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Flow regimes of large-velocity-ratio coaxial jets
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LEGI/IMG - CNRS; UJF, INPG BP 53X, 38041 Grenoble Cedex, France

(Received 12 March 1996 and in revised form 16 April 1997)

An investigation of the near-field flow structure of coaxial jets with large outer to
inner velocity ratio ru has been conducted. Since in all cases ru > 1, the outer jet
dominates the near-field flow structure. Two flow regimes are identified depending on
whether ru is larger or smaller than a critical value ruc. When ru < ruc, the fast annular
jet periodically pinches the central, slow jet near the end of the inner potential cone.
The pinching frequency corresponds to the outer-jet mode. The length of the inner
potential cone is strongly dependent on ru and behaves like A/ru, where A depends
weakly on the initial conditions. When ru > ruc, the inner potential cone is truncated
and is followed by an unsteady recirculation bubble with low-frequency oscillation.

The transition from one regime to another is explained by a simple model whose
ingredients are the turbulent entrainment rate, governed by the outer-jet mixing layers
and mass conservation. This model satisfactorily predicts the dependence of the inner
potential cone length on ru and the critical velocity ratio ruc. The recirculation bubble
has a wake-type instability. It oscillates at a low frequency and a large amplitude
compared to the Kelvin–Helmholtz mode. Angular cross-correlations in the plane
parallel to the jet outlet show moreover that this oscillation displays an azimuthal
precession such that the rotation time of the phase of the oscillation equals the
oscillation period. These salient features are discussed in the framework of the
nonlinear delayed saturation (NLDS) model.

1. Introduction
Coaxial jets are a simple way by which two fluid streams can be mixed and this

configuration is used for instance in combustion chambers of rocket engines. Often,
one of the jets (the inner one) is in a liquid state and has to be atomized by a
high-speed annular gas jet. This process, known as airblast atomization, has received
considerable attention (Lefebvre 1989) during the past few decades. Most of the
time the experiments have been aimed at characterizing the spray and have not
allowed an analysis of the near-field flow structure and the instabilities in any detail.
Leaving aside surface tension effects, the important parameters in this problem are
the momentum flux ratio between the two streams M = ρ2U

2
2/ρ1U

2
1 and the ratio of

the outer to the inner nozzle diameters β = D2/D1. When the fluid densities are the
same, the momentum flux ratio reduces to the velocity ratio of the outer to inner jet
ru = U2/U1. The near-field flow structure of coaxial jets in homogeneous fluids is,
therefore, expected to be relevant to the understanding of liquid jet atomization. In the
coaxial water jets studied here, quantitative flow visualizations can be used which are
particularly helpful in the understanding of the interaction of different mixing layers
present in the near field. This is well demonstrated by the laser-induced-fluorescence
visualizations of coaxial water jets with 0.59 6 ru 6 4.16, performed by Dahm,
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Figure 1. Coaxial jet nozzle configuration. D1, D2, U1 and U2 are the diameters and centreline exit
velocities of the inner and annular jets respectively.

Clifford & Tryggvason (1992). These visualizations indicate clearly the importance of
the parameter ru.

Detailed measurements by Au & Ko (1987) of the mean velocity field of coaxial air
jets with 1 6 ru 6 6.6 revealed the existence, in the near field, of three flow regions:
an initial zone marked by the end of the outer potential cone whose length depends
only slightly on ru, an intermediate zone characterized by the inner potential cone
whose length depends strongly on ru and a third zone which starts at the reattachment
point where the outer jet merges on the axis and pinches the inner one. The pinching
of the inner jet by the large vortex structures of the outer mixing layer occurs at a
frequency f similar to that of the convective instability of a single jet characterized
by a Strouhal number Stj = fD2/U2 ≈ 0.4. Gladnick et al. (1990), using a CFC gas
in the outer stream and air in the inner one and a velocity ratio of ru = 2, observed a
frequency peak corresponding to Stj = 0.35 on the concentration power spectra. This
result shows the predominance of the faster stream in the structure of the flow.

The annular jet which is the limiting case of large-velocity-ratio coaxial jets (ru = ∞)
has been investigated in some detail. One of the first studies is by Miller & Comings
(1960) where velocity, pressure and shear stress measurements have been made both
in the near and far fields. Further experiments have been conducted by Chigier & Beer
(1964), Ko & Chan (1978, 1979), Chan & Ko (1978). The flow structure in the wake
region of an annular jet (Ko & Lam 1985; Lam & Ko 1986) is of particular interest.

The aim of the present paper is to clarify the different flow regimes in the near
field of large-velocity-ratio coaxial jets 1 < ru 6 ∞. Two main flow regimes are
identified, one when 1 < ru < ruc and the other when ruc 6 ru 6 ∞ where reverse flow
is observed (Villermaux, Rehab & Hopfinger 1994). The value of ruc lies between 5
and 8, depending on the velocity profiles at the nozzles. In §2 are presented the flow
conditions and experimental procedures. The results concerning the regime ru < ruc
are discussed in §3 and the transition to the recirculation is explained in §3.5. The
recirculating flow bubble which exists when ru > ruc is discussed in §4. Its pulsating
mode is depicted and explained in §4.3 in the framework of a time-delay model (the
NLDS model, see Villermaux 1994; Villermaux & Hopfinger 1994a,b).

2. Flow conditions and procedures
The experimental set-up consists of coaxial axisymmetric water jets discharging into

a tank where the fluid (water) is at rest. The nozzle configuration used is shown in
figure 1. The convergent nozzles (figure 1) have inner and outer diameters of D1 = 2
cm and D2 = 2.7 cm and contraction ratios of 2 and 4 respectively. The area ratio at
the nozzle exit is 1.82.
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Figure 2. Radial profiles of mean axial velocity (•), and r.m.s. values of velocity fluctuations (◦):
(a) ru = 3 at x = 2 mm; (b) ru = 10 at x = 2 mm and (c) ru = 10 at x/D1 ≈ 1.

The exit velocities in our investigations covered the ranges 0 6 U1 6 1 m s−1 and
0.3 6 U2 6 4 m s−1. The Reynolds number defined from momentum conservation,
Re = (U2D2/ν)[1 − (D1/D2)

2]1/2, when ru � 1 ranges from 104 to 105. Mean and
turbulent velocity measurements were made with a constant-temperature hot-film
anemometer. The cylindrical probe used has 0.5 mm active length and 25 µm diameter
(aspect ratio of 20), operating at an overheat ratio of 5%. Only the axial velocity
component U in the principal direction of the flow was measured.

In figure 2, the radial profiles of the mean velocity and the root-mean-square
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Figure 3. Schematic diagram of the mixing layers in the near field.

(r.m.s.) value of velocity fluctuations at the nozzle exit (x ≈ 2 mm downstream) are
presented (for the convergent nozzle jets) for ru = 3 and ru = 10 (U2 = 2 m s−1). For
U2 = 2 m s−1 the Reynolds number defined with the initial boundary layer thickness
δ0, Reδ0

= U2δ0/ν, is about 800. The maximum r.m.s. value of the velocity fluctuations
in the boundary layers is of the order of 0.08U2. The fluctuation level in the central
jet is 0.01U2 and is nearly zero in the annular jet. This is attributed to the stronger
contraction of the annular nozzle. Further downstream, mixing layers develop (figure
2c) and the velocity fluctuations reach 0.12U2 at x/D1 = 1 for ru = 10.

Mean static pressure measurements, with respect to the local hydrostatic pressure,
have been made with a pressure probe linked to an HMB-KWS differential pressure
sensor. The pressure tube, of Pitot tube design, 3 mm outer diameter, is placed
parallel to the flow direction to prevent flow perturbations. The mean static pressure
measurements are affected by the turbulent fluctuations and what we actually measure
is:

P = Pst + 1
2
ρu′2.

In the regions where velocity fluctuations are important, the turbulent dynamic
pressure 1

2
ρu′2 is of the order of Pst.

The visualizations have been realized by a laser-induced-fluorescence technique,
using disodium fluorescein dye as a passive tracer, excited by an argon-ion laser
sheet. Both the central and the annular streams can be seeded with dye by means of
injection into mixing chambers upstream of the nozzles. The fluorescein concentrations
used during the experiments were of the order of 10−7 m l−1 at the nozzle exit. A thin
and uniform laser sheet (0.5 mm thick) was produced along the jet axis by reflection
of a laser beam on a mirror oscillating at 4 kHz. The images were taken by a CCD
camera at a rate of 50 frames per second and with an exposure time 1/1000 second.
The images were then digitized on 256 grey levels and 512 × 768 pixels. The pixel
resolution corresponds to a real dimension of 0.3 mm.

3. The flow structure and potential cone length for ru > ruc
3.1. Flow visualization

The near-field flow structure of turbulent coaxial jets (x/D1 ≈ 5) is characterized
by the development of two axisymmetric free turbulent mixing layers (figure 3). The
growth of the inner shear layer between the central and annular streams depends on
ru while the external layer between the outer jet and the ambient fluid at rest grows
independently of the velocity ratio ru. Figure 4 shows instantaneous pictures of the
near-field flow structure with the annular jet seeded with fluorescent dye. The laser
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Figure 4. Instantaneous pictures of the flow structure for (a) ru = 2; (b) ru = 3; (c) ru = 4. The
annular jet (dark) is seeded with fluorescent dye and the laser light sheet cuts through the central
plane. The arrow indicates the pinching location. View from x = 0 to x/D1 = 3.



362 H. Rehab, E. Villermaux and E. J. Hopfinger

1.6

1.2

0.8

0.4

1 2 3 4
x/e

dc
e

Figure 5. Inner mixing layer concentration thickness variations versus x/e with U1 = constant.
•, U2 = 0.4 m s−1; �, U2 = 0.8 m s−1. e = 1

2
(D2 − D1).

light sheet is parallel to the jet axis and cuts through the centreplane. The velocity U2

is unchanged, while U1 is decreased from figure 4(a) to 4(c). The Reynolds number
Re as defined in §2 is of the order of 7000. For the three velocity ratios considered,
ru = 2, 3 and 4, which correspond to figure 4(a), 4(b) and 4(c) respectively, the fast
outer jet dominates the dynamics. It is observed that the structures of the outer
mixing layer pinch the central jet at the end of the inner potential cone. It is also
clear that the inner potential cone length decreases when ru is increased. The two
mixing layers develop initially independently of each other, then, downstream of
x/D1 ≈ 1, which corresponds approximately the outer potential cone length, the
outer-layer structures interact with those of the inner layer in a way reported by
Dahm et al. (1992). Furthermore, the mixing layer instability develops at a certain
distance x downstream of the nozzle exit, with x depending on both U1 and U2. If
U1 is maintained constant, the evolution of this distance with U2 is measured on
dye concentration images averaged over 200 instantaneous images.The mixing layer
instability starting point x for a certain value of U2 is indicated by the change in
the spatial growth of the concentration thickness δc defined by δc = C0/(dC/dy)max,
where C0 is the mean maximum concentration at the nozzle exit and y the normal
direction. Figure 5 shows the evolution of δc as a function of x for U2 = 0.4 m s−1

and U2 = 0.8 m s−1. It appears that δc grows linearly with x with two different rates.
First, the rate of increase of δc is weak and due principally to molecular diffusion.
Then, it strongly increases due to the development of the shear layer instability. The
location of the onset of instability is determined from the intersection of these two

lines of growth. We obtain x/2e = CRe
−1/2
g , where e = 1

2
(D2−D1) and Reg = U22e/ν,

with C = 78 and 110 for the inner and the outer layers respectively. This is in good
agreement with Becker & Massaro (1968) for a single round jet.

3.2. Potential cones and characteristic frequencies

The length of the inner ‘potential’ cone (potential here need not mean irotational
but designates a region of weak turbulent intensity where small-scale dissipation
is nearly zero (Landau & Lifchitz 1989)) strongly depends on the velocity ratio ru
and decreases as ru increases. The average shape of the inner cone, obtained by
averaging over 500 instantaneous images, is illustrated in figure 6. The outer potential
cone, whose length is only weakly dependent on ru, delimits the region where U2 is
approximately constant. Its length xp2 (figure 3), is essentially fixed by the diameter
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Figure 6. Image of mean concentration field for ru = 4, Re ≈ 7200. The annular jet
(dark) is seeded.

Figure 7. Visualization of the inner potential cone for ru = 3. The fluorescent dye is here injected
in the inner jet (dark).

ratio β. For the present geometry of β = 1.35, xp2 ≈ 2 cm = D1. Beyond this distance
the outer mixing layer interferes with the inner one and penetrates rapidly toward
the centre (figures 4 and 7). The penetration, accompanied by a pinch-off of the inner
cone, occurs periodically at a frequency f corresponding to the fundamental mode of
Kelvin–Helmholtz instability. The Strouhal number Stj = fD2/U2, where f is defined
by the frequency peak of the velocity fluctuation spectrum measured at the end of
the inner potential cone, is close to 0.27, with U2 in the range 0.3 < U2 < 3 m s−1.
This value of the Strouhal number corresponds to the value commonly agreed for
single jets (Crow & Champagne 1971; Ho & Huerre 1984).

The inner mixing layer convective instability starts close to the jet exit, and corre-
sponds to higher frequencies (f ≈ 500 Hz). Based on the initial momentum thickness
θ0 (θ0 is calculated by integration of the mean velocity exit profile shown in figure
2a), and the convection velocity Uc = 1

2
(U1 +U2), the Strouhal number Stθ = fθ0/Uc

is approximately 0.034 in agreement with the expected value (Ho & Huerre 1984).
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Figure 8. Axial mean velocity variations along the jet axis. •, ru = 2; ◦, ru = 3; �, ru = 4.
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Figure 9. Dependence of the inner potential cone length on velocity ratio for β = 1.35: ◦, determined
from velocity variation; - - -, 8/ru; —, present model solution; �, β = 2 (Au & Ko 1987); •, β = 1.4
(Dahm et al. 1992 estimated from their images, figures 10 and 11).

When x/D1 > 1, this frequency disappears and the dynamics is dominated by the
outer mixing layer.

3.3. Velocity field and pressure distributions

It is seen from figure 8 that for a given velocity ratio in the range 1 < ru < 8,
the mean velocity at the jet axis decreases with downstream distance and reaches a
minimum near the end of the inner potential cone where the annular, outer mixing
layer impinges on the axis. From there on the flow accelerates until about x/D1 ≈ 7.
Beyond this position, the mean velocity starts to decrease in the same way as in a
single axisymmetric jet. In figure 8 are presented the mean velocity variations along
the axis for the three values of ru = 2, 3, and 4 with the outer velocity fixed to 2 m s−1.
The longitudinal position where the minimum is reached corresponds to the potential
cone length xp1. Based on this criterion, and as a function of velocity ratio ru (figure
9), xp1 can be represented by the relation

xp1

D1

≈ 8

ru
,
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Figure 10. Mean velocity profile and r.m.s. values of velocity fluctuations for ru = 3 measured at
x/D1 = 1. The turbulent intensity in the inner mixing layer is u′ = 0.12U2 = 0.17(U2 −U1), U2 = 2
m s−1.

where the numerator is specific to the present geometry. Also included in figure 9 are
the results of Dahm et al. (1992) and Au & Ko (1987). Au & Ko used a diameter
ratio of β = 2 and 1.25 6 ru 6 6.6. Their results can be correlated by xp1/D1 ≈ 9.9/ru.
The result of Au & Ko is quite logical because for a given ru, when β increases, the
annular gap is larger, hence the outer potential cone is longer, so that the pinching of
the inner jet occurs further downstream. Dahm et al. have noticed that for a given ru,
when the jet velocities are increased, the inner potential cone length is slightly shorter.
The main reason for this is that the outer mixing layer develops earlier when the
Reynolds number is larger. This Reynolds number effect is however weak compared
with the velocity ratio effect.

The drop in velocity within the central potential cone is due to the entrainment of
inner fluid into the annular mixing layers. The large vortex structures that develop
within the mixing layers are principally responsible for this entrainment (Liepmann
& Gharib 1992). These incorporate fluid at a rate proportional to the local turbulent
intensity in the mixing layer u′ = α(U2−U1) with α ≈ 0.17 (see figure 10 and Browand
& Latigo 1979; Hussain & Zedan 1978; Brown & Roshko 1974). The pressure drop
associated with the entrainment by the mixing layer is thus expected to be of the
order of (Villermaux et al. 1994)

∆P = 1
2
ρu′2

or
∆P

1
2
ρU2

2

= α2

[
1−

(
1

ru

)]2

.

In figure 11, the radial variation of the measured mean static pressure P = Pst+
1
2
ρu′2

and Pst at x/D1 ≈ 0.75 are shown for ru = 4. It is seen that when P is corrected
by subtraction of the dynamic turbulent pressure term ( 1

2
ρu′2) the pressure drop,

established by the inner mixing layer, is in good agreement with the expected value
(∆P/( 1

2
ρU2

2 ) ≈ 0.02).

3.4. Entrainment model

The aim of this model is to predict the inner potential cone length for 1 < ru < 8. The
formulation that we adopt here is very similar to that of Villermaux & Durox (1992)
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Figure 11. Mean radial static pressure profile at x/D1 = 0.75, ru = 4.
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2
ρU2

2 ).

in the context of laminar jet diffusion flames, and Villermaux (1995a) concerning
the shape and extent of reaction–diffusion interfaces in turbulent media. The basic
idea consists in assuming that the global flow rate of the entrained fluid (here the
inner flow), has to cross the interface through which entrainment takes place. A mass
balance involving the total surface of entrainment and a suitable expression for the
entrainment velocity provide a closure equation from which one derives the (mean)
surface of entrainment, and thus its length. The mass conservation equation for an
incompressible fluid can be written as

1
4
πD2

1U1 = 1
2
πD1

[(
1
2
D1

)2
+ x2

p1

]1/2

ue, (1)

where U1 is the inner jet bulk velocity and ue an entrainment velocity of inner jet
fluid into the mixing layer. This means that all the fluid injected through the inner
nozzle (the term on the left-hand side) is entirely entrained across the surface of the
inner cone of base D1 and height xp1, with an entrainment velocity ue (the term on
the right-hand side). In equation (1), the volume pinched off at the end of the inner
potential cone is neglected. This leads to an overestimation of the entrained fluid
through the cone surface.

The entrainment velocity is expressed in terms of the turbulent intensity by the
following entrainment hypothesis:

ue = Cu′, (2)

where the constant C ≈ 0.5 is determined from the mass conservation for a single jet,
knowing that its cone length is approximatly 6D0 (Hinze 1959); D0 is the jet diameter.
u′ ≈ 0.17(U2 −U1) is the turbulent intensity within the mixing layer (figure 10).

Let us first consider the case where xp2 � xp1 (small annular gap). The velocity
scale that fixes u′ at the entrainment interface is then U2 rather than ∆U because the
annular jet actually dominates rapidly the inner stream and imposes the entrainment
law by a velocity (U2 −U1) < U < U2. For simplicity we take U = U2, that is to say
u′ = αU2. The expression for the entrainment velocity is then ue = CαU2.

Thus, equation (1) gives

xp1

D1

≈ 1

2

(
1

C2α2r2
u

− 1

)1/2

≈ 1

2Cαru
;
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or, with α = 0.17,

xp1

D1

≈ 6

ru
. (3)

The important point to note is that the velocity ratio ru emerges as the most
significant parameter and in the form of a power law (Villermaux et al. 1994)†.

When the annular gap is large the inner and the outer potential cone lengths are of
the same order xp2 ≈ xp1. In this case the turbulent intensity is fixed by the velocity
difference (U2 − U1) that is u′ = α(U2 − U1). The entrainment velocity is then given
by

ue = Cα(U2 −U1)

and consequently, with α = 0.17

xp1

D1

≈ 1

2

(
1

C2α2(ru − 1)2
− 1

)1/2

. (4)

For a given velocity ratio ru, the inner potential cone length given by (4) is longer
than in the previous case (3) because the entrainment rate, averaged over the whole
cone length, is weaker. This explains the effect of D2/D1 on xp1.

A more general formulation of the model is to consider two regions with the
corresponding entrainment velocities. The expression obtained is

U1 = Cα[U2 +U1(Y
2 − 1)]

[
1 +

(
2xp2/D1

1− Y

)2
]1/2

, (5)

where Y = 1 − xp2/xp1. Equation (5) is an implicit equation of order six in xp1, and
has to be solved numerically. The ratio of the maximum to the bulk velocities for
the present geometry is close to 1 (flat mean velocity profiles at the nozzles). The
solution of (5) is illustrated on figure 9 and compared with the relation 8/ru and the
experimental data. It is clear that the theoretical and experimental points are in a
good agreement even though the model underestimates somewhat the cone length. A
simple 8/ru law is a good approximation for the dependency of the inner cone length
on the velocity ratio ru. To sum up this section, we emphasize the predictive character
of the model which seems to contain the correct physics of the near-field flow. We
should emphasize that the regime described here concerns values of ru in the range
1 < ru < 8 because beyond this range a recirculating flow regime is established, as
discussed below.

The geometry of the coaxial injectors and the initial flow conditions (tube jets for
example) do not alter the central potential cone variation law with ru i.e. xp1/D1 =
A/ru, but act on the value of the numerical constant A which lies between 5 and 9
(Rehab, Villermaux & Hopfinger 1997).

3.5. Transition to a recirculation regime

If the velocity ratio is increased to ru = ruc and beyond, it is observed that the outer-jet
fluid begins to penetrate upstream on the inner jet axis. For ru = 6 (figure 12a) there
is no reverse flow in the mean, whereas for ru = 8, figure 12(b), there is weak mean
reverse flow and the inner potential cone is truncated. The case of ru = 15 (figure 12c)

† When the fluid densities are not the same, it is easily demonstrated using Hill’s (1972) results

that ue ≈ K
(
ρ1/ρ2

)−1/2
u′ and ru is then replaced by M1/2 in equations (3) and (4), where

M = ρ2U
2
2/ρ1U

2
1 .
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(a)
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Figure 12. Instantaneous pictures of the flow structure as in figure 4 but for
(a) ru = 6; (b) ru = 8; (c) ru = 15.
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is characterized by a recirculating flow cavity in which the reverse flow nearly reaches
the jet nozzle and the dynamics is entirely governed by the outer stream (Villermaux
et al. 1994). The aim in this section is to understand how and why the transition to
the recirculating regime occurs. We have already stated that for ru = 4 and in general
in the regime without a cavity flow, the entrainment process by the outer jet is linked
to a radial pressure jump

∆P = 1
2
ρu′2,

where u′ = α(U2 − U1). As long as the inner incident kinetic pressure 1
2
ρU1

2
is

larger than ∆P , the inner jet is able to prevent the formation of a recirculating flow.

When ru is increased beyond a certain value, ∆P may exceed 1
2
ρU1

2
and reverse

flow is possible. This new flow regime, characterized by a central recirculating cavity,
occurs at a critical velocity ratio ruc which represents the recirculation threshold. The
recirculation commences when

1
2
α2ρ(U2 −U1)

2 = 1
2
ρU1

2

giving

ruc =

[
1

αU1/U1

+ 1

]
≈ 7; α = 0.17.

It is found experimentally that the critical value of ruc is close to 8 (§4.1). This is an
average value where recirculation is just about observable. In other words the length
of the potential cone oscillates about a mean value.

Along the x-axis, two forces are acting with opposing effects to realize a force–
momentum balance in the near field. The first one is the axial mean static adverse
pressure gradient which tends to decelerate the flow and causes backflow towards
the inner jet nozzle. The second one is the radial turbulent shear stress gradient
which accelerates the flow in the positive x-direction against the static pressure gra-
dient (Miller & Comings 1979; Champagne & Wygnanski 1971). At the threshold
of the recirculation the mean central velocity of backflow is zero and the turbu-
lent stress gradient effect compensates for the static pressure gradient. To clarify
these trends, mean static pressure and mean velocity measurements along the axis
have been made. In figure 13 is presented the distribution of the mean static pres-
sure P along the central axis for ru = 8. This evolution shows a low-pressure zone
extending from the exit of the inner jet until about x ≈ D1 downstream where
P reaches a local minimum of −0.03 ( 1

2
ρU2

2 ) corresponding to maximum reverse
flow. Beyond x ≈ D1, the mean static pressure increases markedly and has a pos-
itive peak of +0.09 ( 1

2
ρU2

2 ) at x/D1 ≈ 1.5. This maximum is the location of the
downstream end of the recirculation cavity where the mean velocity is nearly zero
(stagnation point). This axial pressure gradient is responsible for the onset of the
reverse flow.

In figure 13 the axial variation of static pressure for ru = 4 is also shown for
comparison. There is a significant change when ru is increased from 4 to 8 showing
a considerable increase in pressure difference. For instance, the axial distribution of
static pressure for ru = 4 shows that the kinetic pressure 1

2
ρU2

1 is strong enough to
accelerate the flow in the positive direction, preventing reverse flow. As ru approaches
ruc there is increased entrainment and a reduction of the exchange surface so that
1
2
ρU2

1 is no longer sufficient to prevent reverse flow.
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Figure 13. Mean static pressure distribution along the axis: •, ru = 8; ◦, ru = 4.

4. Features of the recirculating flow bubble
When ru > ruc, the near-field flow pattern is characterized by the formation of a

recirculating flow cavity of wake-type structure. The size of the cavity is zero for
ru = ruc which represents a point on the axis of maximum pressure (stagnation point).
As ru increases, the length of the recirculating zone also increases and reaches a length
approximately equal to D1 when ru = ∞ (U1 = 0). In general, the recirculating cavity
is limited by two stagnation points. The upstream one and the downstream point of
maximum static pressure which is the location of the closure of the cavity. This axial
pressure gradient maintains the reverse flow so that the mean reverse flow velocity is
more and more important as ru increases. The near-field flow structure thus consists
of a truncated cone of base D1 with turbulent entrainment by the faster stream on its
boundaries. Notice that beyond the stagnation point xs2 (x/D1 = 1.75) (figure 13) the
static pressure decreases rapidly so that any packet of fluid which is just downstream
of xs2 is immediately entrained towards the far field. This zone, downstream of xs2,
corresponds to the merging of the inner and the outer mixing layers on the axis. This
merging is accompanied by an oscillation in pressure amplitude corresponding to the
passage frequency of the dominant vortex structures of the outer mixing layer. The
frequency, of Strouhal number St = fD2/U2 = 0.35, is characteristic of the preferred
jet mode.

4.1. Velocity and pressure field

In this section, we characterize the mean and fluctuation velocity fields along the axis
for ru > ruc. Figures 14 and 15 illustrate the evolution of mean and r.m.s. velocities
for ru = 8, 9 and ∞ for a fixed outer velocity (U2 = 2 m s−1, Re = 3.6 × 104). The
mean velocity distributions show a velocity peak representing the maximum reverse
flow intensity (this peak is in fact negative but the single hot film is not able to
distinguish between negative and positive velocities). This peak indicates the existence
of a backflow. It is seen that both the intensity of the mean flow and the turbulent
intensity, and consequently the mixing of the two streams, increase with ru. Figure
14 reveals that for ru = 8, the recirculation is very weak. However, when ru = 9 a
noticeable mean velocity peak UR of 0.08U2 at x ≈ 1.25D1 shows the existence of
reverse flow. We thus estimate that ruc ≈ 8. Increasing ru to ∞ the recirculation is
clearly more intense with UR ≈ 0.3U2. The location in the peak of the mean flow
which moves towards the exit of the jets when ru is increased. Its minimum for ru = ∞
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Figure 14. Axial mean velocity variations along the jet axis: �, ru = 8; •, ru = 9; ◦, ru = ∞.
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Figure 15. Turbulent velocity fluctuations variations along the jet axis:
�, ru = 8; •, ru = 9; ◦, ru = ∞.

is located at x/D1 = 0.5. Furthermore, the location of the maximum of the mean flow
corresponds to a concentration of turbulent intensities of 0.04U2 at the centre of the
cavity. The turbulent fluctuations reach about 0.08U2 at the downstream end of the
bubble (figure 15).

We determine the size of the recirculation bubble from the locations of the two
minima in mean velocity which correspond to the upstream (xs1) and downstream
(xs2) stagnation points delimiting the backflow zone. These positions have an unsteady
oscillatory motion so that xs1 and xs2 represent mean quantities. The length of the
cavity given by xs2 − xs1 has a strong dependence on ru with a maximum for ru = ∞
(xs2 − xs1 ≈ D1).

The pure annular jet (ru = ∞) has been the subject of a large number of investiga-
tions. The measured maximum of the mean reverse flow velocity which is a constant
fraction of U2 (0.3U2) is in good agreement with the results of Ko & Chan (1979)
who found a constant (normalized by 1

2
ρU2

2 ) mean static pressure gradient on the
axis between the centre of the bubble and the downstream stagnation point xs2. The
axial mean static pressure distribution P , shown in figure 16, reaches a maximum of
0.3( 1

2
ρU2

2 ). For comparison recall that for ru = 8 ≈ ruc, the same jump was only about
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Figure 16. Mean static pressure variation along the axis, ru = ∞.
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Figure 17. Velocity fluctuation spectrum measured on the axis at x/D1 ≈ 1, ru = ∞.

0.13( 1
2
ρU2

2 ) (figure 13). However, the turbulence intensity (normalized by U2) depends
on U2 and is more important when U2 is larger.

4.2. Bubble oscillation

An important aspect of the recirculation flow problem is the type of instability it
develops and its dependence on the dynamic and geometric parameters of the system.
A wake-type mode was first detected for ru ≈ 10, leading to UR/U2 ≈ 0.15, a value of
the same order as found by Strykowski & Niccum (1991). The recirculating bubble is
unsteady and oscillates periodically with a characteristic frequency distinct from the
Kelvin–Helmholtz instability mode. The oscillation frequency and amplitude shown
in figure 17 have been measured at the downstream end of the bubble (x ≈ D1) for
ru = ∞ where the oscillatory movements are strongest. The corresponding Strouhal
number of the bubble pulsation based on D1 (characteristic size of the recirculating
cavity) and on U2 (characteristic velocity of the backflow regime) (figure 18) is, in
our geometry, Stb = fD1/U2 ≈ 0.035, which is an order of magnitude lower than the
Strouhal number associated with the Kelvin–Helmholtz mode. Further downstream
(x/D1 ≈ 2), the amplitude of the pulsation decreases (figure 19) and at x/D1 ≈ 3,
only the preferred jet mode persists.
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Figure 18. Instantaneous picture as in figure 4, but for ru & 8.
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Figure 19. Velocity fluctuations spectrum measured at the boundary of the recirculation bubble
measured at x/D1 ≈ 2, ru = ∞.

The oscillatory mode of the recirculation cavity is, in fact, an azimuthal mode.
This mode consists of a deformation of the bubble around its mean shape (figure
20), so that the oscillation observed on a point at its boundary corresponds to the
passage of the deformation of the bubble past the probe during its rotation. In
figure 20, cases (a), (b) and (c) describe a half-period of bubble rotation. In order to
characterize this precession mode, velocity cross-correlations in the azimuthal plane
measurements were made for ru = ∞. The experimental procedure consists of using
two hot-film velocity probes with the first one, S1, fixed at the boundary of the bubble
and the other, S2, moved at the same x-location in the azimuthal direction relatively
to S1. The velocity cross-correlations measured for phase angle φ = 270◦ between
the two probes is shown in figure 21. From all the measurements it is observed
that the time shift τs of maximum correlation varies linearly with φ (figure 22). For
instance, when φ = 180◦, the two probes are symmetrically opposite and the time
shift τs is approximately half the oscillation period of the recirculation cavity. The
pulsation mode is a pure precession mode (m = 1) similar to the one observed by
Berger, Scholz & Schumm (1990) in the wake behind a sphere. In other words the
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(a)

(b)

(c)

Figure 20. Instantaneous pictures showing half a period of rotation of the recirculation bubble at
ru ≈ 15 and (a) t (b) t+ 1

4
T , (c) t+ 1

2
T ; T is the rotation period. Fluorescent dye is injected in the

central jet (dark). View from x = 0 to x/D1 = 3.
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Figure 21. Angular cross-correlation function of velocity fluctuations for φ = 270◦.
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Figure 22. Evolution of time shift τs as a function of phase angle φ.

reverse flow bubble rotates and oscillates at the same frequency. Indeed, the velocity
fluctuation spectra show only one peak, interpreted as the pulsation frequency of the
bubble. If the rotation phenomena were to happen at another frequency (different
or a multiple of the oscillation frequency), this would show up in the spectrum
analysis.

Ko & Lam’s (1985) results confirm the existence of the azimuthal mode obtained
from static pressure fluctuation measurements in an annular jet. They claimed that the
wake flow creates so-called wake-induced vortices in the outer mixing region. These
structures contain an azimuthal or helical mode which becomes more dominant
compared with the axisymmetric mode as the gap width (D2 − D1)/2 gets smaller.
The idea supported by these authors is based on the interaction between the inner
and the outer mixing layers which has been, until now, not clear. The point of view
developed below focuses rather on the interaction of the inner shear layer and the
recirculating flow.

4.3. Recirculation–induced oscillations

This coaxial geometry presents the original property of sustaining a low-frequency
pulsation once the recirculation regime is set up. Its frequency is unambiguously
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distinguished from the Kelvin–Helmholtz preferred jet mode and is hardly sensitive
to U1 when ru � ruc. This wake frequency is essentially fixed by D1 (the size of
the recirculation bubble) and U2 (the velocity scale which fixes the intensity of the
backflow UR) and is for the present geometry characterized by a Strouhal number of
Stb = fD1/U2 ≈ 0.035.

Following Villermaux (1994) and Villermaux et al. (1994), we provide here a
‘minimal model’ which contains all of the salient features of this phenomenon and
which explains why and how the recirculation, existing in the vicinity of the shear
layer produced by the outer jet, can sustain this low-frequency mode.

Consider a (spatially developing) shear layer experiencing a velocity difference ∆U.
At a given location downstream from the beginning of its development, the shear
layer has a thickness δ, steady in time. This steady state can be interpreted as a
saturated state for the envelope of the disturbances A(t) (∼ δ) in such a way that
dA/dt = 0. Imagine that an external perturbation modulates the thickness δ; the
shear layer ‘responds’ to this perturbation with a growth rate r proportional to ∆U/δ
before returning to the stationary thickness δ. Now, if the perturbation comes from
the shear layer itself, with a time delay corresponding to a transit time τ through a
recirculation loop, the global dynamics results in a self-exited oscillatory behaviour
via delayed interactions. This picture was modelled by an evolution equation for the
(real) envelope A(t) of the shear layer disturbances (whose frequency corresponds to
the jet mode), which reads

d

dt
A(t) =

(
r − µA2(t− τ)

)
A(t). (6)

This equation, which is similar to the delayed logistic equation familiar from
the population dynamics context and reduces to the Landau model for rτ < π/4,
displays nonlinear self-sustained oscillations whose period can be computed from the
dynamical parameters r and τ (see e.g. Villermaux & Hopfinger 1994b). The parameter
µ sets the amplitude of the oscillation only. The instantaneous effective growth rate
reff = r−µA2(t− τ) oscillates itself around zero when the delay τ is sufficiently larger
than the characteristic time of the growth rate of the primary instability r−1 (i.e.
rτ > 1

4
π).

The estimation of r and τ for coaxial jets above the recirculation threshold (i.e.
for ru > ruc) proceeds as follows. If δ is the thickness of the shear layer, bordering
the recirculation zone, experiencing a velocity jump ∆U ∼ U2, then r ≈ 0.2U2/δ
(Monkewitz & Huerre 1982). δ might simply be estimated as the width of the annular
gap, that is (D2 − D1)/2. The time delay τ is given by the size of the recirculation
zone ≈ D1 divided by the return velocity UR ≈ (0.3–0.4) U2, so that τ ≈ D1/0.4U2.
Thus,

rτ ≈ D1

D2 − D1

(7)

within a factor of order unity. In the present geometry and using the expression for
the period of this slow oscillation (see e.g. Villermaux & Hopfinger 1994b, Villermaux
et al. 1994), we find that Stb = fD1/U2 ≈ 0.034, in agreement with the observed
Strouhal number.

The above scenario for the origin of the oscillations essentially relies on two-dimen-
tional arguments: the ‘oscillator’ is composed of a plane shear layer bordering a two-
dimensional recirculation zone. However, the recirculation bubble of this coaxial
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geometry bears an angular degree of freedom in planes parallel to the injector outlet.
This is a common feature with other separated flows behind axisymmetric bluff
bodies such as the disk or the sphere configuration. The actual problem thus consists
of a periodic chain of several oscillators, coupled to each other via the recirculation,
that is via the nonlinear delayed term of (6). Note that, since the delayed term is
intended to represent the dynamical role of the recirculation, the coupling between
the oscillators is, by construction, strongly non-local: two oscillators, diametrally
opposed on each side of the recirculation bubble, are coupled to each other precisely
because the recirculating motion occupies all of the available space of the bubble.
This remark, made in a slightly different context, allowed the origin and the features
of the low-frequency oscillations of the boundary layers close to the walls in closed
convection boxes to be explained (Villermaux 1995b). It was found, consistently with
the experimental observations, that the top and bottom boundary layers in the cell
oscillate in phase opposition, as a consequence of the long-range, delayed coupling
between the two sides of the convection cell (see also Ciliberto, Cioni & Laroche
1996).

The number of oscillators regularly distributed on the perimeter of the recirculating
bubble is, according to our definition of what an ‘oscillator’ is in this type of problem,
equal to the number of shear layer widths δ needed to cover the perimeter πD1, i.e N ≈
πD1/δ. Note that the continuous limit N →∞ has no reason to be justified in general,
precisely because the structures embedded in the shear layer at these high Reynolds
numbers have roughly an aspect ratio of order unity in the spanwise direction
(spanwise width ∼ δ). We examine, for illustration here, a coarse grained version of
this model consisting of four oscillators, symmetrically coupled. This number is close
to the minimal number (three) to discuss the propagation of the phase of the oscillation
in the azimuthal plane, and allows a direct comparison with the experimentally
observed phase opposition between diametrically opposed oscillators. A continuous
version of the model is of course also possible, with an appropriate weighting function
for the amplitudes of the neigbouring oscillators in the evolution equation of a given
oscillator.

The essential ingredient of the NLDS (nonlinear delayed saturation) model, aimed
at describing recirculation-dominated flows, is the non-locality of the interactions
in time. This also implies the non-locality of the interactions in space, these being
mostly effective between facing oscillators (due to the axisymmetric nature of the
recirculating mean flow), and, to a minor extent, between adjacent oscillators (which
only contribute to a global bending of the shear layer of a reference oscillators, not to
the modulation of its thickness). Let us consider the square of the amplitudes rescaled
by r/µ (i.e. a ≡ A2/(r/µ)), and the dimensionless time θ = rt. The evolution equation
of oscillator n is thus

d

dθ
an(θ) = 2an(θ)

{
1−

(
an(θ −Θ) + c

[
an+2(θ −Θ)

+g{an+1(θ −Θ) + an+3(θ −Θ)}
])}

(8)

with Θ = rτ, and c and g being respectively a coupling and a weighting parameter,
both of them smaller than one. The only stationary solution of (8) with positive
amplitudes is the synchronized mode an = 1/(1 + c(1 + 2g)) = as. The stability of
this solution is investigated by imposing a small perturbation δan proportional to
esθ+im2π(n−1)/N+ c.c with N = 4. Linearizing (8) in δan and decomposing s = s′ + is′′,
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one gets the dispersion relation in the form

s′

−2e−sΘas
= cos(s′′Θ)

{
1 + c

[
cos(mπ) + g{cos( 1

2
mπ) + cos( 3

2
mπ)}

]}
+c sin(s′′Θ)

[
sin(mπ) + g{sin( 1

2
mπ) + sin( 3

2
mπ)}

]
, (9a)

s′′

−2e−s′Θas
= − sin(s′′Θ)

{
1 + c

[
cos(mπ) + g{cos( 1

2
mπ) + cos( 3

2
mπ)}

]}
+c cos(s′′Θ)

[
sin(mπ) + g{sin( 1

2
mπ) + sin( 3

2
mπ)}

]
. (9b)

Figure 23 shows that the stationary solution first becomes unstable for m = 0 at
rτ = 1

4
π (the same threshold value as for one single oscillator). For rτ > 1

4
π, the

oscillatory solution is, however, unstable in the synchronized mode (m = 0), while the
rotation mode m = 1 remains stable up to rτ = 1

4
π(1 + c(1 + 2g))/(1− c). The mode

m = 2 has weaker stability compared to m = 1 and destabilizes earlier when rτ is
increased; that is for rτ > 1

4
π(1 + c(1 + 2g))/(1 + c(1− 2g)) close to the oscillation

threshold, the stable saturated limit cycle has thus the m = 1 symmetry.
We have emphasized that the oscillatory solution of the NLDS model is a conse-

quence of the non-locality of the interactions in time. The phase opposition between
facing oscillators leading to the m = 1 mode is, in turn, a consequence of the non-
locality of the interactions in space, consistent with the picture of the flow underlying
the NLDS formulation, that is the role played by the slow recirculating motion. For
the case of two coupled oscillators (Villermaux 1995b), the stable oscillatory configu-
ration in (8) is the one which maximizes the apparent growth rate of an, thus selecting
the m = 1 mode. This result is, although interpreted differently, consistent with the
linear stability analysis of mean velocity profiles reflecting similar flow configurations
(Monkewitz 1988).

This situation has to be contrasted with other experimental situations which also
exhibit vortex shedding with periodic boundary conditions, as in the wake of a torus
studied in great details by Leweke & Provansal (1995) for which it is known that the
symmetric m = 0 mode is preferentially selected. Ignoring the phase opposition of the
shedding process at the scale of the rod forming the ring (very similar to the Bénard
vortex shedding process), and assuming the oscillation associated with the shedding
to be due to a single oscillator locally, these authors showed how a weak, synchronous
diffusive coupling between neighbouring oscillators on the torus (Ginsburg–Landau
model) accounts for the stability limits of the different modes, consistently with their
observations. The fact that the m = 0 mode is preferred in that case is not surprising in
view of our previous discussion since, by construction, the geometry of the torus does
not allow for a long range coupling between the diametrically opposed recirculation
zones downstream of the ring as it is the case for the disc, the sphere (Achenbach
1974; Berger et al. 1990), or the coaxial geometry above recirculation threshold.

5. Conclusions
In this paper, the near-field flow characteristics of high-velocity-ratio (ru > 1) and

high-Reynolds-number coaxial jets is presented. It is shown that the near-field flow
structure for ru > 1 is dominated by the annular jet and is strongly dependent on ru
which appears to be the main parameter. For moderate velocity ratios (1 < ru < 8),
the inner cone length varies as A/ru, with the numerical constant A ≈ 5 to 9,
depending on both the diameter ratio β and the mean velocity profiles at the nozzle
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Figure 23. (a) Definition sketch of the azimuthal positions of the four oscillators of model (8)
regularly spaced on the periphery of the recirculation bubble. (b) Time evolutions of the amplitudes
of the oscillators a1, a2, a3 and a4 over a period of oscillation according to (8). The m = 1 mode
is obvious. rτ = 1.6, c = 0.5 and g = 0.8. (c) Diagram of stability of system (9) for c = 0.5 and
g = 0.8. From left to right, the iso-contours correspond to instability growth rate s′τ = 0, 0.1, 0.2,
0.3, 0.4 and 0.5, as computed from (9a) and (9b). The allowed modes correspond to the discrete
values of m = 0, 1 and 2.

exits, specifically on the ratio (U/U). A simple model based on mass conservation
and an entrainment hypothesis explains the physical mechanisms governing the flow
and leads to an expression for the inner cone length, in good agreement with the
experimental result.

Above a critical velocity ratio ruc, the inner potential cone is truncated by a reverse
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flow and a wake-type regime is active. This new flow pattern is characterized by
the existence of an unsteady recirculation bubble. The transition mechanism to a
wake regime is explained by a simple model which predicts satisfactorily ruc. The
size of the recirculating bubble increases with ru and reaches a maximum length for
ru = ∞, typically equal to one inner jet diameter D1. The mean reverse flow velocity
is proportional to U2. Velocity and mean static pressure measurements confirm our
reasoning concerning the two flow regimes and the transition to a recirculating flow.

The recirculation bubble oscillates with low frequency (Stb = fD1/U2 = 0.035) and
with large amplitude. Velocity cross-correlations in the plane parallel to the jet outlets
show that this oscillation is an azimuthal precession mode such that the rotation time
of the phase of the oscillations is equal to the oscillation period. The origin of the
low-frequency oscillations is explained by the NLDS model.

This work was financially supported by the Société Européenne de Propulsion
(SEP) under contract n◦ 910023 via the GDR “combustion dans les moteurs de
fusées”.
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