
PRL 94, 094302 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
11 MARCH 2005
Heavy Flags Undergo Spontaneous Oscillations in Flowing Water

Michael Shelley,1 Nicolas Vandenberghe,1,* and Jun Zhang1,2

1Applied Mathematics Laboratory, Courant Institute of Mathematical Sciences, New York University,
251 Mercer Street, New York, New York 10012, USA

2Department of Physics, New York University, 4 Washington Place, New York, New York 10003, USA
(Received 26 February 2004; published 9 March 2005)
0031-9007=
By immersing a compliant yet self-supporting sheet into flowing water, we study a heavy, streamlined,
and elastic body interacting with a fluid. We find that above a critical flow velocity a sheet aligned with the
flow begins to flap with a Strouhal frequency consistent with animal locomotion. This transition is
subcritical. Our results agree qualitatively with a simple fluid dynamical model that predicts linear
instability at a critical flow speed. Both experiment and theory emphasize the importance of body inertia
in overcoming the stabilizing effects of finite rigidity and fluid drag.
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FIG. 1. Schematic of the experiment. See text for details.
The flapping of flags in a wind is observed in everyday
life, and is a prototypical instance of a streamlined and
deformable body interacting with a flowing fluid. Flapping
dynamics occurs also in industrial processes like paper or
thin-film processing [1,2] and in biological situations, like
snoring [3]. Controlled experiments of the dynamics of a
flag have previously been conducted in wind tunnels [2–4]
and a two-dimensional analog studied in a soap-film tunnel
[5]. Surprisingly, there has been to our knowledge no study
of flapping dynamics conducted in water. This is, however,
relevant to understanding the dynamics of towed bodies
(such as underwater cable), and the general problem of
coupling elasticity and inertia of a body with the dynamics
of a fluid is of central interest to biological locomotion.
Indeed, a waving flag can strikingly resemble the propul-
sive motions of a fish using undulatory propulsion [5,6].
The high level of performance attained by swimming fish
remains a subject of active study [7], and in this context a
good comprehension of the coupling between elastic and
inertial body forces, and fluid forces is needed [8].

The experiments in air and soap-film flows demonstrated
clearly that flapping can result from an intrinsic instability
of the coupled fluid/body system alone, without the exci-
tation of the flexible body by vortices shed from a support-
ing flagpole. Theoretical studies [3,9] have also extended
classical work [10] on aeroelastic instabilities. These stud-
ies couple potential flow theory with the mechanics of a
flag with inertia and bending rigidity, and extend
Theodorsen’s classical theory of wing flutter [11]; a flag
has finite length and a Kutta-Zhukovski condition is im-
posed at its trailing edge. These studies emphasized the
role of two nondimensional parameters

S � mL=�dL; Û � U
������������������
�dL3=B

q
; (1)

where L is the length of the flag, mL its mass per unit
length, B its bending modulus, � is the density of the fluid,
d is the height of the fluid layer interacting with the flag, S
is the ratio of the mass of the flag to that of the fluid with
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which it interacts, while Û2 is the ratio of fluid kinetic
energy to potential elastic energy.

Here we study the dynamics of a flexible flaglike body
immersed in flowing water, fixed at its leading edge and
free at its trailing end (Fig. 1). One aim is to determine
whether flapping dynamics is as easily accessible in water
as in air. Water is of course much denser, and if one
considers the same type of sheet as used in air—typically
made of fabric or plastic—the density ratio S in water is
about 3 orders of magnitude lower. Thus, to build a flag that
flaps in water, it is essential to understand the role of this
parameter in the dynamics.

To help determine how a flag might flap in water, we first
use a simple model to derive analytically a stability bound-
ary in �S; Û� space. Its predictions agree reasonably well
with previous numerical and experimental results. The
model and our preliminary experiments suggest that to
flap in water, flag inertia must be sharply increased to
overcome fluid drag. To avoid the complication of a heavy
flag draping from its support at low flow speeds (like a
‘‘real flag’’), we have designed a heavy self-supporting
flag. Hence, its resting state is straight, and the fluid
2-1  2005 The American Physical Society
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FIG. 2. The stability boundary of the straight configuration in
the S-Û plane as predicted by the model. The scale is such as to
ease the comparison with Fig. 9 of [9].
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dynamics is essentially two dimensional. In agreement
with previous results (and with our simplified theory) we
find that, at a critical flow speed, this straight configuration
becomes unstable to large amplitude flapping, the nature of
which we study.

Our simple theoretical model extends Rayleigh’s classi-
cal analysis [12] to include the effects of mechanical
stresses at a surface of separation—the flag—whose
equilibrium is represented by L
�x; t� � 0. In related
work, Crighton and Oswell study the interaction of a po-
tential flow with a compliant wall of infinite extent [13]. In
their analysis no external length scale is imposed and a
local analysis is used to study the convective/absolute
nature of the instability (see also [14]). Here, we use the
length of the flag as a characteristic length of the system
and examine temporal stability of perturbations on the
length scale of the flag. In the equilibrium state, the speed
of the flow on both sides of the flag is Ux̂. A characteristic
time is then L=U.

Following Euler-Bernoulli theory for bending beams
under a small pressure load �dU2�p� and displacement
L
�x; t�, a flag of mass per unit length mL and bending
modulus B satisfies the force balance

S
tt � �Û�2
xxxx � �p�; (2)

where �p� is the force per unit length due to the pressure
jump across the flag. Here tensile forces are ignored in the
force balance.

Coupling this model to the fluid dynamics yields the
dispersion relation linking the frequency ! and the wave
number k of a perturbation of the form 
 � 
0 exp�i�!t�
kx�� [13]

��!� k�2 � �1=2��Sjkj!2 � Û�2jkj5� � 0: (3)

This modifies the model of Crighton and Oswell to account
for the flowing fluid on both sides of the surface of sepa-
ration and thus there is an additional 1=2 factor in the
dispersion relation. For a given wave number k, the fre-
quency ! satisfies the quadratic eigenvalue problem

! �
�k

1� �1=2�Sjkj
�1	 �1=2�jkj1=2d1=2k �; (4)

where dk � SÛ�2jkj3 � 2Û�2jkj2 � 2S. The system is
neutrally stable if dk 
 0 and unstable if dk < 0.

A critical dimensionless velocity Ûc is predicted by
asking when the fundamental mode k � 2� becomes un-
stable and this is determined by setting d2� � Û�2�8�2 �
8�3S� � 2S � 0. This condition gives

Û c �
�����������������������������������
�4�2 � 4�3S�=S

q
: (5)

Figure 2 shows a plot of this curve in the S-Û plane.
Consider varying only the velocity U of the oncoming
flow, as we will do in our experiment, noting that S is
independent of U. Then for Û < Ûc, d2� is positive and the
09430
system is stable, while for Û > Ûc, d2� becomes negative
and stability is lost. Note that a necessary condition for
instability is that the sheet has inertia; an elastic, massless
sheet supports only neutral modes (see also the simulations
of [15]).

This simple model shows reasonable agreement with
previous numerical and experimental results. Huang
studied an aluminum foil flag in an air flow [3] with S �
1:1. Our model predicts a critical speed of 9:8 m s�1 while
experimentally an instability occurs at � 8 m s�1. In the
soap-film experiments of Zhang et al. [5], flag length is the
bifurcation parameter. Reorganizing the calculation above
predicts a critical length of �1 cm, while the experiment
gives 4 cm (there, gravity acts along the flag to also
stabilize it against flapping). An overall comparison with
previous theories requiring numerical computations to de-
termine the stability boundary (see, in particular, Fig. 9 in
Ref. [9]) reveals that while our model shows quantitative
differences with the experimental results, the critical speed
is of the same order of magnitude as those obtained from
other models. Indeed our model gives a good estimate of
the critical speed at high S, but for low S the discrepancy
can reach an order of magnitude, also comparable to what
other models give. Note that the stability criterion based on
a transition to absolute instability [13,14] does not agree
with previously published results (for example, the critical
speed predicted for Huang’s experiment is 0:088 m s�1).

We performed experiments to study the dynamics of a
flag in a laminar water flow. The test section of the water
tunnel has transparent walls, has a cross section of 15
15 cm2, and is 45 cm long. The flow speed, measured by
laser Doppler velocimetry (LDV; see Fig. 1), is increased
from 0 up to 0:91 m s�1, with increments of 0:015 m s�1.
We first used a 2:5 �m thick, very flexible Mylar sheet
(density 1400 kgm�3, B=d � 4:5 10�10 Nm) of length
L � 10 cm and height d � 5 cm. One significant differ-
ence with an air flow is that in water the higher density
yields much smaller values of S. For this flag, S � 3:5
10�5 and the model predicts an instability at a flow speed
of U � 1:8 10�2 m s�1. However, we found that even
with speeds of 0:9 m s�1, the flag remained flat. We soon
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realized that the inertial forces of such a light, albeit very
flexible, flag were not sufficient to overcome the stabilizing
effects of the fluid drag pulling on it. A simple way to
estimate the effect of the drag is to compare the magnitude
of tensile forces to other forces. In Eq. (2), an additional
constant tension adds a term T
xx. We estimate the ten-
sion, in terms of the Reynolds number Re, that results from
the boundary layer drag on a flat plate [16]:

T � 1:33�UL=���1=2 � 1:33Re�1=2
L : (6)

For mode k � 2� and speed U � 1:8 10�2 m s�1 the
stabilizing term Tk2 is 10 times higher than the term
Û�2k4. This predominance of viscous drag persists for
all velocities accessible in our flow tunnel.

While this suggests that the inviscid model is incomplete
in this regime, and should be corrected to account for (at
least) viscous drag, it also suggests that to obtain flapping,
flag inertia should be much increased to reduce the relative
effect of skin friction. Unfortunately, increasing either
thickness or density of the material increases rigidity, and
may also make the flag susceptible to draping, complicat-
ing the experiment.

We avoid these difficulties by gluing long copper strips
vertically onto a Mylar sheet (left panel, Fig. 3). Carefully
choosing the interstrip distance allows the flag to be pliant
enough to allow flapping in one dimension, but stiff enough
to avoid sagging under its own weight in the others. In the
experiment described here, the Mylar sheet is 10.2 cm
high, 7 cm long, and 30 �m thick. Strips of copper (height
10.2 cm, width 6.6 mm, thickness 0.40 mm) are glued back
to back on the sheet, with a separation of 4.4 mm (of bare
Mylar) between the pair. The mass of the flag is 25 g and
the bending modulus of the Mylar sheet is B �
5:9 10�7 Nm2, measured by a static bending test. The
first two strips (one on each side) glued to the sheet are
taped to a flagpole (a thin cylinder of diameter 1.6 mm),
thus ensuring clamping of the leading edge of the flag. The
panel attached to the flagpole is considered inert and is not
accounted for in the length and mass of the flag. Hence,
there are six pairs of ‘‘free’’ panels.
FIG. 3. The heavy flag in flowing water (left panel) and its
bistable states. The laminar flow comes from the left. At flow
speed 0:64 m s�1, the nonflapping (top) and flapping (bottom)
states as seen from below.
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For low speed flows, this ‘‘heavy flag’’ remains pulled
out straight and steady. Crossing a critical flow speed,
Uc � 0:81	 0:015 m s�1, the flag shows a sharp transition
to a flapping state of finite amplitude and frequency
(Fig. 3). This bifurcation is subcritical, and at intermediate
velocities, two stable states—straight or flapping—are
observed (right panels, Fig. 3). As shown in Fig. 4, the
amplitude of flapping increases with flow speed. The inset
in Fig. 4 shows that the amplitude envelope of the flag’s
bending wave increases from the leading to the trailing
edge. The frequency of flapping is proportional to flow
speed. The resultant Strouhal number based on the flag
length StL � fL=U is approximately 1.2, while the
Strouhal number based on flapping amplitude increases
with flow speed between 0.22 and 0.31. Figure 4 also shows
that the bending wave travels down the flag with a speed
about 0:66 times the flow speed. Twisting motions of the
flag were present but with amplitude of less than 3�.

Given the apparent resemblance between a swimming
fish and the flapping of the flag, it is interesting to compare
them quantitatively. One important aspect of our experi-
ment is that the relation between frequency and velocity, as
in Fig. 4, is chosen dynamically through a balance of
mechanical and fluidic forces (rather than both being im-
posed a priori, e.g., as in [17]). The Strouhal numbers
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FIG. 4. Experimental results obtained by analysis of video
recording at 60 frames=s. Flapping amplitude is measured as
the peak-to-peak lateral displacement of the last metallic panel,
normalized by the flag length. The inset shows the partial
envelope (between 7 and 60 mm) of the bending waves for U �
0:68 m s�1. The dashed line is an exponential fit.
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observed here are also in the range observed for swimming
and flying animals [17,18], and are characteristic of pro-
pulsion with high power efficiency [17,19]. A related
recent experiment studied the bifurcation to locomotion
of a wing flapping with imposed frequency and amplitude,
but free to select its speed [20]. At high flapping frequency
the measured Strouhal numbers were about 0.26, again in
the same range. There are of course differences between a
‘‘passive’’ flag, which experiences drag, and an actively
locomoting fish. One is that the bending waves traveling
along the body of a swimming fish, which move on the
order of 1.5 times the travel speed [21], are much faster
than those observed in our experiment. This agrees with
Lighthill’s slender body theory of locomotion, which pre-
dicts that to produce thrust, bending waves should travel
faster than the flow speed.

In the sense that our experiment shows a sharp loss of
stability and a transition to flapping, it shows qualitative
agreement with the hydrodynamical theory. Here the value
of S is 0.05 and the model gives the critical speed Uc �
0:12 m s�1. However, to make this estimate we took the
flag as homogeneous with mL � 0:36 kgm�1 and B �
5:9 10�7 Nm2. A better estimate of the bending modu-
lus for this composite structure is obtained by considering
the deflection of a beam made of alternating flexible and
rigid parts. In that case, with a constant pressure loading,
the deflection at the free end is only 0.48 times the de-
flection of the homogeneous flexible flag. This suggests
that the equivalent bending modulus of the ‘‘composite
flag’’ is higher and with B � 12 10�7 Nm2 we get a
somewhat higher critical speed of U � 0:18 m s�1.
Another factor neglected in the force balance is that our
flag is self-supporting against gravity. This resistance to
sagging creates a two-dimensional stress distribution in the
flag that is likely modifying, and perhaps stabilizing, its
bending response. A more accurate model would require a
precise description of the mass and rigidity distribution
along the flag. Also, this simple model does not take into
account the influence of boundary conditions imposed on
the flag (clamped free in experiments), the dynamics of the
wake, nor the effect of skin friction. Some of these ele-
ments have been incorporated in a recent approximate
model of Argentina and Mahadevan [22].

We have reported on the flapping instability of a heavy
flexible sheet in a water stream. We find that viscous drag
can have a strong stabilizing effect and thus can prevent
‘‘light’’ flags from being unstable in water. A more thor-
ough investigation of the effect of drag on the stability may
help in understanding the discrepancies observed between
ideal fluid models and experiments. However, this requires
a precise modeling of the near-body flow, and the propa-
gation of waves along a body strongly modifies boundary
layer flows [23]. The theoretical understanding of the non-
linear behavior—such as the subcritical bifurcation ob-
09430
served in our work and in other experiments and
simulations [5,15,24]—remains an open problem. Above
threshold, we found that frequency is proportional to the
flow speed and a Strouhal number in the range character-
istic of animal locomotion. This suggests that the basic
feature of the interactions between a fluid flow and an
inertial body involved in efficient fish swimming may be
present in this basic system. This calls for more investiga-
tion of theoretical models and for additional experiments,
in particular, flow visualization to reveal the structure of
the near-body flow.
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