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Abstract
Fragmentation phenomena are reviewed with a particular emphasis
on processes that give rise to drops—in the broad sense, the pro-
cess of atomization. Various observations are brought together to
give a unified picture of the overall transition between a compact
macroscopic liquid volume and its subsequent dispersion into stable
drops. In liquids, primary instabilities always give birth to more or
less corrugated ligaments whose breakup determines the shape of
the drop-size distribution in the resulting spray. Examples examined
here include fragmentation of jets and liquid sheets, formation of
spume by the wind blowing over a liquid surface, bursting phenom-
ena upon an impact, and raindrops.
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1. A TIMELESS TOPIC

“Grinding, porphirization, and spraying are, strictly speaking, nothing but prelim-
inary mechanical operations aiming at dividing, separating molecules from bodies,
and reducing them in very fine particles.’’

Antoine Laurent Lavoisier, Traté Élémentaire de Chimie
Librairie Cuchet, Paris, 1789.

The fragmentation of compact macroscopic objects is a typical phenomenon in-
volving complicated microscopic effects, and resulting in nontrivial, and often broad
statistics, namely that of the fragment sizes. Very recently, in fact from the time
when the need was felt to rationalize empirical practices in ore processing (Georg
Bauer 1556), questions about the principles of matter division have been recurrent
in science, up to modern developments in nuclear fission (Born 1969). For instance,
Lavoisier (1789) devotes chapter IV of his Elementary Treatise of Chemistry to dif-
ferent techniques for dividing matter, and the monumental treatise of Coulson &
Richardson (1968) has several sections dealing with the many “unit operations’’ of
the chemical industry to fragment, atomize, blend, and mix. The long history of the
subject is certainly not a sign of lack of progress, but rather reflects its ever-renewed
fields of application.

As for liquid atomization (literally “subdivide down to the atom size’’), exam-
ples abound, ranging from agricultural sewage, diesel engines, and liquid propel-
lant combustion in the aerospace industry (Bayvel & Orzechowski 1993, Lefebvre
1989, Yang & Anderson 1995), geophysical balances and ocean-atmosphere exchanges
(Blanchard 1966, Mason 1971, Seinfeld & Pandis 1998), volcanic eruptions and tephra
formation (Alidibirov & Dingwell 1996), sprayed paint and cosmetics, ink-jet print-
ers, microfluidic, and novel devices (Squires & Quake 2005, Stone et al. 2004). For
all of these applications, it is desirable to have an a priori knowledge of the liquid
dispersion structure, in particular its distribution of droplet sizes as a function of the
control parameters, injector size and shape, wind speed, liquid surface tension, etc.

1.1. Problem Statement

The subject matter is probably all contained in Figure 1, which shows how a liq-
uid drop, falling in a counter-ascending air current, first deforms, then destabilizes,
and finally breaks into disjointed, stable fragments. The process, usually called “bag
breakup,’’ exemplifies the three stages shared by all atomization processes:

� A change of topology of the initial object: The big drop flattens to a pancake
shape as it decelerates downward.

� The formation of ligaments: The toroidal rim collects most of the initial drop
volume.

� A broad distribution of fragment sizes: The rim is highly corrugated and breaks
in many small, and some large, drops.

If �u is the velocity difference between the drop and the air stream in a Galilean
frame, the drop will break as soon as the stagnation pressure of order ρg(�u)2
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Figure 1
Fragmentation of a 5-mm
water drop falling relative to
to an ascending stream of
air. Times from the first
image (t = 0) are: t = 4, 9,
17, 24, 30, 33, 34, 35, 37,
43, and 60 ms.

overcomes the capillary restoring pressure σ/d0, where ρg, d0, and σ represent the gas
density initial drop size, and σ the liquid surface tension, respectively. This condition
indicates that the Weber number

We = ρg(�u)2d0

σ
(1.1)

should be larger than some number (Hanson et al. 1963, Hinze 1955), with some
corrections accounting for possible viscous effects (Chou & Faeth 1998, Pilch &
Erdman 1987). In this, as in many atomization processes, there is no typical fragment
size. There is an average size, and an obvious upper bound, namely the size of the
initial drop. It is even unclear if there should be a lower bound. However, the hierarchy
of fragment sizes d follows a regular distribution p(d ), with the probability of finding
a drop size between d and d +dd , essentially uniformly decreasing in an exponential-
like form with d

p(d ) ∼ e−d/d0 (1.2)

up to some cutoff parametrized by the drop’s initial size d0 (Alusa & Blanchard 1971,
Kombayasi et al. 1964). This review illustrates the characteristics of p(d ) and discusses
the possible underlying mechanisms.

2. SMART IDEAS

The ubiquity of fragmentation phenomena has prompted a number of interpretations
and paradigms. These can be grouped into roughly three distinct classes.

2.1. Sequential Cascades of Breakups

A first class of models was introduced by Kolmogorov (1941), motivated by ore grind-
ing, a process where repeated forcings are sequentially imparted to brittle solid parti-
cles; the model has been applied, blindly after a detour in the turbulence community
(Monin & Yaglom 1975), to liquid atomization. The overall breakup is visualized as a
sequential process where mother drops give rise to daughter drops, which break into
smaller drops. The sense of the evolution of the drops assembly is directed toward ever
smaller sizes. In this cascade process and many of its variants (see e.g., Gorokhovski
& Saveliev 2003, Konno et al. 1983, Martinez-Bazan et al. 1999, Novikov &
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Dommermuth 1997), a particle of initial volume v0 breaks, after n steps of the cascade
into a family of drops of volume vn = v0

∏n−1
i=0 αi , where the αi are random multipliers

smaller than unity so that the logarithm ln(vn/v0) is actually a sum of random variables

ln
vn

v0
=

n−1∑
i=0

ln αi . (2.1)

The distribution of the volumesP(v) is described around its maximum for sufficiently
large n and at the precision 1/

√
n in the frame of the Central Limit Theorem (Feller

1971, Kolmogorov 1941) by a lognormal distribution (see, however, Frisch & Sornette
1997)

P (x = v/v0) → 1
xS

√
2πn

exp

(
− (In x − nM )2

2nS2

)
, (2.2)

where

M = 1
n

n−1∑
i=0

ln αi and S2 = 1
n

n−1∑
i=0

(ln αi )2 − M2 (2.3)

are the mean and variance of the distribution of the random multipliers αi , a
priori fixed for a given atomization protocol. Defining the size of a drop d by
d 3

n = vn, the drop-size distribution is derived from conservation of probability
p(d ) = 3d 2P(v = d 3). The mean 〈d 〉 and variance 〈d 2〉 of the size distribution
both depend exponentially on n and are such that

〈d 2〉 − 〈d 〉2

〈d 〉2
= enS 2/9 − 1 (2.4)

is increasing with the cascade step n. If one anticipates that the cascade will terminate
at some generation n = m when the Weber number in Equation 1.1 reaches a critical
value written for the current drop size d = dm (the size of the smallest drops in stirred
suspensions are indeed found to obey this rule; see, e.g., Clay 1940, Hinze 1955,
Kolmogorov 1949, Shinnar 1961), this scenario suggests that, because the width of
the distribution increases relative to the mean as n increases (Equation 2.4), the shape
of the distribution will depend on the initial Weber number We = d0/dm.

2.2. Aggregation Scenarii

In contrast to size reduction is the process of aggregation, which is an ensemble of
initially small elementary particles that form clusters of increasing average size as they
collide and merge. In that case, the sense of the evolution is directed toward ever larger
sizes. The paradigm of this process is Smoluchowski’s kinetic aggregation, initially
imagined to represent the coagulation of colloidal particles moving by Brownian
motion in a closed vessel (von Smoluchowski 1917). If n(v, t) is the number of clusters
whose volume is between v and v + dv, and K (v, v′) is the aggregation frequency per
cluster between clusters of volumes v and v′, then

∂tn(v, t) = −n(v, t)
∫ ∞

0
K (v, v′)n(v′, t) dv′ + 1

2

∫ v

0
K (v′, v − v′)n(v′, t)n(v − v′, t) dv′

(2.5)
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is an evolution equation of a convolution type to which additional effects such as liquid
evaporation can be added in the form of a Liouville term −∂v{q (v)n(v, t)} if q (v) is
the rate of change of v due to evaporation (Seinfeld & Pandis 1998). The volume
distribution of the drops P(v, t) is equal to n(v, t)/N(t), with N(t) = ∫ ∞

0 n(v, t) dv the
total number of clusters. This framework has been used for modeling the concomitant
breakup and coalescence of drops in emulsions (Coulaloglou & Tavlarides 1977),
turbulent clouds of drops (Saffman & Turner 1956), gas-liquid dispersions in stirred
media (Valentas & Amundson 1966), and breath figures (Derrida et al. 1991) with
suitably adapted frequency factors K (v, v′). Schumann (1940) and Friedlander &
Wang (1966) provide general similarity solutions for various forms of the interaction
kernel K (v, v′), which all display an exponential tail

P(v, t → ∞)
v � 〈v〉−→ e−v/〈v〉, (2.6)

where 〈v〉 = ∫ ∞
0 vn(v, t) dv/N(t) is the average volume function of time. The reason

is easy to understand. Let us say the aggregation frequency is independent of the
volume K ≡ K (v, v′) and consider the Laplace transform of n(v, t) as ñ(s , t) =∫ ∞

0 e−svn(v, t) dv. Equation 2.5 is then

∂t ñ = −ñN + ñ2

2
(2.7)

when n(v, t) ≡ n(v, t)/N(0), N ≡ N/N(0), and t ≡ tK N(0) have been made dimen-
sionless using N(0) as the initial number of clusters. The current total number of
clusters N = ∫ ∞

0 n(v, t) dv = ñ(0, t) obeys

∂t N = − N 2

2
, so that N = 1

1 + t/2
. (2.8)

Looking for a scaling solution to Equation 2.7 of the form⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n(v, t) = N
〈v〉 f (η, τ )

η = v

〈v〉
τ = t,

(2.9)

having ñ(s , t) = N f̃ (s ′, t) with s ′ = s 〈v〉 and remembering that

∂t f̃ = ∂ f̃
∂s ′

∂s ′

∂t
+ ∂ f̃

∂τ

∂τ

∂t
, (2.10)

one is left to find a solution to

s ′∂ ′
s f̃ = − f̃ + f̃ 2 (2.11)

in the stationary limit ∂t f̃ → 0. The solution is f̃ (s ′, t) = (1 + s ′)−1, giving

f (η) = e−η that is n(v, t) = N
〈v〉 e−v/〈v〉 (2.12)

The asymptotic cluster volume distribution is P(v) = n(v, t)/N = e−v/〈v〉/〈v〉
with N〈v〉 = V , the (conserved) total volume of the aggregates and N given by
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Equation 2.8. The exponential is a consequence of the convolution in Equation 2.7,
the signature of aggregation phenomena. Lifshitz & Slyozov (1961) considered a so-
lution for the coarsening of an assembly of droplets exchanging solute by diffusion
through the continuous phase in which they are embedded, ingredients which are
not those of atomization.

2.3. Maximum Entropy Principle and Random Breakups

Another class of approach considers the random splitting of an initial volume in
various disjointed elements in one step. There is no sequential evolution, nor any
kinetics a priori associated with this break-up scenario. Essentially inherited from
the methods developed for the kinetic theory of gases (Mayer & Mayer 1966) and
the physics of polymers (Stockmayer 1943; see also Kapur 1989, who work out many
different examples, and Englman 1991 for a review), the idea is to visualize a given
volume v0 = d 3

0 as a set of K = (d0/dm)3 elementary bricks of volume vm = d 3
m,

the linear sizes being, for instance, linked by We = d0/dm, as in Section 2.1, and to
compute the most probable distribution of the disjointed clusters incorporating all
the bricks (Cohen 1990, 1991). Let us thus consider a drop broken into N disjointed
clusters, among which are scattered the K elementary bricks. We call nk the number of
clusters bearing k bricks, the average number of bricks per cluster being 〈k〉 = K/N.
There are obviously a number of ways to realize a given partition {nk}. The number
of microscopic states leading to a given cluster partition {nk} is

w({nk}) = N !∏K
k=0 nk!

.
K !∏K

k=0(k!)nk
, (2.13)

together with the conservation laws

K∑
k=0

nk = N, and
K∑

k=0

knk = K . (2.14)

The structure of the equation for w is as follows: the number of distinguishable
arrangements of the {nk} clusters in the total set of N clusters is N !/
knk!, whereas
any permutation of the k elements in a given cluster leads to the same macroscopic
cluster distribution, hence the factor K !/

∏
k(k!)nk . The number of microscopic states

w({nk}) has a maximum for a particular partition {nk} found by letting the nks vary
by an amount δnk with the constraints δK = ∑

k kδnk = 0 and δN = ∑
k δnk = 0.

Looking for the maximum of w({nk}) is equivalent to looking for the maximum of its
logarithm; writing δ ln w({nk}) = 0 leads to

K∑
k=0

δnk{−(ln nk + ln k!) + αk + β} = 0, (2.15)

where α and β are Lagrange multipliers such that the conservation laws of Equation
2.14 are satisfied. The optimal distribution P(k) = nk/N is a Poisson distribution

P(k) = nk

N
= 〈k〉k

k!
e−〈k〉 (2.16)
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of parameter 〈k〉, the average number of bricks per cluster, as would be readily obtained
from binomial counting. This is the distribution of the number of objects in a regular
partition of space, when the objects are spread at random as sometimes encountered
with low inertia particles in turbulent flows (Eaton & Fessler 1994, Lei et al. 2001).
The drop-size distribution follows from p(d ) = 3d 2/d 3

mP(k = (d/dm)3).
In the same line of thought, Longuet-Higgins (1992) gives a variant of this ap-

proach by asking what the fragment distribution would be when a volume is crushed
at random in exactly m pieces. The answer is

P(x) = m(1 − x)m−1 (2.17)

for a linear segment of length unity where x is the fragment length, with average
〈x〉 = 1/(1 + m). This distribution tends toward a pure exponential characteristic of
shot noise P(x) 
 me−mx (Poisson intervals) for m � 1. Longuet-Higgins (1992)
also provides the corresponding distribution for random breakup of surfaces and
volumes. These purely combinatorial descriptions do not account for any interac-
tion between the clusters as they separate and lead to a fragment-size distributions
entirely determined by their mean, as does the convolutive aggregation scenario in
Section 4.3.1.

Figure 2 compares the above three classes of models with generic, real (see
Section 3), statistically converged distributions. Maximum entropy or aggregation
scenarii are far from the truth: Nature does not aggregate nor split liquid vol-
umes at random. Minute but significant differences exist between the lognormal
fit and real data; additional proof that liquid atomization does not proceed, as op-
posed to crushing and grinding, from a sequential cascade of breakups is given in
Section 4.3.1.

3. LIGAMENTS: THE SINEWS OF ATOMIZATION

Drops come from the rupture of objects in the form of threads or ligaments; the
smooth, uniform, long liquid cylinder has become the paradigm of droplet forma-
tion. Following the observations of Mariotte (1686) and Savart (1833) that a liq-
uid jet eventually ends in a train of droplets, subsequent studies have explained
why the basic smooth state is unstable (Plateau 1873), how quickly the instabil-
ity develops (Rayleigh 1879), and how the thread finally disrupts into disjoined
parcels (Eggers 1997) down to nanometric scales (Bréchignac et al. 2002) even
in the presence of Brownian noise (Eggers 2002, Moseler & Landman 2000). As
speculated by Lord Rayleigh in “Some Applications of Photography’’ (Rayleigh
1891), time-resolved still images, and now high-speed movies, have substantiated
these threads in many other situations where a jet is not present from the start
as the object mediating drop formation (Einsenklam 1964, Fraser et al. 1963,
Hinze & Milborn 1950, James et al. 2003, Krzeczkowski 1980, Lane 1951, Pilch &
Erdman 1987, Ranger & Nicholls 1969, Villermaux et al. 2004). The polydispersity
of drops results from the dynamics of these ligaments, as suggested by the examples
below.
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Figure 2
Comparison between experimental records of drop-size distributions in liquid sheet
fragmentation (data from Bremond & Villermaux 2006) and different models. The
distributions are normalized by their mean and have the same variance 〈d2〉 (Lognormal) and
skewness 〈d3〉 (Poisson) as the experimental one. (a) Narrow size distribution showing how
Lognormal (Section 2.1) and true distributions can be easily confused on a single data set. (b) A
broader distribution showing how the Lognormal fit overestimates both the distribution
around its maximum (inset) and its tail. The maximum entropy (Poisson and similarly
exponential, Sections 2.3 and 2.2, respectively) distributions have a much-too-sharp falloff
(i.e., ∼ exp{−(d/〈d 〉)3}) at large sizes. The Gamma fit discussed in Section 4.3 has n = 17 (a)
and n = 4 (b).

3.1. Jets, Sprays, and Spume

The disintegration of a liquid volume by a gas stream is a phenomenon that is involved
in many natural and industrial operations. The spray droplets torn off by the wind at
the wave crests in the ocean are an obvious example (Andreas et al. 2001, Anguelova
& Barber 1999; see also Farago & Chigier 1992 in another context). As Figure 3
suggests, a shear between the light, fast stream and the slow, dense liquid is at the
root of the disintegration process. The change of liquid topology proceeds from a
two-stage instability mechanism: First, a shear instability of a Kelvin-Helmholtz type
forms axisymmetric waves. It is controlled, as Villermaux (1998a,b) shows, by adapting
Rayleigh’s (1880b) analysis; the boundary layer of the gas at the interface produces
interfacial undulations whose selected wavelength is proportional to δ

√
ρ/ρg, where

ρ and ρg represent the densities of the liquid and gas, respectively, and δ is the
boundary-layer thickness. For a large enough amplitude, these undulations undergo
a transverse destabilization, of a Rayleigh-Taylor type, caused by the accelerations
imposed on the liquid-gas interface by the passage of the primary undulations. These
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Figure 3
Snapshots of an 8-mm-diameter, slow (0.6 m/s) water jet destabilized by a coaxial fast air
stream. Development of the axisymmetric shear instability, digitations at the wave crests, and
ligament formation for air velocities increasing from 20 to 60 m/s are shown (Marmottant &
Villermaux 2004).

transverse corrugations have a wavelength given by

λ⊥/δ 
 3We−1/3
δ (ρ/ρg)1/3 (3.1)

with Weδ = ρgu2δ/σ , where u is the relative gas velocity. This last instability sets
the volume of liquid eventually atomized: The modulation of the crests is further
amplified by the air stream–forming ligaments of total volume d 3

0 ∼ λ3
⊥, ultimately

breaking by capillarity (Marmottant & Villermaux 2004).
Ligaments produce final drop sizes larger than their thickness just after they are

released from the liquid bulk. This is due to coalescence between the blobs that
make up a ligament, an aggregation process that has its counterpart on the shape
of the drop-size distribution in the resulting spray p(d ), characterized by an expo-
nential falloff. This distribution is the composition of the relatively narrow distri-
bution of the ligament sizes pL(d0) and of the distribution of drops sizes coming
from the ligament’s breakup, which is very well represented by a Gamma distribution
(Figure 4):

pB (x = d/d0) = nn

�(n)
xn−1e−nx . (3.2)

The problem is, obviously, Galilean invariant, and the same “stripping’’ phe-
nomenology occurs when a liquid jet is moving in a still atmosphere, as seen from
the early instantaneous pictures of Hoyt & Taylor (1977). The size of the droplets
peeled off from the liquid surface decreases with the velocity contrast, given by the
liquid velocity (Faith et al. 1995, Wu & Faeth 1995) in that case.

3.2. Sheets

The transition from a compact macroscopic liquid volume to a set of dispersed smaller
drops often involves the change of the liquid topology into the shape of a sheet.
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Figure 4
(a) Time-resolved series of the elongation and breakup of a ligament in the wind, showing the
coalescence between the blobs constitutive of the ligament as it breaks. (b–e) Droplet-size
distribution after ligament breakup pB (d ) for air velocity (b) 29 m/s and (c) 50 m/s. Lines are
fit by Gamma distributions of order n. (d ) Dependence of n on the ratio of the average droplet
size 〈d 〉 to the ligament thickness at breakup ξ . (e) Distribution of droplet sizes in the spray
p(d). The slight increase of the exponential slopes with air velocity (inset) reflects the variation
of the Gamma orders n on 〈d 〉/ξ (see Section 4.3 and Villermaux et al. 2004).

This transition is sometimes enforced by specific man-made devices, but also occurs
spontaneously as a result of various impacts and blowups. An easy way to produce a
spray, widely used in the technological context, is to form a liquid sheet by letting a
jet impact a solid surface, or a facing jet of like liquid. The sheet disintegrates into
drops by the destabilization of its edges. The pioneering works of Savart (1833), and
later Taylor (1959a,b) and Huang (1970), essentially focused on the resulting sheet
shape and its spatial extension. Depending on the impact Weber number, the radial
extension of the sheet is either solely dependent on We , or depends both on We
and on the ratio of the liquid to ambient gas densities α = ρg/ρ. The transition
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Figure 5
(a) A close view of a smooth
sheet rim releasing a
ligament (Huang 1970).
(b) Savart’s (1833c) drawing
of a flapping sheet with
undulations and ligaments.
(c) A liquid sheet from a fan
spray nozzle (Crapper et al.
1973).

(Villermaux & Clanet 2002) occurs for

We = O(α−1/2). (3.3)

Below this limit the sheet is smooth, and above it sustains a shear, flag-like instability
(Hagerty & Shea 1955, Squire 1953, Taylor 1960, York et al. 1953; see also Lin 2003).
Aside from interesting conjectures and suggestions (Dombrowski & Johns 1963,
Fraser et al. 1962, York et al. 1953), the quantitative study of the drop-formation
process was only recently addressed (Bremond & Villermaux 2006, Clanet &
Villermaux 2002, Villermaux & Clanet 2002). While drops of the order of the jet
diameter are formed from the destabilization of the thick rim bordering the sheet
in the smooth regime, the average drop size is a strongly decreasing function of the
Weber number in the flapping regime (Figure 5). In all cases, the sheet fragments
by the destabilization of its rim, which form cusps at the tip of which ligaments are
ejected, are a prelude to the drop formation. These ligaments were actually already
present in Savart’s (1833) early drawings and have been observed by Mansour &
Chigier (1990) and more recently by Park et al. (2004) with air-blasted liquid sheets.
They also are present from the numerical simulations by Lozano et al. (1998) and
Kim & Sirignano (2000) when a spanwise perturbation is initially added to the flow.

In the oblique collision of two identical jets (Figure 6), the liquid expands radially
forming a sheet in the form of a bay leaf bounded by a thicker rim, but the ligament
production phenomenology persists (Anderson et al. 1995, Bremond & Villermaux
2006, Bush & Hasha 2004, Crapper et al. 1973, Dombrowski & Hooper 1963,
Dombrowski & Neale 1974, Heidmann et al. 1957, Ryan et al. 1995). This is a
particularly interesting configuration because the distribution of the drop sizes can
be manipulated at will by varying the impacting angle and Weber number. The vol-
ume d 3

0 of massive regions centrifuged along the rim is both insensitive to the external
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Figure 6
(a) Binary collision of drops, stretching, and fragmentation. We = 83 based on the relative
velocity between the drops (Ashgriz & Poo 1991). (b) Water sheet fragmentation for three
collision angles. The jet velocity is equal to 4 m/s and the jet diameter is 1.05 mm. Elongation
of ligaments is clearly enhanced when the collision angle is decreased (Bremond & Villermaux
2006).

parameters and weakly distributed (Figure 7). It elongates and stretches in the form
of ligaments, with their feet attached to the rim. The transient development of the
capillary instability at the early stages of a ligament elongation sets its section corruga-
tions at the moment it detaches. Corrugations are more pronounced when stretching
is weak, resulting in broader size distributions. If the stretch is strong, ligaments are
smoother, which results in a narrower distribution. Size distributions pertain to the
Gamma family of Equation 3.1 and are parametrized by the single-quantity γ , the
rate of stretch in the rim normalized by a capillary timescale, which is a function of
both the Weber number and collision angle (Figure 7).

3.3. Impacts, Collisions, and Shocks

The change of topology inducing the formation of filamentary structures, which is
mandatory for subsequent breakup in drops, is often the result of an impact, either
with a solid surface or with a directed source of momentum. An obvious manifes-
tation following the splash of a drop on a solid surface or on a thin fluid layer of
the same fluid is the formation of fingers—ligaments emerging from the celebrated
Worthington-Edgerton crown (Worthington 1908)—eventually breaking into drops
(see Thoroddsen et al. 2006 for fluids of different nature). Most of the attention has
been devoted to describing the kinematics of the drop spreading as it flattens on the
surface, its maximal extension, and the number of crown fingers (Yarin 2006). How-
ever, data on fragmentation following drop collision or impact, a nevertheless salient
facet of the phenomenon potentially crucial to understand, if not the universe, at least
the structure of the solar system (Stern et al. 2006), are scarce. Ashgriz & Poo (1991)
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Figure 7
(a) The definition of the equivalent sphere diameter of a ligament d0 and its value normalized
by the average drop size for several injection conditions. Typically, 〈d0〉/〈d 〉 ≈ 2.5. (b)
Distributions pL (d0) and pB (d) show that d0 is less distributed than d. (c) Probability density
functions of the drop size normalized by the mean drop size d/〈d 〉 for a fixed impacting
velocity uj = 3.5 m/s and three collision angles. The fitted curves are Gamma distributions
with parameter n, as indicated in each case and reported in the inset vs dimensionless stretch γ

(Bremond & Villermaux 2006).

and Qian & Law (1997) quantified the conditions for coalescence or satellite forma-
tion in the binary collisions of drops, and Stow & Stainer (1977) measured the number
of fragments of a water drop colliding with a solid surface and their distribution (see
also L. Xu, L. Barcos, and S. Nagel 2006, submitted). A liquid film impacted by a
shock wave disintegrates via a web of ligaments (Bremond & Villermaux 2005), with
patterns resembling those obtained from the spinodal decomposition of liquid films
on solid substrates (Elbaum & Lipson 1994, Reiter 1992), but not much is known
about the resulting drop-size distribution.

3.4. Rain

Rain has been more thoroughly studied. Bentley (1904), an autodidact farmer of
Vermont, captured the very nature of rain using ingenious experiments. He notes,
“Perhaps the most remarkable fact, early brought to our notice, was the astonishing
difference in the dimensions of the individual drops, both in the same and differ-
ent rainfalls,’’ singling out that the feature to understand is the distributed charac-
ter of the drops. At the same time, Lenard (1904), a professor in Heidelberg and
a future Nobel Prize winner, was contemplating drops shapes and terminal veloc-
ity. Subsequent measurements by Laws & Parsons (1943) and Marshall & Palmer
(1948) established the exponential shape of the distribution and related its steepness
to the intensity of rainfall: Drops sizes are more broadly distributed in heavy storms
than in fine mists, a trend already visible from Bentley’s records (Figure 8). Existing
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Figure 8
(a) Raindrop specimens captured by Bentley (1904) by allowing the drops to fall into a
one-inch-deep layer of fine uncompacted flour. (b) Drop-size distributions for three different
rainfall rates (Marshall & Palmer 1948). (c) Cumulative drop-size distribution
η = ∫ ∞

R p(R, R0)dR resulting from the breakup of a drop with initial radius R0 falling in air
(Srivastava 1971).

interpretations of these facts pertain to the aggregation scenario recalled in Section
2.2, as well as condensation of ambient water vapor and possibly evaporation of drops
(Falkovich et al. 2002, Low & List 1982, Mason 1971, Seinfeld & Pandis 1998), em-
phasizing the (presumed) role of coalescence of the drops in the falling rain. However,
Srivastava (1971) mentions that spontaneous drop breakup could also be incorpo-
rated in the global balance describing drop-size populations and, using Kombayasi
et al.’s (1964) measurements, arguments to interpret Marshall-Palmer’s law on this
basis. The polydispersity of raindrops might be due to the multiplicity of frag-
ments from isolated drops breakups (to this respect, comparing Figures 1 and 8,
the idea is at least tempting), with no appreciable interaction between the drops
themselves.

4. LIGAMENT DYNAMICS

At the core of the droplet-formation mechanism, ligaments are produced if certain
conditions are fulfilled, and their later evolution obeys general rules.

4.1. A Toy Model to Understand Timescales

A ligament is a more or less columnar object attached by its foot to the liquid bulk
from which it has been stripped. When a capillary tube whose end of diameter D
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dips into a liquid is rapidly withdrawn from a free surface, it may entrain a ligament
(Figure 9) at a condition easy to understand by a simple caricature whose interest is
to exhibit limit behaviors and timescales: Suppose that the tube elevation H above
the surface increases at a constant rate β and that the column length L between the
end menisci is proportional to H so that L = D exp(βt) if D is the initial elevation.
The liquid can flow out of the column through the attached end whose surface is
S 
 πξ 2/4 with a velocity u = 2

√
σ/ρξ , as indicated by Bernoulli’s equation applied

between the median region of the column of diameter ξ with capillary pressure 2σ/ξ

and the exit flat surface at zero pressure. With V = π Lξ 2/4 the column volume,
continuity dV/dt = −uS, is

d(ξ 2 L)
dt

= −2

√
σξ 3

ρ
, (4.1)

which is solved in

ξ

D
= e−βt/2

{
1 − 2

3βtD

(
1 − e−3βt/4)}2

with tD =
√

ρD3

σ
. (4.2)

For weak stretching (βtD � 1), the ligament empties completely in a finite time
given by the capillary time tD based on its initial size: ξ/D = (1 − t/2tD)2. The
(unphysical) exponent 2 is a geometrical artifact due to the fixed external length L.
The exponent could be 1/3, 2/5, 1/2, 2/3, or 1 depending on the choices dictated
by other constraints (Burton et al. 2005, Chen & Steen 1997, Eggers 1997, Gordillo
et al. 2005, Marmottant & Villermaux 2004b). Large stretching (βtD � 1) prevents
capillary contraction and the ligament thins at constant volume: ξ/D ∼ exp(−βt/2).
Note that this caricature is far from true as the ligament shape is itself a solution of
the elongation function H(t); the preserved cylindrical shape (with uniform β along
the ligament) is only compatible with an elongation linear in time (Frankel & Weihs
1985). Indeed, the column eventually pinches off from its ends and, since it is no
longer stretched, fragments into drops (Figure 9).

4.2. Linear Rearrangements

Stretching prevents the ligament from emptying and as a corollary damps its desta-
bilization. The early rearrangement dynamics of the fluid particles along a ligament
is well described in the slender-slope approximation (Weber 1931). Its radius r(z, t),
taken uniformly equal to ξ , is initially ruled by a linear evolution

∂2
t r + 2β∂tr + 3

4
β2r − 1

2t2
ξ

(−ξ 2∂2
z r − ξ 4∂4

z r
) = 0 with tξ =

√
ρξ 3

σ
, (4.3)

to which an additional term −3ν
(
∂3

zztr + (β/2)∂2
z r

)
discovered by Trouton (1906)

accounts for viscous slowing that can be added, as well as other corrections that
incorporate the possible viscoelastic rheology of the fluid (Oliveira & McKinley
2005), thereby giving the dynamics of the capillary waves (unstable when βtξ is
weak) along the ligament (Bremond & Villermaux 2006). Note that this solution
describes most of the breakup period, the time lapse of the (fundamentally nonlinear)
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Figure 9
Condition for ligament
formation from the
withdrawal of a capillary
tube (diameter D = 7 mm)
whose end dips into water
(Marmottant &
Villermaux 2004b).
(a) Ligament contraction
with a slow tube elevation
velocity (time intervals
�t = 10.7 ms). (b) Fast
elongation and ligament
formation (�t = 4.5 ms).

pinching period close to the droplet separation being of order 10−3 of the overall
breakup period tξ (Chen & Steen 1997, Eggers 1997). Most of the time is spent
moving the fluid particles apart around the initial ligament shape. Phenomena in
the vicinity of the ultimate separation of the particles are comparatively much more
rapid.

4.3. Overlapping Random Waves

The statistics of heights of a large number of overlapping waves with random ampli-
tude and phase were first examined by Rayleigh (1880b) and since then the “Rayleigh
distribution’’ has been popular in optics, acoustics, and oceanography (Massel 1996,
Roberts & Spanos 1999). Villermaux et al. (2004) proposed another idealization:
When two liquid blobs of different sizes d1 and d2 (with, say, d1 < d2) are connected
to each other, they aggregate due to the capillary pressure difference ∝ σ (1/d1−1/d2).
The time it takes for coalescence to be completed is of order

√
ρd 3

1 /σ , which is also
the time it takes for the neck connecting the two blobs to destabilize and break
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Figure 10
(a) Double-flash exposure of a ligament torn off by the wind (Section 3.1) just before and after
breakup. (b) An isolated ligament covered with blobs of various sizes d matching its local
thickness and (c) sketch of the layer interaction scheme.

(Section 4.1), which results in a nice “coalescence cascade’’ (Thoroddsen & Take-
hara (2000). For this same reason, the blobs constitutive of a ligament tend, as they
detach, to coalesce, thereby forming bigger and bigger blobs (see also observations
by Oliveira & McKinley 2005). If n(d , t)d is the number of blobs constitutive of a
ligament whose size is within d and d + dd at time t (Figure 10), the total number
of blobs is N(t) = ∫

n(d , t) dd . Conjecturing that the sizes of the blobs result from a
random overlap of independent layers whose widths are set by the mean free path of
fluid particles’ radial motions across the ligament, the evolution equation for n(d , t)
follows lines similar to those recalled in Section 2.2 as

∂tn(d , t) = −n(d , t)N(t)ζ−1 + 1
3ζ − 2

n(d , t)⊗ζ , with ζ = 1 + 1
n

, (4.4)

where ⊗ denotes the convolution operation on the linear sizes d . Time t is counted
from the moment when the ligament detaches from the liquid bulk and is made
nondimensional by tξ =

√
ρξ 3/σ , the capillary time based on the initial average blob

size ξ = ∫
dn(d , 0) dd/N(0). Equation 4.4 conserves the net ligament volume V =∫

d 3n(d , t) dd ≡ d 3
0 . The interaction parameter ζ is determined from the initial distri-

bution of blobs along the ligament by ζ = 〈d 2〉0/ξ
2 with 〈d 2〉0 = ∫

d 2n(d , 0) dd/N(0).
A uniform thread of constant thickness (made of many thin layers) has ζ = 1, and
a corrugated ligament (made of a few independent layers) is such that ζ > 1. The
asymptotic solution of Equation 4.4 for pB = n(d , t)/N(t) is a Gamma distribution of
order n = 1/(ζ −1), a convolution of n exponentials arising, as recalled in Section 2.2,
from the aggregative construction of n(d , t), providing

pB (x = d/〈d 〉) = nn

�(n)
xn−1e−nx, (4.5)

where 〈d 〉 = ∫
dn(d , t) dd/N(t) is the current average blob diameter. The Gamma

shapes fit the experimental distributions of the blob sizes before breakup (Figure 11)
and the drop sizes after ligament breakup, as substantiated in this review. For an
initially corrugated ligament, coalescence between the blobs tends to restore the
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Figure 11
(a) Blob-size distribution of
the ligament in Figure 10
just prior to its breakup
fitted by a Gamma
distribution of order
n = 4.5. (b) Evolution of the
roughness ξ of the ligament
(squares) and of the surface
S/S(t = 0) (circles) as a
function of the time in units
of the capillary time tξ . The
continuous line is the
prediction for S(t) based on
Equation 4.4.
(c) Corresponding ligament.

average diameter 〈d 〉 from ξ to d0. This is made at the expense of a reduction of
the blob’s number, decreasing in time as N(t)/N(0) = {1 + N(0)1/nt/n(1 + n/3)}−n;
concomittantly, the average diameter increases like 〈d 〉/ξ ∼ N(t)−1/3, and the net
projected ligament surface S(t) = N(t)

∫
d 2 p(d , t) dd goes like N 1/3 (Figure 11).

4.3.1. Average drop size vs distribution width. The dependence of the resulting
average droplet sizes 〈d 〉 on n presents two distinguished limits: For large n, that is,
for smooth and uniform ligaments giving rise to a narrow size distribution (width
∼1/

√
n ) centered around ξ , one has

ln
〈d 〉
ξ


 1
n

, (4.6)

which are drops sizes proportional to the initially smooth thread diameter, as familiar
from Rayleigh (1879). For small n, representative of corrugated ligaments,

ln
〈d 〉
ξ


 ln
(
N(0)1/3) − 1

3
n ln(n), (4.7)
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giving an average drop size 〈d 〉 ≈ ξ N(0)1/3 = V1/3 = d0 of the order of the whole liga-
ment volume-equivalent sphere diameter. These barely stretched ligaments break into
essentially one big drop plus a few smaller ones and produce the broadest size distribu-
tions compared with those encountered in Section 3.1 with wind drops. Equation 4.7
predicts that thinner, but still corrugated, ligaments formed by faster winds, or when
the capillary breakup slows down due to an increased liquid viscosity (Mabile et al.
2003, Tucker & Moldenaers 2002) so that the ligament is stretched longer (Bremond
& Villermaux 2006), produce not only finer drops, but also a narrower distribution
(Figures 4 and 7). This trend is opposite to the sequential-cascade mechanism for
which the width of the distribution is increasing with cascade step while drop sizes
are decreasing (Section 2.1 and Equation 2.4).

When the diameter d0 is distributed among the ligament’s population like
pL(d0), the size distribution in the spray is p(d ) = ∫

pL(d0)pB (d/d0) dd0. Generically,
pB (d/d0) is narrower than pL(d0) (Figure 7). The composition operation stretches
the large excursion wing of pB (d/d0) over nearly the whole range of sizes d and the
distribution in the spray (Figure 4) coincides with an exponential falloff

p(d ) ∼ exp(−nd/〈d0〉) (4.8)

whose steepness depends on the average ligament volume through 〈d0〉, which also
sets the average drop size in the spray, independent of the Weber number (Simmons
1977a,b)—another fact contrary to the direct-cascade scenario (Sections 1.1 and 2.1).
The exponential shape of the spray’s size distributions originates from the large ex-
cursion tail of Gamma distributions that arise from ligament dynamics, the crucial
step of atomization.

5. RELATED SUBJECTS AND FUTURE DIRECTIONS

Two hundred years after the seminal contributions of Laplace and Young (see the
perspective given in Pomeau & Villermaux 2006), fragmentation remains an exciting
issue in capillary-driven phenomena. Given the diversity of its applications, a number
of facets of the subject have not been alluded to in this review, including:

� Scalar mixing: The concentration distribution P of a dye being mixed in a ran-
domly stirred flow obeys a construction rule identical to that building pB (d )
in Section 4.3. The structure ∂t P = −P + P⊗1+1/n giving rise to Gamma dis-
tributions is also the one encountered in this context (Villermaux & Duplat
2003) because of the linear character of the Fourier equation describing con-
centration evolutions and random stirring. Sultan & Boudaoud (2006) made
a similarly unexpected and striking analogy regarding the statistics of straight
segment lengths in compact crumpled sheets of paper (Figure 12).

� Supercritical atomization: At the crossroads between scalar mixing and atom-
ization are the phenomena occurring (and ceasing to occur!) in the immediate
proximity of the critical point in the neighborhood of the liquid-vapor tran-
sition. There, surface tension and molecular diffusivity vanish. These ther-
modynamic conditions are sometimes encountered in hydrogen/oxygen rocket
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Figure 12
(a) A two-dimensional slice
of a three-dimensional field
of scalar randomly stirred,
exhibiting the structure of
adjacent sheets coalescing
by diffusion. (b) A cut
through a compactly
crumpled sheet of paper.
Courtesy of Etienne
Couturier.

engines (Mayer & Tamura 1996), or realized on purpose to make micronized
particles in the pharmaceutical context (Della Porta et al. 2005).

� Bubbles: The examples discussed here were all about liquid drops forming in
an evanescent environment. There is no reason to think that the same phe-
nomenology and ideas would not apply to the opposite situation of bubbles
forming in a continuous liquid phase: The fundamental instability, that of a
hollow ligament in a liquid, is of the same nature as that of a liquid ligament in
a vacuum (Chandrasekhar 1961). Bubbles entrained at the sea surface by break-
ing waves have size distributions that are likely Gamma distributions (Loewen
et al. 1996, Wu 1981).

� Effervescent atomization: A fascinating problem and very efficient atom-
izing process (Sovani et al. 2000) is the explosion of cavities in a liquid
volume (expanded microbubbles injected in situ, dissolved gazes, etc.). The
two-dimensional version of it, a film bursting by hole nucleation (Figure 13),
suggests that interesting geometrical ingredients probably influence final drop-
size distributions.

Future directions in fragmentation research may concern fundamental issues as
well as extensions to other areas, including:

� Ligament dynamics and energetic balances: The idealization of coarsening dy-
namics in a ligament is, despite its successes, highly conjectural, and it is nec-
essary to make a deeper connection with detailed fluid mechanics. This would,
in particular, clarify the partition, while drops separate, between surface energy
creation (which represents about 10% of the initial available energy; see Clanet
& Villermaux 2002), remnant kinetic energy of the drops (weak in general),
and viscous dissipation (therefore, huge)—a question for which we have no ab
initio principle (see also Qian & Law 1997).

� Foams: Adjacent cells in a foam have generically different internal pressures, and
exchange the embedded gas phase through their separatrix with their neighbors,
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Figure 13
Bursting of a soap film accelerated by the impact of a shock wave. The initially connex film
nucleates holes that grow to form a web of ligaments breaking into droplets. Time goes from
left to right with time step �t = 0.05 ms. Incoming wave Mach number is M = 1.07
(Bremond & Villermaux 2005).

resulting in a rate of change of their area determined exactly (in two dimensions)
from their number of sides (von Neumann 1952). It will be interesting to see
if an interaction rule of a random aggregation type could produce cell area
distributions along the paradigm discussed in Section 4.3, an option that has
not, surprisingly, been considered.

� Solid fragmentation: Research on solid and liquid fragmentation has often
been concomitant, and sometimes conducted by the same experimentalists
(Heywood 1933, Rosin & Rammler 1933). Are there common principles?
Fragmentation of brittle solids is a world that has developed its own meth-
ods, sometimes close to those exposed in Section 2 (Grady & Kip 1985, Mott
1947), and recently inspired by those of critical phenomena (Fisher 1963) in
search of universal power laws (Oddershede et al. 1993, Wittel et al. 2004),
a description also popular for nuclear fission. However, Gladden et al. (2005)
have shown that in dynamical impact of rods, subsets of the fragment sizes
could be interpreted by standard linear elasticity. Will the entire distribution
be understood along these lines?
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