt
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At late stages, the dye concentration has a Gaussian profile in the transverse direction, with a maximum concentration
cM(r, t) = c0 erf(1/4

√
τ ) depending on τ only

c(r, ξ, t) ≈ c0 erf

(
1

4
√

τ(r)

)
exp

( −6 ξ2

1 + 24τ(r)

)
(3)

The PDF of such a spatial profile is easily obtained by integration over r in the range where the maximum concentra-
tion cM(r) is larger than a given concentration level c:

P(c) = 2s0

∫
cM(r)>c

|∂c/∂ξ |−1 dr/A

where A is a normalising constant equal to the surface area on which the PDF is calculated. Expressing ∂c/∂ξ =
−12ξc/(1 + 24τ), and inverting the function c(ξ), we find the general solution

P(c) = 2s0

cA

∫
max

(
0,

τ (r) + 1/24

log[erf(1/4
√

τ(r) )] − log[c/c0]
)1/2

dr (4)

The function ‘max(0, .)’ stands for the integrand to vanish when the maximum concentration cM(r) is smaller than c;
this allows the integration to be performed on the entire lamellae length at any time.

Defining the curvilinear abscissa σ along the lamellae (Fig. 1), this formula is extended to any two-dimensional
flow provided the stretching rate γ (σ, t) = −[ds(σ )/dt]/s(σ ) of all the lamellae elements is known at any time along
their Lagrangian trajectory. The integral is computed over σ instead of r for axisymmetric flows, giving

τ(σ, t) = D

s2
0

t∫
0

exp

(
2

t ′∫
0

γ (σ, t ′′)dt ′′
)

dt ′ (5)

Prediction (4) is plotted in Fig. 2 and shows good agreement with the measured distribution. The general solu-
tion (4) can be further simplified when τ(r) is rapidly varying with r . By a change of variable u = cM(r)/c, the
integral is modified into

∫ ∞
1 c du

√
τ + 1/24/

√
log(u) ∂cM/∂r . Since this function diverges for u = 1, the other terms

can be replaced by their values in u = 1, which corresponds to cM(r) = c, giving

P(c) ≈
√

τ + 1/24

∂cM/∂r
(6)

a result easily obtained by retaining the maximum of the concentration at each radius only in computing the PDF, with
a weight equal to the transverse size of the Gaussian profile

√
τ + 1/24, giving P(cM)dcM = √

τ + 1/24 dr . This
ansatz, also plotted in Fig. 2, reproduces the shape of the PDF correctly, and is off by a factor 2 in amplitude. This

Fig. 2. (a) Probability density function of the concentration c and (b) concentration field at t = 60 s. The solid line corresponds to the full model (4)
and the dashed line to the approximation (6) using the maximal concentration.
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discrepancy is a normalization artifact due to the fact that the PDF of the maximal concentration in Eq. (6) does not
represent levels smaller than the minimum of cM(r). This PDF is thus restricted to c > 0.09c0, where the minimum of
the maximal concentration over the dye lamellae is at that instant of time. This approximation is thus all the more valid
that the lamellae is deposited initially far from the vortex center, in a region where τ(r) is systematically decreasing
with r . There, this ansatz moreover predicts that P(c) ∼ t−3/4c−3/2, asymptotically [9].

These predictions seem to be good enough when τ(r) and thus cM(r) are monotonic functions of the radius.
However, both predictions reveal a singularity when τ(r) has an extremum, since formulas (4) and (6) diverge when
∂cM/∂r vanishes. We now focus on these critical points.

Fig. 2 shows that the theoretical PDF presents a singularity at c∗/c0 = 0.09. Before commenting on the experimen-
tal distribution, let us first recognize that such a phenomenon will obviously appear as soon as the gradient of the scalar
∂c/∂r vanishes somewhere in the concentration field. This was already noted by Van Hove [11] for the density of the
elastic vibration frequencies of a crystal (density of modes). Depending on the shape of the dispersion relation ω(k)

in the crystal, the density of modes D(ω) has a singularity where the group velocity ∂ω/∂k vanishes. We recall here
the different types of singularities, corresponding in our case to the different topologies of the concentration profile
where these events occur. Let us examine first concentration fields in two dimensions:

(i) First, consider a lamellae whose concentration profile presents a 2D saddle point: locally, the scalar concentration
is equivalent to c(x, y) = c∗ + αx2 − βy2 with α and β positive. This case is shown schematically on Fig. 3(a)
and can be obtained if the stretching is maximum somewhere along the lamellae. For c < c∗ the PDF is computed

by integrating on a square surface of size (R/
√

α,R/
√

β ): P(c) = 4
∫ R/

√
α

0 |∂c/∂y|−1 dx, and by expressing y

as a function of c and x: P(c) = 2 Arcsinh(R/
√

c∗ − c )/
√

αβ . The PDF is thus equivalent to − log(c∗ − c)

close to the critical level c∗. The same scaling can be obtained for c > c∗ and the PDF thus presents a logarithmic
singularity at c = c∗ in that case.

(ii) Second, consider the opposite case where the concentration has a local maximum on the lamellae, as can be
realized if there is a minimum of stretching along the lamellae, as shown schematically on Fig. 3(b). The scalar
concentration is locally equivalent to c(x, y) = c∗ − αx2 − βy2. The PDF is equal to zero for c > c∗ and equal
to π/

√
αβ for c < c∗. The PDF is thus discontinuous as soon as the scalar concentration profile has a maximum.

(iii) Third, the concentration profile presents a local minimum. This is not likely to happen in two dimensions since
the topology is rather that of an elongated lamellae, with a transverse concave concentration profile. However,
the PDF can be computed in this case also and is found to be discontinuous (0 for c < c∗ and π/

√
αβ for c > c∗).

The PDF of a concentration field in two-dimensions can thus present logarithmic singularities or discontinuities
at finite times i.e. as soon as the concentration profiles are affected by diffusion. One understands now why this
divergence is rendered on the experimental distribution (Fig. 2) as a weak cusp only. This is primarily due to the finite
size resolution of the digital images from which the concentration field is extracted. The logarithmic singularity comes
from a very restricted area around a single point, the one with c = c∗. The second reason comes from the finite binning
of the concentration levels, which enlarges and smooths the singularity. However, this singularity, which comes from

Fig. 3. Schematic of the singularities occurring in the scalar PDF of a 2D flow. (Top) Pseudo-color plot of the scalar distribution c(x, y). (Bottom)

The PDF is computed using P(c) = 4
∫ R/

√
α

0 |∂c/∂y|−1
y0(x)

dx, with y0(x) =
√

c∗ − c + αx2/
√

β for (a) and y0(x) =
√

c∗ − c − αx2/
√

β for (b).
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Fig. 4. Schematic of the singularities occurring in the scalar PDF of a 3D flow. (Left) Pseudo-color plot of the scalar distribution at the center of

the 3D sheet. (Right) The PDF is calculated using P(c) = 8
∫ R/

√
α

0

∫ R/
√

β
0 |∂c/∂z|−1

z0(x,y)
dx dy, with z0(x, y) defined such that c(x, y, z0) = c.

a maximum of the stretching along the spiral does exist (as clearly seen on Fig. 1(b)) and would be all the more
resolved that the uncertainty in the definition of the concentrations, and the spatial resolution are sharp enough.

Consider now three-dimensional flows, where the scalar is usually found in the form of sheets as a result of various
turbulent or chaotic motions [12–14]. These are shown schematically in Fig. 4 lying in the (x, y) plane. A singularity
in the corresponding concentration PDF may again appear when the concentration gradient ∂c/∂r vanishes. There
are thus four different cases depending on whether the concentration profile has a maximum or a minimum in each
direction:

(i) The first case corresponds to a concentration profile with a maximum of concentration: it is locally equivalent to
c(x, y, z) = c∗ − αx2 − βy2 − γ z2 (with α, β and γ positive). This can be obtained if the stretching has a local
minimum (see Fig. 4(a)). The PDF, computed on a volume of radius R is equal to π

√
c∗ − c/

√
αβγ for c < c∗

and vanishes for c > c∗. The PDF presents a cusp with an infinite (negative) slope for c < c∗, as indicated on
Fig. 4(a).

(ii) The second case corresponds to a concentration profile locally equivalent to c(x, y, z) = c∗ + αx2 − βy2 − γ z2,
which is obtained if the stretching of the sheet is maximum along y and minimum along x (see Fig. 4(b)). The
PDF is equal to π(

√
γR − √

c − c∗ )/
√

αβγ for c > c∗ and to πR/
√

αβ for c < c∗. The PDF presents a cusp
with an infinite slope for c > c∗, as indicated on Fig. 4(b).

(iii) The third case corresponds to a concentration profile locally equivalent to c(x, y, z) = c∗ + αx2 + βy2 − γ z2,
which is obtained if the stretching of the sheet has a maximum (see Fig. 4(c)). The PDF is equal to π(

√
γR −√

c∗ − c )/
√

αβγ for c < c∗ and to πR/
√

αβ for c > c∗. The PDF presents a cusp with an infinite slope for
c < c∗, as indicated on Fig. 4(c).

(iv) Finally, the fourth case would correspond to a local minimum concentration as c(x, y, z) = c∗ + αx2 + βy2 +
γ z2. It is not likely to be very frequent in 3D flows where the scalar has rather the topology of a sheet with
a transverse concave concentration profile. However, the PDF can be calculated in that case too and is equal to
π

√
c − c∗/

√
αβγ for c > c∗ and vanishes for c < c∗. The PDF again presents a cusp with an infinite slope for

c > c∗.

As in two dimensions and for the same reason, the PDF of a concentration field in three-dimensions can thus
present a cusp with an infinite slope each time the gradient of the scalar vanishes. This algebraic divergence is weaker
than the logarithmic one in two dimensions.

The singularities are prominent in simple fields, as the one generated by a Gaussian vortex in the present experi-
ment, where the concentration gradient vanishes at one location in the field only. In a complex flow stirred randomly,
the number of these singularities should increase with time as the scalar field is distorted by the underlying motion.
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Indeed, the more complex the spatial scalar distribution, the more likely it will contain saddle points and maxima.
However, these singularities will occur at an increasing number of different critical concentration levels c∗, at an in-
creasing number of spatial locations in the flow [15]. The scalar PDF, initially presenting one, then two, then a large
collection of singular cusps will progressively built-up in a continuous distribution, made of a continuous spectrum of
singularities. Being rooted in the local topology of the field, these singularities are, as noted above, robust and may be
found in 3D flows as well.
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