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We introduce a new numerical method for the study of scalar mixing in two-
dimensional advection fields. The position of an advected material strip is computed
kinematically, and the associated convection–diffusion problem is solved using the
computed local stretching rate along the strip, assuming that the diffusing strip
thickness is smaller than its local radius of curvature. This widely legitimate
assumption reduces the numerical problem to the computation of a single variable
along the strip, thus making the method extremely fast and applicable to any large
Péclet number. The method is then used to document the mixing properties of a
chaotic sine flow, for which we relate the global quantities (spectra, concentration
probability distribution functions (PDFs), increments) to the distributed stretching of
the strip convoluted by the flow, possibly overlapping with itself. The numerical results
indicate that the PDF of the strip elongation is log normal, a signature of random
multiplicative processes. This property leads to exact analytical predictions for the
spectrum of the field and for the PDF of the scalar concentration of a solitary strip.
The present simulations offer a unique way of discovering the interaction rule for
building complex mixtures which are made of a random superposition of overlapping
strips leading to concentration PDFs stable by self-convolution.
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1. Introduction
Fluid mechanics has for a long time relied on observations, experiments and data

collection rationalized by first principles theories or ad hoc models and correlations.
The output was a corpus of formulas, abacus and charts made available to the
engineer, meteorologist, physicist, etc for helping him to solve practical problems.
Originally motivated by weather-forecasting issues, and since the basic equations
describing fluids were known, the idea of re-creating natural phenomena by artificial
means using automatic calculations arose, probably first formalized in this form by
Lewis Fry Richardson (Richardson 1922). Since then, the numerical simulation of
fluid flows has undergone a dramatic growth, and the methods are continuously
improving to make the computations faster and more faithful to reality.
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For scalar mixing, namely the homogenization of a dye, or impurity in a prescribed
flow field, the existing methods can be roughly grouped into two main categories:

(i) Lagrangian methods follow the position xi of passive tracers in the flow by
integrating the equation of motion

dxi

dt
= v(xi , t), (1.1)

in a velocity field v(xi , t) given a priori. This method is useful to study trajectories,
the flow kinematics and stirring properties; it is widely used in the context of chaos,
maps and ergodic theory (e.g. Jones 1994; Phelps & Tucker 2006; Sturman, Ottino &
Wiggins 2006; Robinson, Cleary & Monaghan 2008). It does not, however, incorporate
explicitly diffusion effects, those which are nevertheless ultimately responsible for
mixing.

(ii) Eulerian methods on the other hand deal with the markers concentration field
c (the number density of the markers coarse-grained on a grid) by solving a partial
differential equation, namely the diffusion–advection equation

∂c

∂t
+ v · ∇c = D�c, (1.2)

where D is the tracers diffusivity and � is the Laplacian operator. The method
provides the whole concentration field accounting explicitly for diffusion, but needs a
discretization grid of space to compute gradients, and remains, therefore, limited to
smooth concentration fields with not too sharp gradients for reasonable computation
times and cost (Sukhatme & Pierrehumbert 2002; Fereday & Haynes 2004; Perugini
et al. 2004; Shankar & Kidambi 2009).

Many other specific methods exist, particularly for turbulent flows, with possibly
an admixture of models to represent small unsolved subgrid scales, and/or additional
effects such as buoyancy, chemical reactions, heat release, etc. (see e.g. Yeung 2002;
Fox 2004).

The diffusive strip method we introduce here is an extension of ideas developed to
handle scalar diffusion on a moving substrate. The method amounts to reducing the
full convection–diffusion problem in (1.2) to a simpler, analytically tractable diffusion
equation in suitably chosen coordinates as

∂c

∂τ
=

∂2c

∂ñ2
, (1.3)

where τ and ñ are functions of space, time, scalar diffusivity and of the structure of
the velocity field, respectively. The method for going from (1.2) to (1.3) and finding
closed form, nearly exact solutions has been used in the context of heat transfer
(Levèque 1928), turbulence (Batchelor 1959; Villermaux & Duplat 2003), combustion
(Marble & Broadwell 1977; Marble 1988), engineering and process industry (Mohr,
Saxton & Jepson 1957; Ranz 1979; Villermaux & Rehab 2000; Meunier & Villermaux
2003), geophysics (Rhines & Young 1983; Allègre & Turcotte 1986), chaos (Ottino
1989; Beigie, Leonard & Wiggins 1991), physics (Moffatt 1983; Meunier & Villermaux
2007) or mathematics (Fannjiang, Nonnenmacher & Wolonski 2004).

In these works, the method has been successfully used for computing mixing times
and length scales. However, the method can potentially provide more since it gives
access to the evolution of the whole concentration field, with a direct, nearly exact
link with the initial Fourier equation (1.2). For instance, in the simple case of a
strip wrapping around a vortex (Meunier & Villermaux 2003, 2007), the position
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Figure 1. Schematic drawing of the evolution of a strip defined by the points xi and a
striation thickness si initially equal to s0.

and the stretching rate of the strip are known explicitly from the velocity field in
a straightforward manner, which allows derivation of the whole concentration field
analytically, at any time. Building on this elementary step, we generalize here the
method to a priori any velocity field however complicated it may be. We first present
the method, its numerical implementation and validation in § 2, and then apply it
to study the mixing properties (internal structure, interaction rule, concentration
distribution, spectra, increments, kinetics) of a prototype flow, namely the sine flow
in §§ 3–7. The details of the numerics and the computational cost of the method are
discussed in the Appendix.

2. The diffusive strip: a new numerical method
2.1. The method

The flow field v(x, t) is assumed to be given analytically, decoupled from the
concentration field itself (passive scalar), but not necessarily integrable. It is
incompressible and two-dimensional. A scalar strip is described by the position
of tracers located in xi , which are advected by solving numerically the equation of
motion (1.1). The tracers are initially separated by a length �x0

i , as shown in figure 1.
The problem is considered in an open domain, except in § 6.3 where the tracers are
placed periodically in order to render the problem periodic. Then we suppose that
the strip contains a scalar c, whose concentration has initially a Gaussian transverse
profile with a striation thickness s0,

c(n) = c0 e−n2/s2
0 , at t = 0. (2.1)

Here, n is the local coordinate normal to the strip (see figure 1). The particular choice
of a Gaussian is not restrictive. It simply expresses that the strip is localized in space,
and has a typical width s0 initially. We wish to know how the transverse profile
evolves when the strip is advected by the flow. The evolution equation for the scalar
c(x, t) is the standard diffusion–advection equation (1.2).

In the absence of diffusion, the strip is stretched and thus experiences a contraction
in the transverse direction due to incompressibility. Its striation thickness si(t)
decreases with time and can be calculated numerically by applying the conservation
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of areas

si =
s0�x0

i

�xi

. (2.2)

Here, �xi = ||xi+1 − xi || is the distance between two consecutive tracers. Around a
tracer xi , the velocity field in a local frame of reference (σ , n) aligned with the strip
is given by

vσ = −σ

si

dsi

dt
+

∂vσ

∂n
n, (2.3)

vn =
n

si

dsi

dt
. (2.4)

It is a Taylor expansion at first order of the flow around xi . The velocity field at
the position of the tracer xi vanishes because the frame of reference is centred in xi .
The velocity gradient ∂vσ /∂σ is by definition equal to d ln si/dt . The velocity gradient
∂vn/∂σ vanishes because the frame of reference is aligned with the strip at any time.
The velocity gradient ∂vn/∂n is equal to −d ln si/dt due to incompressibility. The
velocity gradient ∂vσ /∂n is unknown. However, as time evolves, the length scale in
the transverse direction gets much smaller than the length scale along the strip. The
transverse scalar gradient ∂c/∂n is thus much larger than the scalar gradient along
the strip ∂c/∂σ . We can thus neglect the term vσ ∂c/∂σ in front of the term vn∂c/∂n

in the advection term of (1.2) (Dimotakis & Catrakis 1999). The same reasoning
holds for the diffusion term such that the advection–diffusion equation (1.2) close to
xi becomes

∂c

∂t
+

n

si

dsi

dt

∂c

∂n
= D

∂2c

∂n2
. (2.5)

The exact partial differential equation would contain two additional terms
corresponding to vσ ∂c/∂σ on the left-hand side and an additional term D∂2c/∂σ 2 on
the right-hand side. This asymptotic partial differential equation has already been used
in this form in the works mentioned in § 1. The impact of the flow is all concentrated
in the rate of change of the striation thickness d ln si/dt . This equation holds in flows
which tend to form elongated structures (strips in two dimensions), as it is the case for
most flows in nature, may they be random, or deterministic (see the early drawings
of Welander (1955), and more recent observations, including in three dimensions,
where the flow forms sheets as in Buch Jr. & Dahm 1996; Fountain, Khakhar &
Ottino 1998). It does not describe, however, regions of folded strips whose radius of
curvature is of the order of their thickness. We will come back to this point in § 2.5.
Equation (2.5) can be simplified by using a change of variable (Ranz 1979) where
the transverse distance n is non-dimensionalized by the striation thickness ñ = n/si(t),
and the time is counted in units of the current diffusion time si(t)

2/D as

dτi

dt
=

D

si(t)2
. (2.6)

The dimensionless time τi for the tracer xi can be easily calculated numerically
during the integration of the equation of motion (1.1) since the striation thickness
si is known through (2.2). Using these new variables, the equation for the scalar c

becomes a simple diffusion equation

∂c

∂τ
=

∂2c

∂ñ2
. (2.7)
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The initial condition at τ = 0 (corresponding to t = 0) is c(ñ) = c0 exp(−ñ2). The
solution is a Gaussian profile at any time, which can be rewritten as a function of
the dimensional coordinate n as

c(n, t) =
c0√

1 + 4τi(t)
exp

(
− n2/si(t)

2

1 + 4τi(t)

)
. (2.8)

Leonard (2009) has shown that the same reasoning can be done without neglecting
the gradients along the strip (∂/∂σ ) if the coordinate σ is dimensionalized by 1/si(t).
This divides the normal profile (2.7) by a factor

√
1 + 4τ̂ which tends to 1 for large

Péclet numbers, because τ̂ (t) = D
∫

si(t
′)2 dt ′ tends to 0 for vanishing D (since si

decreases exponentially in time, making the integral convergent).
It is thus sufficient to compute numerically the position of the tracers xi , the

striation thickness si and the dimensionless time τi as a function of time by integrating
equations (1.1), (2.2) and (2.6) to know the transverse profile of the scalar c(n, t) across
the strip, and thus to have access to the spatial distribution of the scalar initially
contained in the strip. We will see in § 2.4 how to reconstruct numerically the scalar
field c(x, t) knowing these quantities.

The dimensionless time τ is proportional to the diffusivity D. It is thus sufficient
to make a single numerical calculation with D = 1 to get the result for any diffusivity
by multiplying τi by the desired value D at the end of the computation. The initial
striation thickness s0 can also be changed easily a posteriori since the striation
thickness si is proportional to s0 and the dimensionless time is proportional to s−2

0 .

2.2. An example

Let us take the simple example of a strip of initial thickness s0 and length L0,
uniformly stretched at a rate γ . Its current length is L(t) = L0e

γ t while its striation
thickness decreases as s0e

−γ t . According to (2.8), the maximal concentration in the
strip (in ñ= 0) will start to decay when τ (t) becomes of order unity. From (2.6), one
has

τ (t) =
D

2γ s2
0

(
e2γ t − 1

)
, (2.9)

and the condition τ (ts) = O(1) defines the mixing time ts depending on a Péclet
number Pe as

ts =
1

2γ
lnPe, with Pe =

γ s2
0

D
. (2.10)

From this critical time, it is seen from (2.8) that the maximal concentration in the
strip decays exponentially as

c(0, t) ∼ e−γ (t−ts ), (2.11)

and that the strip transverse size remains constant and equal to

s(ts) =

√
D

γ
= s0 Pe−1/2, (2.12)

the length scale equilibrating substrate compression and diffusion broadening. It is
called the Batchelor scale (Batchelor 1959).

2.3. Strip refinement

The strip diffusion method is based on the property that the strip will be stretched
by the flow and thus becomes ever thinner and elongated. The main advantage is
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Figure 2. Example of the position of the strip in a disordered flow (sine flow), showing the
appearance of cusps along the strip. A zoom of a cusp shows that the distribution of points
along the strips is denser at the cusp, i.e. when the curvature increases. The numerical constants
defined by (2.13) are �l = 0.01 and α = 10�l/π.

that it allows to neglect diffusion along the strip since concentration gradients in
that direction essentially vanish. However, a direct consequence is that the distance
between two consecutive tracers increases with time. We will see below that the total
length of the strip increases linearly in time for the case of a vortex (§ 2.6) and
exponentially in time for the sine flow (§ 3). It is thus necessary to refine the strip such
that it is always well represented geometrically, as was noted by Cerbelli, Alvarez &
Muzzio (2002). This refinement was implemented every 10 time steps, and was thus
very weakly time consuming.

The first idea would be to increase the number of points at each refinement such
that the distance between two tracers ||xi+1 − xi || is equal to a constant, say �l.
However, disordered flows bend the strip and create cusps with a very high curvature,
as can be seen in figure 2 for the sine flow. The refinement must then be denser in
the regions with high curvatures. A good criterion is to refine the strip such that the
distance between two consecutive points is equal to

||xi+1 − xi || =
�l

1 + ακ
, (2.13)

where κ is the curvature of the strip and �l and α are numerical constants. �l

corresponds to the distance between two tracers in the regions with low curvature. α

governs the number of tracers in the regions with high curvature: the algorithm adds
a number of points equal to πα/�l if the cusps makes a 180◦ turn. This refinement
is illustrated in figure 2, where the distance between two consecutive points is much
smaller at the cusp than in the other regions with low curvatures. The numerical
method to do so is presented in the Appendix.

This refinement has proven to be very efficient, even in the case of the sine flow,
which stretches the strip exponentially in time and has thus a strong sensitivity to
initial conditions. The main disadvantage is that the size of the variables (xi , si , τi)
increases with time and that the algorithm thus gets slower and slower at late stages,



140 P. Meunier and E. Villermaux

0.5(a) (b)

0.4

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4

–0.5

0.5

0.4

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4

–0.5
–1.0 –0.9 –0.8 –0.7 –0.6 –0.5 –0.4 –0.3 –0.2 –0.1 0 –1.0 –0.9 –0.8 –0.7 –0.6 –0.5 –0.4 –0.3 –0.2 –0.1 0

y

x x

Figure 3. Examples of the distribution of scalar obtained by plotting a line (a) and by
reconstructing the scalar on a grid using (2.14) (b). The distance �l between two tracers
during the reconstruction is equal to 0.0065 and the mesh size is equal to 0.001. The flow is a
sine flow at t = 4 and Pe = 105 and initial thickness of the strip is s0 = 0.05.

although the algorithm is extremely fast to compute the early stages. However, we
will see in the following that it is sufficient to reach the mixing time even for Péclet
number up to 1010. This allows the obtaining of very interesting properties of the
diffusion process at these Péclet numbers, which would otherwise be impossible using
standard algorithms.

2.4. Reconstruction of the scalar field

We have shown in § 2.1 how to calculate numerically the transverse profile c(n)
of a strip of scalar given by (2.8) by integrating a simple equation (2.6) for the
dimensionless times τi during the integration of the motion of the tracers xi . We
wish to reconstruct the spatial distribution of scalar using this information. The
easiest method is to draw a line, with a colour corresponding to the maximum of
the transverse profile. This means that each segment [xi xi+1] is plotted with a colour
corresponding to c0/

√
1 + 4τi . An example plotted in figure 3(a) shows that it gives

very good information on the position and concentration of the scalar. This method is
extremely useful for large Péclet numbers, when the strip is so thin that its thickness
get smaller than the resolution of the figure. Moreover, it is very fast and allows
a field of scalar to be drawn almost instantaneously. However, this line drawing
technique is not suitable as soon as several strips get so close to each other that their
concentration profiles overlap.

We thus need to reconstruct the distribution of scalar on a two-dimensional grid.
This task is much more tedious than the previous technique. It is very demanding
in memory since the grid must be as narrow as possible, and it is also very unstable
at the cusps, where the model fails. The correct treatment of the cusps is detailed in
§ 2.5.

The first step is to reinterpolate the strip such that the distance between two tracers
is constant and equal to �l. In the reconstruction process, �l was chosen equal to
the mean thickness of the strip which is easily calculated numerically as 〈si

√
1 + 4τi〉,

with si the striation thickness. Once the tracers are equally spaced, the distribution of
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scalar can be reconstructed by adding small Gaussian ellipses centred on each tracer

c(x) =
∑

i

c0/1.7726√
1 + 4τi

exp

{
− [(x − xi) · σ̂ i]

2

�l2
− [(x − xi) · n̂i]

2

s2
i (1 + 4τi)

}
. (2.14)

Here, σ̂ i and n̂i are the unit vectors tangent and normal, respectively, to the strip.
The ellipses have a major axis oriented along the strip, with a parameter of the
Gaussian profile equal to �l. Their minor axis is normal to the strip with a parameter
si

√
1 + 4τi as prescribed by the model. The constant 1.7726 is due to the overlap of

the ellipses: since they are separated by �l and have a Gaussian profile along the
strip with a parameter �l, the maximal concentration is overestimated by a factor∑j =+∞

j = −∞ e−j2

= 1.7726. It can be noted that it is easier numerically to centre the ellipses

around the middle point of [xi xi+1] since the unit vectors σ̂ i and n̂i are then easier
to calculate.

An example of such a reconstruction is plotted in figure 3(b). The picture is similar
to the one of figure 3(a). But here, the strip has a Gaussian transverse profile with the
correct thickness. The overlap of the ellipses along the strip is not visible although
they are separated by five times the mesh size. Different parts of the strip can mix
together, for example at x =(−0.55, 0.15), which shows that the model is still valid
in the case of strip overlap or aggregation (see § 6.3 for a precise definition of this
notion).

The strip is well defined in the regions with low curvatures. Its thickness is usually
small when its concentration is small. This is consistent with the diffusion process since
it corresponds to high stretching rates. The model thus describes well the diffusion
of the strip although its calculation was not implemented on a two-dimensional grid,
but only modelled assuming that the strip is thin. This assumption fails when the
radius of curvature gets of the order of the thickness of the strip, i.e. at the cusps.
These regions are treated separately in § 3.

2.5. Post-treatment of cusps

In regions with high curvature, the model fails because the thickness becomes of the
order of the radius of curvature. There, the diffusion problem is no longer essentially
one-dimensional, contrary to the assumption leading to (2.5). This poses two
numerical problems in the reconstruction of the distribution of scalar. The first one
arises even in the absence of diffusion, and comes from the superposition of the strip
from both sides of the cusp. As shown in figure 4(a), if the distance d between these
two sides of the cusp is smaller than twice the thickness si of the strip, there will be
some overlap of these two parts of the strip and the concentration c of the scalar can
be two times higher than the initial concentration c0, which is not physical. The best
way to prevent these overlaps is to reduce the thickness of the strip by reducing the
initial thickness s0. In our simulation, an initial thickness s0 = 0.05 would lead to only
0.1 % of the tracers where the distance d is smaller than twice si . For these points, the
algorithm modifies the initial thickness only locally by decreasing si to d/2 and also
changing the dimensionless time τi accordingly: it is multiplied by a factor 4s2

i /d
2

(since τ is proportional to s−2
0 ). It is true that this procedure does not conserve the total

quantity of scalar, but the loss was usually less than 0.1 %. This procedure does not
modify at all the probability distribution functions (PDFs) of scalar or the spectra
since these problems are localized in very small areas and do not contribute
appreciably to the global quantities. This treatment is only necessary to prevent small
dots of high concentration appearing in the spatial concentration distribution.
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Figure 4. Regularization of the scalar field around a cusp during the reconstruction process.

A second problem arises in the presence of diffusion. Indeed, for rather large
diffusivities (Pe < 105), we observed some lines of high concentration of scalar centred
around the cusps. They are represented schematically in figure 4(a) by the two grey
ellipses centred around the two tracers of the cusp. Such a numerical problem arises
when the thickness of the strip, equal to si

√
1 + 4τi , is larger than the distance �l

between two consecutive tracers. We observed this phenomenon at only a few points
of the scalar field (usually less than 10 cusps in the simulation of the sine flow
in § 3), but these ellipses would contaminate the whole field. We thus treated them
by replacing the ellipses by circles with the same area, such that the total quantity
of scalar is conserved. This procedure was very efficient in solving this numerical
problem, although it is not a clean treatment of theses cusps. However, as was said
previously, these problems arise in very small areas and do not contribute appreciably
to the global quantities such as PDF and spectra. It is thus sufficient to use these
basic procedures. To properly treat these cusps, it might be possible to modify the
model such that the diffusion is calculated numerically on a two-dimensional mesh in
the neighbourhood of the cusp.

2.6. Validation: flow in a point vortex

In this section, meant to validate our method, we present the results of the strip
diffusion method for the case of a point vortex with circulation Γ = 14.2 cm2 s−1

located in x = 0, for which an experiment exists (Meunier & Villermaux 2003). The
scalar is injected initially along the x-axis in order to mimic the experiment. The
initial thickness s0 = 0.11 cm is chosen two times smaller than the experimental one
(s0 = 0.22 cm) such that the final theoretical profiles are equal. Indeed, in the original
study of Meunier & Villermaux (2003), s0 is the width of a square profile, whereas
here, s0 is the parameter of a Gaussian profile. Initially, the scalar is injected along
the x-axis between x = 0.6 cm and x = 1.8 cm.

Figure 5 shows the spatial distribution of scalar at t = 10 s for various diffusivities.
As observed experimentally, the strip rolls up around the vortex centre and creates a
spiral. For a very small diffusivity (D = 10−8 cm2 s−1), the scalar has not yet reached
the mixing time and the maximal concentration across the strip is equal to the
initial concentration c0 almost everywhere (figure 5a). For a slightly larger diffusivity
(D = 10−6 cm2 s−1), the scalar has started to diffuse and its maximal concentration has
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Figure 5. Spiral of scalar created by the roll-up of a strip around a point vortex with a
circulation Γ = 14.2 cm2 s−1 at t = 10 s. The diffusivity is equal to (a) D = 10−8 cm2 s−1, (b)
D = 10−6 cm2 s−1, (c) D = 10−4 cm2 s−1 and (d ) D = 10−2 cm2 s−1. The scalar is injected initially
along the x-axis with 0.6 cm< x < 1.8 cm. The initial thickness of the strip is s0 = 0.11 cm. In
(a), the strip is plotted as a line, whereas in (b–d ), it is reconstructed on a two-dimensional
mesh.

decreased at some locations close to the vortex centre. Since the stretching is larger at
the centre than at the periphery, the diffusion is faster and the concentration smaller
there. This is very similar to the experimental result of Meunier & Villermaux (2003)
except that here the strip contains more turns because the scalar is located closer to
the vortex centre. For even larger diffusivities (D = 10−4 cm2 s−1), the scalar has a
much lower concentration (note the change in the colourbar) and the strip starts to
mix with itself at the centre of the vortex. At a very high diffusivity (D = 10−2 cm2

s−1), the aggregation of the strip is generalized to the whole area, which creates a ring
of scalar. The scalar has a higher concentration close the centre, since it is spread on
an area smaller that at the periphery (proportional to the radius). It can be noted
that the numerical simulation describes well (at least qualitatively at this stage) the
aggregation of the strip. However, we expect the ring to become a single circular
patch at even larger diffusivities (without a hole at the centre), but this case cannot
be described by the model since it corresponds to a thickness of the strip of the order
of the curvature radius.

To compare the numerical results quantitatively with the experiment, we have
plotted the maximal concentration as a function of the radius in figure 6(a). The
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Figure 6. (a) Maximal concentration of the scalar along the strip as a function of the radius
at t = 5 s (circles), t = 10 s (squares) and t = 20 s (triangles). Experimental data (open symbols)
and theoretical predictions (lines) are taken from Meunier & Villermaux (2003). Numerical
results (black filled symbols) are obtained with a diffusivity (D =5 × 10−6 cm2 s−1). The
experimental vortex core size a0 is equal to 0.3 cm. (b) Transverse profile of the scalar as
a function of the coordinate normal to the strip. Symbols are taken from the experimental
data published in Meunier & Villermaux (2003) at t =20 s and are compared to a Gaussian
function (solid line).

numerical values (plotted as small black symbols) are in excellent agreement with
the experimental and theoretical data taken from Meunier & Villermaux (2003,
figure 4a). However, for this figure, the maximal concentration has been taken equal
to c0erf(1/

√
4τ ) instead of c0/

√
1 + 4τ as in (2.8) since it is the solution for a square

initial transverse profile with a width 2s0. The numerical values are slightly smaller
than the theory at large r and slightly larger for small r . But this error remains smaller
than 3 % and might be due to numerical errors during the advection of the tracers xi .
We have also checked that the experimental transverse profile is Gaussian, as predicted
by (2.7). It is plotted in figure 6(b) and is indeed very close to Gaussian although it
is slightly asymmetric (larger for n> 0). This might be due to a misalignment of the
camera with the axis of the vortex, which makes visible the dye which is behind the
illuminated sheet of dye, thus enlarging the thickness of the strip for n> 0. We now use
this method to study a more complex flow, where no analytical solution is available.

3. Mixing in a sine flow
In the rest of the paper, we will analyse a case study of mixing at high Péclet

number, taking advantage of the new numerical technique of strip diffusion. The aim
is to link the local properties of stretching enhanced diffusion of a strip well captured
by the numerical technique, to the global properties of the mixture such as spectra
and PDF for a prototype chaotic flow to understand, using this new tool, how the
complex mixture at a given stage of its development has been built from elementary
objects (the stretched strips) and an appropriate interaction rule.

3.1. Definition of the sine flow

We have chosen to analyse the case of a sine flow, since it has been commonly
studied (Alvarez et al. 1998; Cerbelli et al. 2004; Thiffeault, Doering & Gibbon
2004) using several numerical methods (tracking of tracers and spectral methods).
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m 0 1 2 3 4 5 6

χx 1.2154 4.2865 1.9023 3.4034 0.9480 4.3850 2.3774
χy 3.1199 5.6534 5.1624 4.0521 5.1395 4.1483 2.1487

Table 1. Phases of the sine flow in the x- and y-direction at each period m.

Moreover, it is well known for its chaotic mixing behaviour at high enough velocities.
The sine flow (or random wave flow, Zeldovich 1982) consists of alternating vertical
and horizontal sinusoidal shear flows. The randomness of the flow is introduced via
phases χx and χy , which are chosen randomly at each period (Thiffeault et al. 2004),
defining the flow as

(vx, vy) = V0

[
0, sin(2πx + χx

m)
]

for m < t < m + 1/2, (3.1)

(vx, vy) = V0

[
sin(2πy + χy

m), 0
]

for m + 1/2 < t < m + 1, (3.2)

where the integer m is the period number, t is time and the amplitude of the flow V0

is chosen equal to 1/
√

2 in order to be in a chaotic regime (see Alvarez et al. 1998).
The phases are chosen randomly between 0 and 2π. Their values are given in table 1.
By chaotic, we mean that the flow will not leave room for segregated, unmixed islands
at long times and that, although the flow will generate a non-trivial concentration
distribution P (c) (defined in § 6), that distribution will ultimately converge towards a
Dirac delta centred around the average concentration 〈c〉

P (c) −−→
t→∞

δ(c − 〈c〉), (3.3)

that is, in the language of Ergodic theory, towards a measure of uniform probability
over the whole domain. In that sense, the flow in (3.2) is mixing (Arnold & Avez
1967).

A strip of scalar is introduced at t = 0 along the x-axis between x = − 0.5 and
x = + 0.5. The initial transverse profile is supposed to be Gaussian (c(y) = c0e

−y2/s2
0 )

with an initial thickness equal to s0 = 0.05. The evolution of the scalar is governed
by the advection–diffusion equation (1.2) where the diffusivity D defines the Péclet
number as

Pe = 1/D, (3.4)

meaning that the length scale is chosen equal to the wavelength (equal to 1), and the
typical velocity is chosen equal to V0

√
2.

3.2. Temporal evolution

Figure 7 shows the distributions of scalar at various times for a moderate Péclet
number (Pe = 105). The strip, initially straight, is bent and stretched by the flow.
After one period, its thickness has decreased due to the compression in its transverse
direction. However, the maximal concentration is still equal to the initial concentration
c0 since the mixing time has not yet been reached. After two periods, the scalar has
started to diffuse, leading to a grey shade of the strip. This diffusion is a proof that
the mixing time has been reached, i.e. that the dimensionless time τ is of the order of
one or larger. The strip is thinner than after one period, and several parts of the strip
get closer to each other. However, there is no reconnection of the strip with itself.

After four periods (figure 7c), the strip has a very disordered shape. It is bent in
many places and contains a few cusps. Different parts of the strip are so close that
they have mixed because of diffusion. It is almost invisible except at the locations
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Figure 7. Temporal evolution of a strip of scalar in a sine flow for a Péclet number equal to
105. The fields of the scalar are given at (a) t = 1, (b) t = 2, (c) t = 4 and (d ) t = 7.

where the different parts separate, as can be seen at the upper left loop (x = − 0.7,
y = 1.2). The concentration of the scalar becomes smaller and smaller, and there are
no remaining parts still bearing the initial concentration c0. The thickness of the
strip remains blocked at the Batchelor scale

√
D/γ (see (2.12)), γ being the average

stretching rate of the strip, as soon as diffusion balances substrate compression.
After seven periods (figure 7d ), the strip has been bent and reconnected many

times. It spreads on a large domain and very well shows the chaotic behaviour of
the flow. The concentration is very small, such that the scalar is almost completely
diluted in the surrounding medium.

3.3. Influence of the Péclet number

The main advantage of the strip diffusion method is that the diffusivity can be
varied a posteriori by simply tuning the dimensionless time τ accordingly. It is thus
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Figure 8. Distribution of a scalar in a sine flow at t = 7 for (a) Pe = 107 and (b) Pe =1010.
Due to a lack of printing resolution, the thickness of the strip has not been respected: the
strip has been plotted as a line. However, the image has been zoomed 200 times in the inset
to show the correct thickness of the strips.

extremely easy to plot the distributions of scalar at any diffusivity (as high as wished
in particular). Two examples are given in figure 8 for Pe = 107 and Pe =1010. Such
numerical simulations are impossible to do using a spectral code, since the number of
points needed would be too high. Indeed, it was impossible to reconstruct the scalar
field on a two-dimensional mesh, and the strip has only been plotted as a line in
figure 8. However, it is possible to reconstruct the scalar field in two dimensions on
a smaller area. This is shown in the insets of figure 8 and proves that the results are
correct although it is impossible to visualize them on the whole field.

At a Péclet number equal to 107, the strip has reached the mixing time in some
places, but some parts of the strip seem to have a concentration equal to c0. The inset
shows that the strip has reconnected with itself, leading to a rather blurry picture.
On the contrary, for Pe = 1010, the different parts of the strip remain separate, even
at the upper left corner of the inset, where two lines are not only extremely close,
but also extremely thin. This is in agreement with the fact that the mixing time has
not been reached there, which prevents the reconnection of the strip (due to the
flow incompressibility). At such a high Péclet number, the mixing time has not been
reached almost everywhere, and the concentration is equal to c0 almost everywhere.
It is clear on this figure that the spatial distribution of scalar is very complex and
contains a lot of information, which is why the numerical simulation gets very slow
at these late stages. We are using this information in the following to analyse the
mixing properties of the flow and relate them to the stretching of the strip.
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Figure 9. (a) Total length of the strip as a function of time. The solid line corresponds to an
exponential growth with a mean stretching rate γ = 0.91. (b) PDF of elongation of the strip
for t = 2 (
, dotted line), t = 4 ( , dashed line) and t = 7 (�, solid line). Lines correspond to
the theoretical prediction of (4.14).

4. A simple model of stretching
4.1. Temporal evolution of the strip length

It is well known that in a chaotic stirring flow sustaining a series of stretchings and
foldings, a strip of scalar is stretched exponentially in time: this is the paradigm of
the Baker transform (Ottino 1989). More generally, a succession of random motions
distributed in intensity and direction results in a global exponential lengthening
of material lines (Kraichnan 1974; Duplat & Villermaux 2000). This is very well-
confirmed in the present sine flow, where the total length L of the strip increases as
eγ t , as shown in figure 9. The numerical value of the mean stretching rate (also called
topological entropy) can be obtained accurately γ =0.91 ± 2 %. This value will be
the only constant needed for the theory developed in the following.

4.2. PDF of stretching factors

The total length of the strip is a global characteristic which does not give any
information about the variation of the elongation ρ along the strip, which is
distributed according to a well-defined PDF, P (ρ). It is defined as the probability
of finding a point on the final strip, where the strip has been stretched by a factor
ρ = �x/�x0. Since the final refinement is done such that the tracers are equally spaced
along the strip, P (ρ) is easily calculated as the number of tracers for which �x/�x0

is in the interval [ρ, ρ + dρ] divided by dρ. These PDF are plotted for t =2, 4 and
7 in figure 9. The numerical results seem to be parabolic in this logarithmic scale,
which means that P (ρ) is a Gaussian function of log(ρ). It is clear that the parabola
get wider as time increases. Moreover, log(ρM ) increases linearly in time, where ρM is
the most probable stretching.

4.3. Multi-step stretching

The above result and shape of P (ρ) is readily understood. Let us split the stretching
of the strip at one point into N successive random stretching operations. We assume
that a given tracer of the strip experiences a stretching ρ1 between t = 0 and t = δt , a
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stretching ρ2 between t = δt and t = 2δt. . . The total stretching ρ of the strip after N

operations is thus the product of the elementary stretchings: ρ =
∏

ρi . If we assume
that the stretching operations are random and independent, the stretching rate ρ

has a log-normal law in virtue of the central limit theorem. This means that the
probability Q(ρ) that a point on the initial strip is stretched by a factor ρ is given

by Q(ρ) = exp[−(log ρ − Nµ)2/2Nσ 2]/ρ
√

2πNσ 2, where µ and σ 2 are the mean and
variance of log ρ. However, the probability P (ρ) that a point on the final strip has
experienced a stretching ρ is equal to (L0/L(t)) ρ Q(ρ) because the elementary length
of such an interval has been multiplied by ρ, thus weighting the probability by a
factor ρ. Since the number N of elementary stretchings is proportional to the time t

in a permanently stirred flow, one can rewrite the probability P (ρ) as

P (ρ) =
L0/L(t)√

4πκt
exp

[
− (log ρ − γpt)2

4κt

]
, (4.1)

where γp = Nµ/t is the most probable stretching rate (i.e. the most probable finite
time Lyapunov exponent), κ reflects the diffusion of the stretching factors and is such
that σ 2 = 2κt/N . This result is equivalent to the one derived, also assuming that the
stretching is operated in multiple discrete steps, by Kalda (2000) who showed that
the probability P (log ρ) is the solution of a diffusion–advection equation

∂P

∂t
+ γp

∂P

∂ log ρ
= κ

∂2P

(∂ log ρ)2
, (4.2)

The advective term γp∂P/∂(log ρ) corresponds to a constant average stretching of
the strip meaning that the average of the logarithm of the strip length log ρ increases
with time as γpt . The diffusive term κ∂2P/(∂ log ρ)2 comes from the distribution of
the stretching intensities in the flow, which is progressively explored by the strip as
time progresses. Indeed, a subpart of the strip can be stretched at a rate slower or
faster than γp , and this alternatively and randomly as time evolves. The net result is
a diffusion of an initial stretching log ρ to neighbouring stretchings, with an apparent
rate κ reflecting the width of the distribution of the stretching rates.

4.4. Link with stochastic processes

An interesting analogy can also be drawn with the dynamics of pair dispersion in
random flows. Let r(t) be the distance between two material points constitutive of
the strip. There is, in general, a deterministic part of the rate of elongation of r(t)
given by the structure of the mean flow and boundary conditions, plus a random
contribution due to the hieratic/chaotic nature of the motion. For smooth flows
(those characteristic of the so-called Batchelor régime, a régime in which the sine flow
is likely to fall), the velocity gradient |∇v| is approximately constant over the domain,
and thus the typical velocity difference |δv(r)| is expected to increase in proportion to
r itself. The rate of increase of r is in proportion to the number of degrees of freedom
offered by the flow, that we denote d , like the dimension of space. The contribution
of this deterministic part to the net elongation of r will thus be dr . Now, the chaotic
motions generated by the flow itself impact the increase of r as well. Those may affect
the elongation of r with a probability proportional to its length r itself. We call it
rf (t) where f (t) is, in the simplest case, chosen as a Brownian white noise with zero
mean, broad variance, and uncorrelated with itself from one flow cycle to the other.
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We thus choose to examine the following model for the distance r(t) between two
particles:

ṙ = r (d + f (t)), (4.3)

〈f (t)〉 = 0 and 〈f (t) f (t ′)〉 = D δ(t − t ′), (4.4)

where 〈 · 〉 stands for the average over the noise realizations 〈 · 〉 =
∫

( · ) B(f ) df with
B(f ) a centred broad distribution. Time t is made dimensionless with a suitable
stretching rate γ0. Let Q(r, t) be the distribution of distances r between material
particles along a strip at time t . It corresponds to the probability Q(ρ, t) that a strip
has been stretched by a factor ρ at time t . This identity is legitimate in smooth flows
where stirring is dominated by a single length scale and where no small scale activity
in the underlying velocity field contributes to the wrinkling of an advected material
line. This result is no longer true in rough, multiscale flows (Villermaux & Gagne
1994). One has obviously

Q(r, t + �t) =

∫
B(f ) df Q(r − �r, t), (4.5)

the increments �r and �t being linked through the dynamics in (4.3). A Taylor
expansion of (4.5) leads, according to Itô rules (expressing that the jump rates of �r

are determined at the starting point at time t , see Van Kampen 1981; Gardiner 2003),
to the corresponding Fokker–Planck equation for Q(r, t)

∂Q

∂t
�t = − ∂

∂r

(
Q〈�r〉

)
+

1

2

∂

∂r2

(
Q〈(�r)2〉

)
. (4.6)

Computing the mean increment 〈�r〉 and its variance 〈(�r)2〉 according to (4.3) and
(4.4) gives

〈�r〉 = (d + D) r �t, (4.7)

〈(�r)2〉 = 2 D r2�t, (4.8)

providing finally (see also Graham & Schenzle 1982)

∂Q

∂t
+ (d + D)

∂(rQ)

∂r
= D ∂2(r2Q)

∂r2
, (4.9)

or, if instead of Q(r, t), one is interested in P (log r, t) which is such that
P (log r, t) = r Q(r, t), one has

∂P

∂t
+ d

∂P

∂ log r
= D ∂2P

∂(log r)2
. (4.10)

Equation (4.10) is formally identical to (4.2), and equal to it when dγ0 = γp (remember
that t ≡ γ0t in (4.3)) and Dγ0 = κ . When D = 1, that is when the noise has the same
weight as the deterministic part of the flow, one expects that

γp = d κ, (4.11)

in dimension d , a relationship which has the interesting consequence that the
parameters describing the stretching field of the flow (γp, κ) in (4.2) reduce to a
single parameter. It can be noted that J. Kalda (personal communication, 2008) has
given a straightforward way to derive (4.11) by considering a space-filling stationary
flow in a closed box for which P (r) ∼ rd and relating it to the stationary solution
P (r) ∼ rγp/κ of (4.2).
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Under the condition (4.11) above, the flow dispersion properties being characterized
by a single parameter, it is natural to wonder whether Q(r, t) (or P (log r, t)) can be
interpreted as resulting from a scale dependent diffusive process with an effective
scale dependent diffusivity D(r), as the one imagined by Richardson for pair
dispersion in random flows (Richardson 1926). The above transport equation for
Q(r, t) does not coincide with Richardson’s transport equation for the distribution
of the distance r between pairs of particles, but its density q(r, t) such that, for
an isotropic d-dimensional field Q(r, t) dr ∼ rd−1q(r, t) dr , does. One checks indeed
that (4.9) coincides with (see e.g. Monin & Yaglom 1975; Falkovich, Gawedzki &
Vergassola 2001)

∂q(r, t)

∂t
=

1

rd−1

∂

∂r

[
D(r) rd−1 ∂q(r, t)

∂r

]
, (4.12)

for D = 1, provided the diffusivity D(r) can be written (in dimensional units)

D(r) = γ0r
2. (4.13)

This scaling for the diffusivity D(r) = |δv(r)| r is consistent with the expectation in
smooth flows such as the Batchelor régime for which |δv(r)| = γ0r . The log-normal
distribution for the stretchings in (4.1) thus simply results from a succession of
uncorrelated motions.

4.5. Conclusion

A direct consequence of the stretching model above is that the length of the strip
increases exponentially in time (since L(t) = L0

∫
ρ Q(ρ, t) dρ), with a mean stretching

rate equal to γ = γp +κ . Using this relation and the link between γp and κ in (4.11) for
d = 2 (two dimensions), one can give explicitly the constants of the model as a function
of the mean stretching rate γ , which has been determined numerically accurately. The
model does not contain any fitting parameter any more. The probability P (ρ) that a
point on the final strip has been stretched by a factor ρ is given by

P (ρ) =
e−γ t

√
4πγ t/3

exp

[
− (log ρ − 2γ t/3)2

4γ t/3

]
. (4.14)

This law is plotted in figure 9 at various times. The agreement with the numerical
simulations is fair. In particular, the most probable stretching factor is correctly
predicted as a function of time, since a best fit gives a most probable stretching rate
γp = 0.7 ≈ 2γ /3 = 0.6, as expected from the model. The broadening of the PDF is
also fairly well-predicted, a best fit gives a diffusivity κ =0.22 instead of κ = γ /3 = 0.3
from the model. This result suggests that the hypothesis made in (4.11) is fairly
consistent with the data.

We now use this model to infer global quantities of the concentration field, which
we compare to the simulation.

5. Spectrum of the scalar
We analyse the energy spectra of the scalar advected by the sine flow presented in

§ 3, and relate them to known results and issues.

5.1. Construction of the spectrum

The one-dimensional energy spectrum Γ (k) of the scalar is defined (see e.g. Batchelor
1959) as the total two-dimensional spatial spectrum Φ(k′)/2 contained in an annulus
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Figure 10. Two-dimensional energy spectrum Φ(k) of the scalar at (a) t = 4 and (b) t = 7 for
Pe =105. The spectrum is calculated by a two-dimensional FFT of the scalar spatial distribution
c(x). The grey map is logarithmic in order to visualize large wavenumbers (corresponding to
very small values of energy).

of width dk divided by dk

Γ (k) dk =

∫ ∫
k<||k′ ||<k+dk

1

2
Φ(k′) dk′. (5.1)

The spatial spectrum Φ(k) is usually defined as the Fourier transform of the
auto-correlation function of the scalar 〈c(x)c(x + r)〉x . However, it is also equal to the
squared modulus of the Fourier transform c̃(k) of the scalar, due to the properties
of the auto-correlation function

Φ(k) =
1

4π2

∫ ∫ +∞

−∞
e−ik·r〈c(x)c(x + r)〉x dr =

4π2

A |c̃(k)|2, (5.2)

where A is the total area of the domain of the simulation. Numerically, it is
easy to compute the two-dimensional energy spectrum Φ(k) from the fast Fourier
transform (FFT) of the scalar distribution c(x), which has been reconstructed on
a two-dimensional grid. This spectrum is shown in figure 10 at different times. The
spectrum is extremely peaked around 0, and the grey map has been chosen logarithmic
in order to visualize large wavenumbers (corresponding to very small values of energy).
This spectrum is shown in figure 10 for different times. The spectrum is extremely
peaked around 0, and exhibits rays of high energy oriented at about ±60◦ with respect
to kx . This indicates that the strips are mainly oriented at ∓30◦ with respect to x,
as can be seen in figure 7(c, d ). This means that the flow is not completely isotropic
and has two dominant stretching directions. Using this two-dimensional spectrum, the
one-dimensional spectrum is then calculated by integration on an annulus of width dk.
However, this method is very demanding in memory since it creates a two-dimensional
matrix of the scalar, whereas the strip is defined on a one-dimensional vector.

An alternative way is to use the fact that the scalar distribution is defined as a sum
of ellipses with a Gaussian shape as can be seen in (2.14). Since the Fourier transform
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Figure 11. Energy spectrum of the scalar at t = 7 for Pe = 105. (a) The spectrum is calculated
by FFT of the scalar spatial distribution (grey symbols) and directly by integration along the
strip using (5.3) (black solid line). (b) The spectrum is calculated using (5.3) with post-treatment
of the cusps (solid line) and without post-treatment of the cusps (�).

of a Gaussian is Gaussian, one can calculate directly c̃(k) from (2.14) as a sum over
the tracers xi (using a change of variable x ′ = x − xi in the integral over x):

c̃(k) =
∑

i

c0�lsi

4π × 1.7726
e−(k·σ̃ i )

2�l2/4 e−(k·ñi )
2s2

i (1+4τi )/4 e−ik·xi . (5.3)

We recall that σ̃ i and ñi are the unit vectors tangent and normal to the strip,
respectively, �l is the distance between two tracers, si is the striation thickness and
τi is the dimensionless time. Since c̃(k) is here given by an analytical expression (and
not a matrix), it is very simple to calculate the spectrum at a given wavenumber k by
integrating on a circle in the two-dimensional wavevector coordinates

Γ (k) = k

∫ θ=2π

θ=0

|c̃(k cos θ, k sin θ)|2 dθ. (5.4)

In our simulations, this formula is discretized on 20 or 50 angles θ , depending on
the accuracy needed. The main advantage of this method is that it calculates the
energy spectrum at each wave number k independently, unlike the method using
a numerical FFT of the scalar distribution. The need in memory is thus very low
and the spectra can be calculated on as many decades as wanted. Moreover, the
distribution of wave numbers can be chosen exponential, which is very interesting for
spectra in logarithmic scale.

An example of a spectrum is plotted in figure 11 using the two numerical methods
described above. The method using an FFT of the reconstructed two-dimensional
scalar field (plotted as symbols) is particularly good at large wavenumbers, since the
integration over the annulus of width dk contains many numerical data at large k

(leading to an efficient averaging). However, this method gives very few points at low
wave number, since k is a multiple of 2π/L, where the size of the domain L cannot
be taken too large. This method can only give the spectrum over three decades, since
the maximum size of a two-dimensional matrix is 40962.
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Figure 12. Energy spectrum of the scalar at t = 7, in a simulation where a new strip of scalar
is injected at t =0, 1, 2, 3, 4, 5, 6, to mimic sustained turbulence. The Péclet number is equal
to Pe = 103 (�), Pe = 105 (�) and Pe = 107 (�). The solid line corresponds to the Batchelor
spectrum (5.5) and the dashed line corresponds to the solution (5.8) proposed by Kalda (2000)
for sustained turbulence. The scale for the wavenumber is (a) logarithmic and (b) linear.

The method based on an analytical value of c̃(k) is very efficient at low wave
number: it gives an almost continuous description of the spectrum, due to the very
dense amount of data at low k. At high wavenumber, there seem to be some numerical
oscillations of the spectrum compared to the other method. This comes from the
limited number of angles θ in the discretization of the integration over an annulus,
and can be reduced by using more angles (up to 200 angles). The agreement between
the two methods is excellent, which validates the second method. In the following, we
will use this alternative method only since it is faster and more accurate. We have also
checked the post-treatment of the cusps introduced in § 2.5 has a negligible influence
on the spectrum. This effect is hardly visible in figure 11(b) where the spectrum is
plotted with and without post-treatment of the cusps. We are thus confident of the
fact that the method failing at the cusps has a negligible influence on this global
quantity.

5.2. Spectrum of a forced scalar

Figure 12 shows the energy spectrum of a scalar in a sine flow for three different
Péclet numbers. A new strip of scalar has been injected at each period of the sine
flow to mimic forced turbulence and reach a stationary state. This procedure has
been used only in this subsection because spectra have been extensively studied in
the regime of forced turbulence rather than in decaying turbulence. In this way, there
is a constant injection of energy at low wavenumber, which is transferred to high
wavenumbers by a direct cascade. This is consistent with the mechanism presented
by Batchelor (1959): the wavenumbers increase, due to the stretching of the strip, up
to the scale where the scalar is dissipated (see (2.12)). In this picture where the scalar
variance is conserved as k increases, the spectrum of a scalar is given by

Γ (k) =
χ

γ k
e−Dk2/γ , (5.5)
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a result which holds for smooth flows characterized by a single mean stretching rate
γ and the dissipation rate χ

χ = 2D

∫ ∞

0

k2Γ (k) dk. (5.6)

This prediction is plotted in figure 12 as a solid line. It is in excellent agreement
with the numerical results, which present a k−1 spectrum on three decades in the so-
called viscous–convective subrange (above the Batchelor scale). This clear evidence is
possible since the Péclet number is high (up to 107). It is less clear on the simulations
made at small Péclet number (Pe = 103), where the slope k−1 is hardly visible on one
decade.

At high wavenumbers, the spectrum presents a cut-off around the Batchelor
wavenumber

√
γ /D. However, the numerical results lie above the Batchelor spectrum

(5.5) at high wavenumber. This disagreement is even more visible when plotting the
spectrum using a linear scale for the wavenumber (figure 12a). The numerical results
show that the spectrum has an exponential decay e−k instead of e−k2

. This exponential
behaviour is consistent with Kraichnan (1974) who generalized the result of Batchelor
(1959) to the case of a random stretching field, leading to an exponential decay of
the spectrum (see also Toussaint et al. 2000 and Yeung, Xu & Sreenivasan 2002).
This is qualitatively understood by the fact that a distribution of stretching rates γ

leads to a distribution of Batchelor scales
√

D/γ , thus broadening the spectrum at

high wavenumbers in a continuous fashion, and thus stretching the cutoff from e−k2

to e−k . This result can be recovered in a simple way by using (4.2) for the PDF of
stretching rate P (ρ), as proposed by Kalda (2000). Indeed, in the absence of diffusion,
the quantity kΓ (k) remains unchanged during the stretching by the flow, whereas the
wavenumber is multiplied by the same amount as the stretching factor ρ. The PDFs
of stretching rate and kΓ are thus governed by the same differential equation (4.2).
However, the presence of diffusion adds a decaying term in the equation for kΓ with
a decay rate equal to −2Dk2, which leads to the following equation for kΓ :

∂(kΓ )

∂t
+

2γ

3

∂(kΓ )

∂(log k)
=

γ

3

∂2(kΓ )

∂(log k)2
− 2Dk2(kΓ ). (5.7)

As explained in § 4, γ is the mean stretching rate of the strip, and has been calculated
numerically very accurately for the sine flow (γ = 0.91). The stationary solution of
this equation is given by a Hankel function of order one (see Kalda 2000)

Γ (k) = AH
(1)
1

(
ik

√
6D/γ

)
, (5.8)

where A= H
(1)
1 (i

√
6D/γ )−1. This solution scales as k−1e−k

√
6D/γ at high wavenumbers,

i.e. for k �
√

γ /D. This exponential decay corresponds to the result predicted by
Kraichnan (1974) and is now tightly linked to the distribution of stretchings itself.
This solution (5.8) is plotted in figure 12 as a dashed line. It is, as expected, in
very good agreement with the numerical results at small wavenumbers (since it
decays as k−1 like the Batchelor spectrum). It is also in excellent agreement at higher
wavenumbers, as can be seen in figure 12(b), where the scale of the wavenumber is
linear.

It might be surprising that the spectrum has an exponential decay at late stages.
Indeed, the PDF of stretching factors P (ρ) becomes more and more peaked as time
evolves, since the variance 〈(log ρ − 〈log ρ〉)2〉1/2 increases slower (as

√
t) than the

mean stretching factor 〈log ρ〉 (which increases as t). The spectrum should thus tend
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Figure 13. Energy spectrum of the scalar at t = 7 obtained by direct integration along the
strip. The Péclet number is equal to Pe = 103 (�), Pe = 105 (�) and Pe = 107 (�). The solid line
corresponds to the Batchelor spectrum (5.5) and the dashed line corresponds to the solution
(5.9) proposed by Kalda (2000) for decaying turbulence. The scale for the wavenumber is (a)
logarithmic and (b) linear.

towards the Batchelor spectrum at late stages (with a cutoff as e−k2

). However, even if
a strip is stretched by a factor ρ over a period t , this does not imply that the stretching
rate has been constant and equal to γ = (log ρ)/t . The variation of the stretching rate
with time induces a variation of the Batchelor scale

√
D/γ , which broadens the final

spectrum although the stretching factors (integrated over time) are all equal.

5.3. Spectrum of a decaying scalar

We now turn to the case of the energy spectrum of the scalar when the strip is injected
at t = 0 only, as was described in § 3. The strip is not injected at each period as it was
in § 5.2, such that this is now a decaying field. Figure 13 shows the spectrum of the
scalar field at t = 7 for three different Péclet numbers. It is clear that the numerical
results are below the Batchelor spectrum (5.5) at low wavenumbers. This comes from
the fact that the energy present at small wavenumbers at t = 0 has moved towards
the large wavenumbers, thus creating a defect of energy at low wavenumbers since
there is no injection of energy there. The disagreement is especially visible at high
Péclet number (Pe =107) since the spectrum is resolved on three decades in k.

For a decaying scalar, the differential equation (5.7) is still valid, but we do not
look for a stationary solution with a boundary condition at k = 0. We instead look
for a decaying solution with an initial condition at kΓ (k, t = 0) = δ(log k), meaning
that all the energy is in the initial length scale (k = 1) at t =0. Kalda (2000) showed
that the solution tends towards a Hankel function of order zero at late stages

Γ (k) = ie−γ t/3H
(1)
0

(
ik

√
6D/γ

)
. (5.9)

This solution is plotted as a dashed line in figure 13 and is in fairly good agreement
with the numerical result at low wavenumbers. This solution is not a pure power law
at low wavenumbers. Figure 13(b) shows that the solution is in excellent agreement
with the numerical results at high wavenumbers, with an exponential decay e−k as
in the Kraichnan model, due to distributed stretching rates. To conclude, the model
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for the stretching rate allows prediction of the energy spectra of the scalar through
a differential equation which is directly connected to the differential equation of the
PDF of stretching factors. The solutions do not contain any fitting parameter and are
in excellent agreement with the numerical results on four decades in k. The simulation
clearly makes the distinction between a stationary, and a decaying scalar field on their
respective spectral signature.

6. Probability distribution function of the scalar
6.1. Two methods to calculate the PDF

An important question in scalar mixing is to provide a description of the concentration
content P (c) of the mixture. P (c) dc is defined as the normalized number of pixels
(in the simulation, otherwise, regions of space) whose concentration is in the interval
[c, c+dc]. Numerically, it can be computed by calculating the histogram of the scalar
spatial distribution c(x) and renormalizing it such that

∫
P (c) dc =1. For the same

reason as in § 5 for the spectrum, this method is tedious since it needs a reconstruction
of the scalar distribution (very demanding in memory because c is a two-dimensional
matrix).

However, there is, as for the spectrum, an alternative way to compute the PDF P (c).
Using the fact that the strip has a Gaussian profile defined by (2.8), each segment
[xi xi+1] has a histogram of concentration given by

N[xi xi+1](c) =
si�l

c

√
1 + 4τi

− log(
√

1 + 4τi c/c0)
, (6.1)

where �l is the length of the interval [xi xi+1]. In our simulations, the set of tracers
xi is reinterpolated before computing the PDF, such that the tracers are equally
spaced (see § 2). This histogram has a well known U-shape, with a divergence as 1/c
at low concentrations and a logarithmic divergence at the maximal concentration
c0/

√
1 + 4τi . It comes from the large number of pixels with c = 0 (far from the

strip), and the large number of pixels close to the maximum of the Gaussian at the
maximal concentration (at the centre of the strip, i.e. at n=0). A major problem
of this histogram is that it cannot be renormalized since

∫
P (c) dc diverges because

of the divergence in c = 0. This property comes from the fact that a Gaussian
profile extends on an infinite domain. It is intrinsic to the diffusion equation,
which is in fact an ill-posed problem in an infinite domain. The consequence is
that the PDFs are defined with a normalizing constant which cannot be calculated
analytically.

The total PDF is obtained as the sum of the histograms of each segment
P (c) = A

∑
i N[xi xi+1](c) if the different intervals do not interfere with each other

(A being a normalizing constant). This is the case at large Péclet number and/or at
early stages (see § 3). However, unlike the calculation of the spectrum, this method
becomes invalid if there is some overlap between different parts of the strip, because
the PDF is a nonlinear function of the concentration c. But, it is still interesting to use
this method and to compare its result to the exact PDF, since it precisely quantifies
the amount of self-overlap of the strip.

6.2. PDF of a solitary strip

Figure 14 shows the PDF of concentration for a strip advected by the sine flow
presented in § 3. The PDF is plotted at t = 7, which corresponds to the scalar
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Figure 14. PDF of the scalar distribution for a strip in a sine flow at t = 7 as in figure 7(d ).
The Péclet number is equal to Pe = 1010 (a) and Pe =105 (b). The true PDF (�) is computed by
doing a histogram of the spatial distribution of scalar. Solid lines correspond to an approximate
PDF, computed by doing an integration of the Gaussian profile along the strip using (6.1).
Dashed lines correspond to the prediction (6.3) using the log-normal model of stretching.
Dotted line is the PDF of maximal concentration given by (6.4) for the log-normal model of
stretching.

distribution shown in figure 8. At high Péclet number (Pe = 1010), the strip has not
yet reached the mixing time so that the maximal concentration is almost everywhere
equal to the initial concentration c0. The logarithmic divergence of each interval’s
histogram is located at c = c0. The total PDF is thus a U-shaped PDF between c = 0
and c = c0. It can be recovered easily by assuming τi � 1 in (6.1), leading to a PDF
proportional to 1/c

√
− log(c/c0) (see also Meunier & Villermaux 2003). There is a

good agreement between the two methods used to calculate the PDF since there is
no aggregation at this high Péclet number (as visible in the inset of figure 8b).

At moderate Péclet number (Pe = 105), the strip has started to diffuse, filling the low
levels of concentrations in the PDF. The logarithmic divergence disappears, because
there is no point on the strip where the maximal concentration is equal to c0. The
PDF becomes a decreasing function of c, with an inverted S-shape characteristic of
flows with a broad distribution of stretchings (Duplat, Innocenti & Villermaux 2010).
There is, moreover, a slight discrepancy between the two methods used to compute
the PDF. This means that some aggregation of the strip with itself has occurred.
The exact PDF (plotted as symbols) is slightly above the ideal PDF that would be
obtained if the strip was not overlapping with itself (plotted as a solid line).

In order to understand these PDFs, we use the model of multiple step stretching,
which leads to a log-normal law (4.14) for the PDF of stretching factors. The strip can
thus be modelled as a sum of segments of length P (ρ) dρ, which have been stretched
by a factor ρ in a time t . For a stretching rate assumed constant in time (equal to
log(ρ)/t), the striation thickness decreases exponentially in time and the dimensional
time τ can be calculated by integration of (2.6) as

τ (ρ) =
Dt

2s2
0

ρ2 − 1

log ρ
. (6.2)
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Equation (6.1) then leads to an analytical formula for the PDF of concentration, if
�l is replaced by P (ρ) dρ and s by s0/ρ:

P (c) =
A

c

∫
τ (ρ)<((c2

0/4c2)−(1/4))

√
1 + 4τ (ρ)

− log(
√

1 + 4τ (ρ) c/c0)
e−((log ρ−2γ t/3)2)/(4γ t/3) dρ

ρ
, (6.3)

where A is a normalizing constant, and the mean stretching rate γ has been calculated
numerically for the sine flow (γ = 0.91).

This solution is plotted in figure 14 as a dashed line. It is in very good agreement
with the numerical results at high Péclet number (Pe =1010). This is not a surprise
because the dimensionless time τ is much smaller than one for the stretching factors
which have a high probability P (ρ), such that the integral in (6.3) simplifies into
1/

√
− log(c/c0), leading to a U-shaped PDF.

For a moderate Péclet number (Pe = 105), the theoretical prediction is still in fairly
good agreement with the PDF obtained if there was no aggregation of the strip
(plotted as a solid line), especially at low concentrations. For such a moderate Péclet
number (where the mixing time has been reached everywhere), it is common to
calculate the PDF of maximal concentration Q(c), which is obtained by assuming
that the strip has a square profile of width s

√
1 + 4τ instead of a Gaussian profile.

The PDF is then defined by Q(c) dc = s
√

1 + 4τ (ρ)P (ρ) dρ which gives an analytical
expression for the PDF:

Q(c) ∼ P (ρ) log(ρ)2

c4(1 − ρ2 + 2ρ2 log ρ)
with ρ = τ−1

[
c2
0 − c2

4c2

]
. (6.4)

Here, τ−1 is the inverse function of τ (ρ) defined in (6.2). This solution is plotted in
figure 14(b) as a dotted line. It is in fair agreement with the previous theoretical PDF
at low concentrations, because the PDF is there a decreasing function of c. However,
there is a small deviation at high concentrations. This reasoning would not work at
high Péclet number (Pe =1010) because the PDF Q(c) is then the sum of two Dirac
functions at c = 0 and c = c0, whereas the exact PDF is U-shaped, corresponding to
a Gaussian profile.

6.3. PDF of a strip with reconnection

We have seen in § 5 that the PDF calculated by integrating along the strip the
histogram of a Gaussian profile (6.1) is not equal to the exact PDF (calculated
directly as a histogram of the scalar distribution) at late stages, and at moderate
Péclet numbers. This originates from the aggregation of different parts of the strip,
which occurs when the thickness of the strip (in the presence of diffusion) becomes
of the order of the distance between two adjacent elements of the folded strips. To
understand better how these reconnections modify the PDF, we have increased the
number of reconnections by placing initially several long strips in the sine flow instead
of a single-short strip. This can be done very easily (without further computation) if
the strips are along the x -axis and infinite at t =0. Indeed, if the computation was
done for a strip xi initially located between x = − 0.5 and x =0.5, an initially infinite
strip is obtained as the sum of strips located in . . . , (xi − 3, yi), (xi − 2, yi), (xi − 1, yi),
(xi, yi), (xi + 1, yi), (xi + 2, yi), (xi + 3, yi), . . . because the sine flow is periodic with
a wavelength equal to 1 in the x-direction. The same argument can be used in the
y-direction: an initial column of strips separated by one in the y-direction is obtained
as a sum of strips located in . . ., (xi, yi − 3), (xi, yi − 2), (xi, yi − 1), (xi, yi), (xi, yi +1),
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Figure 15. Spatial distribution of a strip of scalar in a sine flow at t = 7 for a Péclet number
equal to (a) 105 and (b) 103. All points of the strip have been translated into the unit square in
order to model a periodic initial condition (and flow) composed of a column of strips infinite
in x and located at y = . . . , −2, −1, 0, 1, 2, . . .

(xi, yi − 2), (xi, yi + 3), . . . because the sine flow is periodic in the y-direction with a
wavelength equal to 1.

The distribution of scalar obtained for such an initial condition is plotted in
figure 15 for various Péclet numbers. It is only plotted for 0 < x < 1 and 0 <y < 1
because the distribution is periodic. While the strips are still discernible for Pe =105,
the field is almost homogeneous for the lowest Péclet number (Pe = 103). The density
of strips is so large that the mean distance between two strips is smaller than their
mean width.

The PDFs of concentration corresponding to these scalar fields are plotted in
figure 16 as symbols. For Pe =105, the PDF is decreasing at large concentrations but
it presents a plateau with a small maximum at c = 0.1c0. For Pe =103, this maximum
is clearly visible, which corresponds to the fact that the field tends to be homogeneous
with a mean concentration equal to the total quantity of scalar

∫
c0L0e

−n2/s2
0 dn divided

by the area of the periodic domain (here, 〈c〉 =
√

πs0c0 = 0.0886c0).
These PDFs are very different from those obtained by assuming that the strip has

evolved on its own, independently of its neighbours (calculated in (6.1)), which are
plotted as black solid lines. This strong difference is not surprising, since the PDF
is a highly nonlinear function of c, while the concentration levels of overlapping
strips interact in an additive fashion, owing to the linearity of the Fourier equation
(Villermaux & Duplat 2003). Precisely, if two strips with concentrations c1 and c2

such that c = c1 + c2 overlap, the total scalar field c has a PDF given by

P (c) =

∫
c=c1+c2

P1(c1)P2(c2) dc2, (6.5)

where P1(c1) is the PDF of the first strip and P2(c2) that of the second. If the
concentration levels c1 and c2 in (6.5) are chosen at random among those available
in the original distributions P1 and P2, with no particular correlation or constraint,
then (6.5) defines a convolution of the original distributions. The consequence of this
interaction rule on the structure of P (c) itself has been discussed for several random
flows (Villermaux & Duplat 2003; Duplat & Villermaux 2008; Villermaux, Stroock
& Stone 2008), leading to a family of distributions stable by self-convolution.
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Figure 16. PDF of the scalar distribution for a strip in a sine flow at t =7, where the flow has
been made periodic as in figure 15. The Péclet number is equal to Pe =105 (a) and Pe = 103

(b). Symbols are calculated by doing a histogram of the spatial distribution of scalar. Black
solid lines are calculated by doing an integration of the Gaussian profile along the strip using
(6.1). Grey solid lines correspond to the prediction (6.3) obtained using the log-normal model
of stretching. The dashed lines are computed by self-convolving N times the solid lines, with
(a) N =4 and (b) N = 43, as predicted by (6.6).

The present simulations offer a unique way of testing the relevance of this
interaction rule: in the case of a single strip which aggregates with itself, the PDF
in the presence of aggregation should be obtained as the convolution of the PDF
without aggregation, which we know from the solitary PDF Psingle(c) discussed in
§ 6.2. If the strip reconnects several times with itself, the PDF must be convolved as
many times. Let us call this number of convolutions N , we thus expect

P (c) = Psingle(c)
⊗N. (6.6)

The result of this convolution is plotted in figure 16 as dashed lines and compared to
the true PDF characterizing the true field (plotted as symbols). The agreement is fair
for Pe = 105 and it is very good for Pe = 103: the self-convolved PDF indeed presents
a plateau around c = 0.1c0 and the width of the peak is well predicted. This actually
means that the aggregation of the strip with itself is indeed the process by which the
complex mixture has been built, and is well described by a self-convolution of the
solitary PDF with itself.

The number of convolutions N needed to adjust the self-convolved solitary PDF
onto the exact PDF is plotted in figure 17(a). It has been calculated in two different
ways by taking either the theoretical prediction (6.3) for the PDF of the solitary strip,
corresponding to the grey lines of figure 16 or by taking for the solitary strip the
PDF obtained numerically by integration of (6.1), corresponding to the black lines of
figure 16. The number of convolutions N increases exponentially with an exponent
very close to 2γ /3. This is surprising because the total length of the strip (and thus
its surface) increases as eγ t and one could have expected the number of convolutions
to be proportional to the surface of the strip, leading to an exponent γ and not 2γ /3.
These simulations reveal that the number of convolutions is governed by the most
probable stretching rate 2γ /3 and not by the mean stretching rate γ .
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Figure 17. (a) Temporal evolution of the number of self-convolutions N needed to transform
the PDF of a solitary strip (i.e. in the absence of reconnection) into the exact PDF (with
reconnections) obtained numerically by doing a histogram of the spatial distribution of scalar.
The PDF of the solitary strip is either (�) calculated numerically by integrating (6.1) along
the strip or (
) given by the theoretical prediction (6.3). The solid line corresponds to the
theoretical prediction (6.7) for the number of convolutions. (b) PDF of scalar obtained for
Pe =103 at t = 0.1 (dotted line, �), at t =2 (dashed line, ×) and at t = 7 (solid line, �). Symbols
correspond to the exact numerical result. Lines correspond to the PDF given by (6.3) and
self-convolved N times with N given by (6.7).

This number of convolutions can be calculated in the simplified case where all strips
are subject to the same stretching rate γp = 2γ /3. In this situation, all strips have a

Gaussian normal profile c(n) ∼ e−γpn2/2D . By definition, two strips reconnect if their
levels are larger than a minimum level dc on a common area, which is achieved if
their distance is smaller than a minimum distance ∆ =2

√
−2D log dc/γ for Gaussian

profiles. Since the mean distance between two strips decreases as d0e
−γpt (d0 being

the initial mean distance between two strips), each strip reconnects with a number of
strips equal to

N =
2∆

d0e−γpt
=

4

d0

√
−3D

γ
log(dc) e2γ t/3. (6.7)

In our simulations, d0 is equal to 1 in the periodic case and dc is a numerical
constant for the scalar step, which is taken equal to 5 × 10−4. It can be noted that
this analytical formula diverges when dc tends to 0, but this divergence is very
slow (scaling as log(dc)1/2, which makes it very weakly dependent on this numerical
constant. This is in fact a consequence of the fact that a Gaussian profile extends to
infinity and has thus a non-normalized PDF. This prediction is plotted in figure 17(a)
as a solid line and is in excellent agreement with the empirical determination of the
number of convolutions.

To conclude, it is possible to use the theoretical prediction of the PDF (6.3) in
the absence of aggregation and to convolve it N times according to (6.7), giving
a prediction for the PDF expected in the presence of aggregation. These PDFs
are plotted in figure 17(b) at various times. It predicts correctly the shape of the
PDF in the three different regimes: a U-shaped PDF at early stages, a decreasing
PDF at intermediate times and a peaked PDF at late stages. The agreement is also
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quantitatively correct although it is not perfect. It should be noted, however, that this
analytical solution does not contain any fitting parameter, since the mean stretching
rate γ is known. It bridges a microscopic description of diffusion on a stretched
substrate with a global quantity such as the scalar PDF in a non-trivial flow, from
first principles.

6.4. Why does the convolution rule work so well?

An interesting question to ask is why the convolution rule, which assumes the absence
of correlation between the concentration levels adding at random, works so well. A
possible justification is as follows: we have shown in § 5 that the sine flow, like
all smooth random flows, has a spatial concentration field c(x) with a Γ (k) ∼ k−1

spectrum. This means that the correlation function of the field 〈c(x)c(x + r)〉x is equal
to a constant 〈c2〉 minus a rapidly varying function of r scaling as log(γ r2/D), the
inverse Fourier transform of k−1, making the correlation function essentially zero for
r �

√
D/γ . Distant concentration levels are thus very weakly correlated. The role of

the large scale advection of the flow is to bring close to each other (i.e. at distances
smaller than

√
D/γ ) these distant concentration levels, which there merge under the

blurring action of diffusion, defining a new concentration level equal to their sum. But
since these concentration levels were basically uncorrelated, their addition is made
at random, with a probability equal to the product of their respective probability of
occurrence in the current distribution P (c). The proper interaction rule is thus indeed
of a pure convolution type, expressing an effective maximal randomness in the flow.
We will have a confirmation of this fact in § 7.

6.5. Variance of the scalar

A traditional way since Corrsin (1952) and Danckwerts (1952) of characterizing the
progress of a mixture towards uniformity, is to concentrate on the second moment of
the PDF, namely the variance of the scalar 〈c2〉 (also called intensity of segregation),
which can be derived from the knowledge of the PDF P (c). In a confined mixture
with conserved average concentration 〈c〉, the variance decays and relaxes towards
〈c〉2 at late stages. The decay is prescribed by that of the maximal concentration in
the strips, and is therefore exponential in time after the mixing time.

We have computed the scalar variance for the sine flow directly using the diffusive
strip method by reconstructing the scalar field on the domain −2 <x < 2 and
−2.5 <y < 2.5 (with an area A = 20), where the scalar is initially introduced for
−0.5 <x < 0.5 as in § 3. The variance is plotted in figure 18 as a function of time
for two different Péclet numbers. It is indeed decaying exponentially after t = 2. The
variance is smaller for smaller Péclet numbers, for which the mixing time is smaller.
The late evolution is nevertheless independent in law of the Péclet number (i.e.
exponential with the same decay rate).

It is fairly easy to give an analytical solution for the variance for a solitary strip.
Indeed, the log-normal model for the strip stretching indicates that the length of the
strip which has been stretched by a factor ρ is equal to P (ρ, t)L(t) where L(t) = L0e

γ t

is the total length of the strip and P (ρ, t) is given by (4.14). For a given stretching
factor ρ, the transverse profile is Gaussian with a parameter s0

√
1 + 4τ/ρ and a

maximal concentration equal to c0/
√

1 + 4τ , where the dimensionless time τ is given
by (6.2). This leads to an integral of the squared concentration profile in its transverse
direction as ∫ +∞

−∞
c2(n) dn =

c2
0s0

√
π/2

ρ
√

1 + 4τ
. (6.8)
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Figure 18. Variance of the field of scalar as function of time for Pe = 103 (�) and Pe = 105

(
). Lines correspond to the theoretical prediction of (6.9).

The variance is then obtained as the sum along the strip of this integral multiplied
by the length P (ρ, t)L(t) dρ and divided by the total area A of the domain

〈c2〉 =
c2
0L0s0

A
√

8γ t/3

∫ +∞

0

exp

[
− (log ρ − 2γ t/3)2

4γ t/3

]
dρ

ρ
√

1 + 4τ (ρ)
. (6.9)

This prediction is plotted in figure 18 for two different Péclet numbers. It overestimates
the numerical result, which may come from the aggregation of the strip with itself.
However, the theory recovers an exponential decay at late stages, with a correct decay
rate. An asymptotic formula can be obtained for τ � 1 by cutting the integral at
log ρ = (γ t)1/4 showing that at late stages the variance tends to

〈c2〉 =
c2
0L0s

2
0e

−γ t/3

2A
√

D

( γ

6t

)1/4
∫ +∞

0

√
x e−x2/2 dx, (6.10)

with
∫ √

x e−x2/2 dx = 1.0304. At leading order, the variance thus decays exponentially
with time, as seen in figure 18 with a decay rate γ /3 indeed correctly predicted.

It is curious to see that the variance, the number of convolutions N and the total
length L of the strip, if they all behave exponentially in time, have three different
exponents. This is a consequence of the log-normal law P (ρ) which is very broad and
contains large and small stretching factors ρ at the same time. The total length of
the strip is more sensitive to large stretching factors since they create proportionally
a larger interval on the final strip. The total length thus increases with a rate γ

which is larger than the most probable stretching rate 2γ /3. On the contrary, the
variance is more sensitive to the least elongated parts of the strip, since they bear
higher levels of concentration. The variance thus decreases with a rate γ /3 smaller
than the most probable stretching rate. The number of convolutions N is sensitive to
both concentration levels and length of the strip, and increases at the most probable
stretching rate.



Diffusive strip method 165

–0.4 –0.2 0 0.2 0.4 0.6

100

(a) (b)

10–1

10–2

101

102

100

10–110–3

P
(�

c)

�c
0 0.05 0.10 0.15–0.05–0.10

�c

Figure 19. PDF of increments of scalar �c for a strip in a sine flow at t = 7. (a) The Péclet
number is equal to Pe =105 and the scalar is initially injected between −0.5 <x < 0.5, which
leads to the distribution of scalar of figure 7(d ). (b) The Péclet number is equal to Pe = 103

and the scalar is initially periodic in both x- and y-direction, which leads to the distribution of
scalar of figure 15(b). The increment �c is taken between two points separated by �x = 0.003
(�), �x = 0.01 (�), �x = 0.05 (�) and �x = 0.2 (+). Thick solid lines are obtained as the
convolution P (c) ∗ P (−c) of the numerical PDF of scalar with its symmetric part. Thin solid
lines are deduced from this PDF by a dilatation with a factor �x/η where the Batchelor
scale η is equal to 0.014 in (a) and 0.12 in (b). Dashed lines correspond to the convolution
P (c) ∗ P (−c) of the theoretical PDF of scalar given by (6.3) and convolved with itself N times
with N given by (6.7): in (a) N = 1 and in (b) N = 48.

7. Probability distribution function of scalar increments
As a complement, it is useful to study the PDF of scalar increments because it gives

further insights into the spatial structure of the scalar distribution, and also because
it legitimates the use of the maximal randomness property made in § 6.3.

We define the PDF of the increment �c = c(x)−c(x +�x e) of scalar concentration
between two points separated by a distance �x (e being a unit vector which has been
taken along x and along y in the simulations). These PDFs are plotted in figure 19
for two different Péclet numbers and aggregation conditions. In figure 19(a), the
initial scalar distribution is a unique strip and the Péclet number is relatively high
(Pe = 105) such that there is basically no aggregation of the strip with itself at t = 7.
In figure 19(b), on the contrary, the scalar is injected initially as a dense periodic
pattern and the Péclet number is smaller Pe = 103 so that reconnections of the strip
with itself are more frequent.

In the case of a solitary strip (no aggregation), the PDF of increments is extremely
peaked around zero and has strong non-Gaussian tails. These large increments
correspond to the high values of scalar located on the unmixed regions of the strip.
When the distance �x increases, the PDF gets wider up to a certain distance η =0.014
above which it remains invariant whatever the value of �x. This is a direct proof that
above this distance, the concentrations c(x) and c(x +�x) are uncorrelated. Indeed, in
this large �x limit, the probability of having an increment �c can be calculated as the
probability P (c1) that the concentration equals c1 in x multiplied by the probability
P (c2) that the concentration equals c2 in x + �x, with c1 + c2 =�c. When summing
over c2 and assuming that the probabilities are independent, one gets that the PDF
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of increments P (�c) is equal to the convolution product of the PDF of scalar P (c)
with P (−c)

P�x(�c) = P (c) ⊗ P (−c), for �x > η. (7.1)

This solution is plotted as a thick solid line in figure 19(a), where the PDF of
concentration P (c) is given by the numerical simulation (the corresponding symbols
are those of figure 14b). There is an excellent agreement with the PDF of increments
for �x larger than η = 0.014, an agreement even better than the one achieved using for
the field PDF P (c) obtained in (6.3) convoluted N times and transformed according
to (7.1).

For small distances �x, the PDF of increments becomes narrower. This is easily
understood by the fact that the concentration c(x) is now correlated with the
concentration c(x + �x) since now �x explores the internal structure of the strip or
of a bundle of strips in the process of merging. An easy way to calculate the PDF
of increment is then to assume that all the strips have the same thickness η. For
�x <η, the increment �c is then proportional to �x (assuming that a triangle is a
good representation of the strip transverse concentration profile), and the PDF of
increment is squeezed by a factor �x/η

P�x<η(�c) =
η

�x
P�x>η

( η

�x
�c

)
. (7.2)

This prediction is plotted as thin solid lines in figure 19(a) with η =0.014, and shows
a good agreement with the numerical values of the PDF of increments.

In the case of a strip with many aggregations (as in figure 19b), the PDF is closer
to Gaussian at its centre, but still presents substantial wings at large increments �c.
As in the case of the solitary strip, it gets wider when the distance �x increases, but
it now saturates at a larger value equal to η = 0.12 (the Péclet number is lower). As
previously discussed, this means that for large distances �x >η, the concentrations
c(x) and c(x +�x) are uncorrelated and the PDF is given by (7.1) as the convolution
of P (c) and P (−c). This prediction is plotted as a thick solid line in figure 19(b), where
P (c) is determined numerically (the corresponding symbols are those of figure 16b).
There is an excellent agreement with the numerical result of P (�c). However, the
same remark applies as for the solitary strip: the theoretical prediction of P (c) given
by (6.3) convolved N times and transformed according to (7.1), plotted as a thick
dashed line, leads to a less good agreement.

For small distances �x <η, the PDF of increment is again found by squeezing
the PDF of increment at large distances by a factor �x/η, as defined by (7.2). This
prediction is plotted in figure 19(b) by thin solid lines and presents an excellent
agreement with the numerical results.

We have seen that the PDF of increment can be predicted using (7.1) for large
distances (�x > η) and using (7.2) for small distances (�x <η). The question thus
remains to determine what controls this critical distance η. It reflects the distance over
which c(x) correlates with itself. It thus scales as the distance over which diffusion
has blurred the concentration differences. That distance is larger than the Batchelor
scale

√
D/γ itself since a bundle of elementary strips (whose width is

√
D/γ ) in the

process of aggregating realizes a smooth ensemble at the scale of the bundle itself.
This coarse-grained scale is thus larger than the typical size of the concentration
gradient in the flow (larger than the spectrum diffusive cutoff) and has been found
to decreases like Pe−1/2 as well in exponential flows, like the sine flow (Villermaux &
Duplat 2006). Figure 19 shows that η ≈ 4

√
D/γ in the present flow.
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8. Conclusion
We have introduced a new numerical method for the study of scalar mixing in two-

dimensional advection fields. This method is inspired by the empirical observation
that natural flows tend to form elongated structures, making a mixture a collection
of adjacent strips (sheets in three dimensions), more or less diffuse and overlapping.

As explained in § 2, the position of an advected material strip is computed
kinematically, and the associated convection–diffusion problem is solved using the
computed local stretching rate along the strip, assuming that the diffusing strip
thickness is smaller than its local radius of curvature. This assumption, which is
legitimate at high Péclet number, reduces the numerical problem to the computation
of a single variable along the strip, thus making the method extremely fast and
applicable to any large Péclet number. Since it is grounded on the use of a near-exact
solution of the Fourier equation, this method is also extremely precise. This new
numerical method makes the link between the spectral methods which are limited
to small Péclet numbers and the standard Lagrangian tracking methods which do
not model the diffusion of a scalar, but only study its stirring by the flow. This strip
diffusion method is thus the only numerical method able to solve the advection–
diffusion problem in the cases of large Péclet numbers. However, it is not suitable for
small Péclet numbers, and it also exhibits some numerical artefacts localized in cusps.

This method is the analogue of the contour dynamics method which has been
introduced 30 years ago to solve the Euler equation in two dimensions (Zabusky,
Hughes & Roberts 1979) and which is widely used now. Indeed, it uses a reduction of
the two-dimensional field to a one-dimensional contour, which greatly decreases the
amount of data needed to describe the whole field. The advantage is that the problem
can be solved by a computer with a limited memory and also that it is much faster
than the standard spectral methods. We thus expect this method to be of interest in
the field of turbulent mixing.

As a first step, we have used this method to document the mixing properties of a
chaotic sine flow (§§ 3–7), for which we have related the global quantities (spectra,
concentration PDFs, increments) to the distributed stretching of the strip convoluted
by the flow, possibly overlapping with itself. The numerical results indicate that the
PDF of the strip elongation is log-normal, a signature of random multiplicative
processes. This property lead to exact analytical predictions for the spectrum of
the field and for the PDF of the scalar concentration of a solitary strip, in good
agreement with the numerical results. A further analogy with stochastic processes for
which the deterministic part of the stretching has the same weight as the noise has
further reduced the description of the flow to a unique parameter, namely the mean
stretching rate γ (see § 4.4).

The present simulations, since they keep track of both the contribution of a
solitary strip, and of the global concentration PDF (as opposed to presently available
experiments where these two pieces of information are mingled) offer a unique way of
studying the building rules of complex mixtures. The global PDF is simply obtained
by convolution of the PDFs of the two reconnecting strips. Interestingly, the number
of convolutions needed to restore the full mixture PDF from a solitary strip increases
at a rate prescribed by the most probable stretching rate equal to 2γ /3, while the
total strip length is stretched at a rate γ . Conversely, the variance decreases as e−γ t/3,
these differences singling out the broadly distributed character of the stirring field.

A last advantage of the method is also that it can be easily generalized to three-
dimensional flows. Indeed, the strip used in this two-dimensional study can be replaced
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by a sheet in three dimensions. By calculating numerically the stretching rate of the
sheet, it is fairly easy to construct a diffusive time in the same manner and to derive the
transverse profile of scalar across the sheet. It thus seems simple to make an extension
of this method to three-dimensional flows. However, new numerical problems might
arise in the refinement of the sheet and treatment of the cusps.

Another natural extension of this method also would be to consider chemically
reacting scalars, in the spirit of the Flamelet models used for turbulent diffusion
flames (Peters 1984).

This work has been supported by the Agence Nationale de la Recherche (ANR)
through grant ANR-05-BLAN-0222-01. The authors thank J. Duplat for numerous
enlightening discussions on scalar mixing.

Appendix. Numerics, computational time and cost
(i) Numerics: In the Matlab code of the strip diffusion method, the equation of

motion (1.1) is integrated using an explicit Runge–Kutta (4,5) formula, given by
Matlab under the instruction ‘ode45’. The time step δt was chosen equal to 10−3 for
the vortex and a sine flow with a period equal to 1 and a velocity equal to 0.5 (see § 3).
Equation (2.6) for the dimensionless time τ is integrated in the most simple manner
(τi(t + δt) = τi(t) + κδt/si(t)

2), since it proved to be completely converged. Indeed,
the striation thickness si(t) usually decreases exponentially, making the integration of
(2.6) very stable.

(ii) We detail here the technique used to add dynamically tracers on the strip
during the calculation, in order to fulfil criterion (2.13). The best method to do so
was to calculate numerically the function Fi =

∫ σi

0
(1 + ακ(σ )) dσ , where σi is the

curvilinear abscissa at the tracer xi (obtained numerically as the cumulative sum
of the distance �xi between two consecutive points). The new set of tracers xj

were then interpolated such that the corresponding Fj are equally spaced with �l.
In our algorithm, this reinterpolation was done separately on each component of
the position xi = (xi, yi), by using a natural cubic spline interpolation provided by
Matlab under the instruction csape of the spline toolbox. However, the best results
were obtained when the interpolation was made with the position defined as a function
of the curvilinear abscissa σj instead of Fj (xj = interp(σi, xi, σj )). The reinterpolated
abscissa σj were calculated using a basic linear interpolation corresponding to Fj :
σj = interp(Fi, σi, Fj ,

′ linear′).
To calculate the curvature κi at the tracer xi , the algorithm uses the formula

κ =
|x ′y ′′ − x ′′y ′|
(x ′2 + y ′2)3/2

, (A 1)

where x ′ (respectively y ′) is the derivative of the first (respectively second) component
of x with respect to the curvilinear abscissa, which is calculated numerically using
the smoothing cubic spline provided by Matlab under the instruction csaps. This
allowed calculation of the curvature in a stable way. It may not be exact since it is a
smoothing algorithm, but this did not modify the position of the strip but only the
density of tracers along the strip. It was also necessary to bound the curvature to
105 such that the number of points does not diverge. This criterion did not seem to
modify the final position of the strip, even in the regions of the cusps.

During the refinement, the dimensional time τi needs also to be reinterpolated
into τj (corresponding to the refined positions xj ). This was done using a simple
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Figure 20. Schematic drawing explaining the calculation of the initial separation �x0
i during

the refinement. The set of tracers xi is reinterpolated during the refinement into xj . The
quantity of scalar between xi and xi+1 is spread into the three corresponding intervals.

linear interpolation. However, some care had to be taken for the reinterpolation of
the striation thickness si . Indeed, the striation thickness is linked to the initial length
between two tracers �x0

i due to incompressibility. A major constraint is then to respect
numerically the conservation of the total quantity of scalar C = c0s0

∑
�x0

i . For this
purpose, the algorithm stores the initial length �x0

i between the tracer xi and the
tracer xi+1, instead of the striation thickness si since they are related by (2.2). During
the refinement from xi into xj , the initial length �x0

i is divided into the corresponding
intervals �x0

j such that the total quantity of scalar between xi and xi+1 is conserved.
In this way, the total quantity of scalar is constant within the numerical accuracy.
For example, in the schematic drawing of figure 20, the interval [xi xi+1] is divided
into three intervals from xj to xj+3. The quantity of scalar c0s0�x0

i must be equal to
c0s0�x0

j + c0s0�x0
j+1 + c0s0�x0

j+2. Moreover, the intervals �x0
j must be proportional

to the �xj , which allows the calculation �x0
j = �x0

i �xj/(�xj + �xj+1 + �xj+2). The
algorithm is slightly more complex, because xj does not correspond in fact to xi .

The numerical values of �l and α were chosen depending on the flow, such that
the final position of the strip is independent of these constants. For the vortex, a large
�l = 0.05 was sufficient since the length scale of the vortex is rather large. Moreover,
since the vortex does not create any cusps, the constant α could be taken very small
(α =5�l/20π was chosen). For the sine flow, a very small �l = 0.005 was necessary,
for the PDF of scalar to be converged. It might come from the sensitivity to initial
conditions of this flow, linked to its well known chaotic behaviour. The constant α

also had to be taken very large since the flow creates many cusps. We needed to
increase it up to α =25�l/π.

(iii) Computational time: The strip diffusion method has been implemented on
Matlab, in order to use standard instructions for the resolution of ordinary differential
equations, and spline interpolation. This choice made the computation slower than
using Fortran or C, but that did not matter since the method is extremely fast:
the vortex in § 2.6 lasted one hour on a PC at 1.1 GHz and 1.24 Go of RAM. The
sine flow computations (with �l = 0.005, a number of points per cusps given by
α = 25�l/π and a time interval δt = 0.001) took 4 h to calculate the field up to t = 4,
and a week to extend it to t =7 due to the exponentially large number of tracers
generated by the method.

(iv) Computational cost: The strip diffusion method consists in following tracers
along a strip advected by a flow. In an exponential flow like the sine flow, the number
of tracers defining the strip needs to increase in proportion to the strip length, that is
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exponentially fast in time. This might look as a drawback of the method. It is not in
fact since in spite of this, it remains competitive with grid-based methods computing
the scalar gradients directly: a standard direct numerical simulation of (1.2) will need
a number of grid points of the order of

Np =

(
L√
D/γ

)2

∼ Pe, (A 2)

for a domain size L in two dimensions, in order to resolve properly the concentration
gradients whose size scales as the Batchelor scale (2.12).
Now the strip diffusion method has already characterized the mixing properties of
the flow (spectrum, shape of PDFs, presence or absence of aggregation, etc.) at the
mixing time ts or after a few mixing times. After that, the field is completely mixed
and close to uniformity (see e.g. figure 7). The maximal number of tracers needed to
keep in memory is thus given by the amount of line stretching at the mixing time

Np = eγ ts ∼
√

Pe, (A 3)

with ts given by (2.10) a number which can be substantially smaller than the number
of grid points needed for the same Péclet number, when Pe becomes large. This is
in addition to the advantage presented by the method that only one computation is
needed per flow, the Péclet number being varied at will a posteriori, as mentioned in
§ 2.
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