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A round liquid jet with density ρ, surface tension σ and diameter D0 impacting a solid
circular surface at normal incidence with velocity U0 takes the form of a radially
expanding sheet whose thickness decreases with distance from the impact point. When
the sheet develops in a still environment with density ρa = αρ, it destabilizes, provided
the impacting Weber number We = ρU2

0D0/σ is larger than about 40α−1/2, as a result
of a shear instability with the surrounding medium, in a sinuous, flag-like motion.
We show how the instability properties set both the radial extent of the liquid sheet
and the drop formation process at its rim. The shear instability gives the liquid a
flag-like motion, ultimately triggering a Rayleigh–Taylor instability at the rim of the
sheet which disintegrates, at the radial location R, into disjointed droplets of size d
such that

R/D0 ∼ α−2/3We−1/3 and d/D0 ∼ α−2/3We−1.

The features of the sheet instability, its radius and the droplet sizes are determined
experimentally for a broad range of control parameters, using different liquids and
ambient-medium densities.

1. Introduction
Most natural or man-made atomization processes involve, at least transitorily, the

formation of a liquid sheet before the formation of drops from an initially compact
volume of liquid. There are numerous examples of specific applications using sprays
for which the quality of the droplet dispersion has a direct impact on performance,
reliability or comfort, ranging from agricultural sewage through liquid and diesel
propulsion, to sprayed cosmetics (Bayvel & Orzechowski 1993; Lefebvre 1989). In
these contexts, the need to have an a priori estimation of the typical droplet size
and, better, of the whole droplet size distribution in terms of the external control
parameters is frequently expressed. In this respect, knowledge of the transition from
sheet to drops is of practical interest.

The inspiration of Félix Savart was of a more heuristic nature when he devised
a simple process to form an axisymmetric liquid sheet by letting a round liquid jet
impact a flat circular surface (Savart 1833). An account of the contribution of this
seminal work, collected in four consecutive papers, to subsequent developments is
given in Clanet & Villermaux (2002).

In the contributions inspired by Savart, particularly the experimental ones (see e.g.
Taylor 1959a, b and Huang 1970) various aspects of the problem have been studied
regarding the shape and the radial extension of the sheet, and its stability, but a
systematic study of the droplet formation from the sheet as it breaks has never
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Figure 1. Top and side views of an axisymmetric liquid sheet resulting from the impact of a round
liquid jet on a flat disc, in the regime analysed in this paper, as first depicted by Félix Savart in
1833. The jet impact velocity is kept constant equal to 10 m s−1 and its diameter decreases gradually
from left to right by an overall ratio of 6 between Fig. 5 (D0 = 14.4 mm) and Fig. 10 (D0 = 2.4 mm).
The overall shape of the sheet is insensitive to gravity in this limit. Savart also notes that the sheet
diameter decreases with increasing velocity for a given jet diameter. (Extract from Plate 4 of Savart
1833).

been attempted. Taylor (1959b) merely notes that “The drops are on the average
of order 1 to 3 mm diameter so that they were of order 100 times the thickness
of the sheet (i.e. from which they detach)” and later in the same paper “So far no
mechanism has been put forward to describe the separation of the fluid contained
in these edges from the continuous part of the sheet.” This is curious since the
breaking of the sheet into disjointed droplets is an obvious feature of the problem,
and understanding the size of the droplets detaching from the sheet is a priori a
question of equal interest to the question of understanding its radial extension from
the impact location to the breaking region. Complete studies on the drop formation
process from liquid sheets are scarce due less to the lack of interest in the physics of
divided matter in the nineteenth century than to the lack of reliable experimental tools
to measure droplets and characterize their distribution (the observations of Savart
were made by eye . . . !). As Lord Rayleigh speculated in ‘applications of photography’
(Rayleigh 1891) present digital and high-speed video capabilities allow progress on
this issue.

Clanet & Villermaux (2002) have investigated the smooth regime of the liquid sheet
development, a regime in which the sheet development is basically independent of the
medium in which it develops and in which the global features of the sheet (its radial
extension) and detailed features (the size of the drops detaching from it) are intrinsic
to the physical properties of the liquid. In the present paper, which concerns higher
impact Weber numbers, the surrounding medium will be shown to play a dynamical
role in both the sheet diameter, and the droplet size. We will show that these two
quantities are linked to each other and that understanding the processes by which the
droplets form provides de facto the sheet extension.

The distinct properties of this new regime are presented in § 2. Interacting with
the ambient medium, the sheet destabilizes in a flapping motion and, in contrast
to the trend for the smooth regime, the sheet diameter decreases with increasing
impact velocity. This had been identified by Savart (figure 1). In § 3, we discuss the
nature of the interaction and we analyse quantitatively the features of the instability
involved in this problem in § 4. Then § 5 is devoted to the analysis of a destabilization
criterion of the sheet rim, the sheet diameter and droplet sizes, before the possible
extension of the results to other related configurations is discussed in the concluding
§ 6.
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2. Flag regime: sheet diameter and droplet size
2.1. Experimental set-up and methods

The set-up is identical to the one used in Marmottant, Villermaux & Clanet (2000)
and Clanet & Villermaux (2002) to which the reader is referred for details. A round
liquid jet impacts a flat solid circular surface with velocity U0 and forms a liquid sheet
that expands radially. The results presented here have been obtained with a potential,
non-turbulent liquid jet (of water ρ = 1000 kg m−3, σ = 72 × 10−3 N m−1, or ethanol
ρ = 800 kg m−3, σ = 24 × 10−3 N m−1) of diameter D0 = 2.7 mm or 3 mm, impacting
on a solid surface of diameter Di = 6 mm, in ambient air (ρa = 1.2 kg m−3). It was
possible to immerse the jet and the impacting device in a large tank open at its top,
which could be filled with a dense gas, SF6, whose density at atmospheric pressure is
ρa = 6 kg m−3.

A thin argon-ion laser (1 W at 488 nm) sheet making the liquid, seeded with a
fluorescent dye, visible as a corrugated ribbon could be fitted perpendicular to the
liquid surface, allowing the study of the spatial development of its instability. The
droplet distributions were obtained from backward illuminated video images digitized
using a Neotech 8 bit A/D converter and an appropriate thresholding technique.
Time-resolved sequences of the sheet dynamics were obtained with a Kodak 4500HS
high-speed video camera.

2.2. Sheet diameter and droplet size

The radial development of the liquid sheet from the jet impact location is accompanied
in this regime by a distinct flapping motion which gives the sheet a ‘blurred and stirred’
visual aspect, in the words of Savart. As shown on figure 2, this undulatory motion
is characterized by a regular spacing λ between the crests (see also Huang 1970). The
wavelength of this undulation is a decreasing function of the jet velocity U0. For U0

about 10 m s−1, λ is of the order of a centimetre. The frequency of the disturbances at
the sheet rim is of the order of 1 kHz, consistent with the distinct flapping tone audible
in this regime. Also shown on figure 2(b) is a side view of the sheet highlighting the
azimuthal corrugations of the wave crests. The spacing between these corrugations is
not easily quantifiable and is roughly, although no precise measurements are available,
proportional to the primary wavelength λ.

Once this flapping motion appears, the sheet radius starts to decrease as the
Weber number is further increased. This happens for a smaller Weber number when
the density of the surrounding environment is higher, as shown on figure 3: the
phenomenon occurs for We & 103 with the water/air combination, and for We & 500
with the water/SF6 combination. The rate of decrease is slower than was the rate of
increase of the sheet radius in the smooth regime (see Clanet & Villermaux 2002 who
have also compiled measurements from other authors), and follows a trend which
is apparently independent of the ambient density, though the absolute magnitude
depends on ρa (figure 3).

As figure 2 suggests, the liquid sheet disintegrates at a substantially smaller scale
than the primary wavelength λ, via indentations of the rim from which small droplets
detach. The droplet size (figure 4) is smaller and also decays much faster with
increasing jet velocity U0 (or with increasing Weber number We = ρU2

0D0/σ, as will
be shown later) than in the previously analysed smooth regime. These are the distinct,
and salient features of the ‘flag regime’ that we wish to investigate in the rest of the
paper. We begin with the study of the basic flapping motion, whose origin is discussed
in the next section.
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(a)

(b)
1 cm

Figure 2. (a) Snapshots of the destabilization of the moving sheet due to the shear instability in
still ambient air. (b) Side view highlighting the azimuthal corrugations of the wave crests.

3. Mode selection and wavelength
3.1. Instability mechanism

The undulatory shape of the sheet as it propagates at constant velocity in a still
environment results from a Kelvin–Helmholtz type of instability, as first analysed, in
the context of liquid sheets, by Squire (1953), York, Stubbs & Tek (1953) and Hagerty
& Shea (1955). The relevant mechanism explaining the instability was provided by
Rayleigh (1879) (see also Lamb 1932 for historical references). The coupling of
the sheet disturbances on both sides by the pressure inside the liquid allows only
two destabilization modes: an antisymmetrical, sinuous mode, and a symmetrical,
dilatational mode (see figure 5).

We first provide a qualitative argument similar to the one derived by Villermaux
(1998) for shear instabilities between parallel, infinite media explaining why the
sinuous mode is the preferred unstable mode. Then we discuss the condition for the
instability to occur and the wavelength at which it is most amplified. By momentum
conservation, the velocity in the liquid sheet is conserved and equal to its value just
downstream of the impartor’s lip. In the following we neglect the weak momentum
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Figure 3. Diameter of the flat liquid sheet 2R normalized by the jet diameter D0 versus the
impact Weber number We = ρU2

0D0/σ (the liquid is water, ρ = 1000 kg m−3). The two sets of
measurements are obtained with two different ambient gas densities: •, air (ρa = 1.2 kg m−3); ◦, SF6

(ρa = 6 kg m−3).
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Figure 4. Droplet mean arithmetic diameter d/D0 versus Weber number. There is a strong inflection
around We = 103 (the ambient medium is air, ρa = 1.2 kg m−3). •, Ethanol (ρ = 800 kg m−3);
◦, water (ρ = 1000 kg m−3). D0 = 2.7 mm.

loss at the impact (see Clanet & Villermaux 2002 for a discussion of this effect), and
use the jet velocity U0 as the velocity of the liquid in the sheet.

Let us first consider the sinuous mode (figure 5a). Let λ be the wavelength of
the undulation, with an amplitude ξ. We choose λ larger than the sheet thickness
h a priori. Because of incompressibility, the pressure difference in the surrounding
medium in the vicinity of the sheet between the crests of the liquid sheet and the
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Figure 5. Sketch of the two possible destabilization modes of a liquid sheet moving in a still
ambient medium: (a) sinuous mode, (b) dilatation mode.

troughs is given by

δp = pB − pA ∼ ρaU
2
0

ξ

λ
. (1)

The growth rate of the instability rS = ξ̇/ξ derives from a balance of force per unit
length in the direction perpendicular to the sheet:

ξ̈ ∼ r2
Sξ ∼ 1

ρ

δp

h
, (2a)

that is

rS ∼ U0

λ

√
ρa

ρ

√
λ

h
. (2b)

Note that rSh/U0 ∼ (h/λ)1/2, that is rSh/U0 ∼ (kh)1/2 with k = 2π/λ the undulation
wavenumber.

Consider now the dilatational mode (figure 5b). The pressure difference δp given
in (1) now sustains a flow from the pinched regions of the sheet, corresponding to the
troughs of the undulation in the surrounding phase, towards the adjacent thickened
regions of the sheet, which correspond to the crests. Since the crests and the troughs
are separated by a distance λ/2, the velocity u of this inviscid induced flow in the
liquid in the direction parallel to the sheet is such that

u̇ ∼ 1

ρ

δp

λ
, (3)

and mass conservation is such that

hu ∼ λξ̇, i.e. u̇ ∼ λ

h
ξ̈ =

λ

h
r2
Dξ. (4)

Therefore, the growth rate of the dilatational mode of instability rD is

rD ∼ U0

λ

√
ρa

ρ

√
h

λ
. (5)

Note that rDh/U0 ∼ (kh)3/2 and that rD differs from the growth rate of the sinuous
mode rS by a factor kh ∼ h/λ. This factor is, in practice, always much smaller than
unity. The reason is that the wavelength selected by this instability, λ, for which
the destabilizing pressure ρaU

2
0 and the curvature restoration constraint σ/λ due to
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Figure 6. Dispersion relations of the two destabilization modes: (a) sinuous mode,
(b) dilatation mode. Weh = 500, α = 1.2× 10−3.

capillarity are balanced is such that

λ ∼ σ

ρaU
2
0

, (6)

and this makes the factor h/λ of order (ρU2
0h/σ)(ρa/ρ). When the sheet-thickness-

based Weber number Weh = ρU2
0h/σ is of the order of 100, and when the liquid sheet

moves in a much less dense environment such as a gas phase, as in many situations
and as in the present study in particular, the sinuous unstable mode is thus preferred.

Taking interface disturbances proportional to eikx−iωt, where x is the sheet propa-
gation direction, and with κ = kh, Ω = ωh/U0 and α = ρa/ρ, the dispersion relations
of this instability can be written

(Ω − κ)2 Ψ
(κ

2

)
+ αΩ2 =

κ3

Weh
, (7)

with Ψ ( 1
2
κ) = tanh( 1

2
κ) for the sinuous mode and Ψ ( 1

2
κ) = 1/tanh( 1

2
κ) for the

dilatational mode. These dispersion relations are displayed on figure 6 for Weh = 500
and α = 1.2×10−3 (a typical water–air experiment) to illustrate their consistency with
the above trends. Note that, as anticipated, the sinuous mode amplifies wavelengths
much larger than the sheet thickness, so that Ψ ( 1

2
κ) ≈ 1

2
κ in practice.

3.2. Threshold

Unlike the shear Kelvin–Helmholtz instability between two infinite media (in the
absence of gravity perpendicular to the interface) which occurs even for vanishingly
small shear, the destabilization of a sheet of finite thickness presents a threshold
below which the sheet is stable for all wavenumbers. Indeed, as can be seen from
equation (7), and also equation (10) below, the sheet-thickness-based Weber number
Weh = ρU2

0h/σ must be larger than 2 for a range of wavenumbers to be unstable.
In this Weber number and owing to the instability mechanism described in § 3.1,
the velocity U0 stands for the velocity difference between the phases, whatever the
frame of reference, i.e. the temporal instability problem is Galilean invariant. The



348 E. Villermaux and C. Clanet

reason for this distinction lies in the peculiar form of the group velocity dependence
of the capillary waves at small k in the two cases. Let us consider α as very small
for simplicity. The dispersion relation of the capillary waves on the interface at rest
is ω2 = σk3/ρ for an infinite extension of the liquid in the direction perpendicular to
the interface, and is ω2 = σk3/(ρ tanh( 1

2
kh)) for a liquid layer of thickness h, giving in

the long-wavelength limit kh� 1, ω2 = 2σk2/ρh. The group velocity in both cases is

thus vg = 3
2

√
σk/ρ for the infinite medium, and vg =

√
2σ/ρh for the finite size layer.

In the infinite liquid thickness limit, the group velocity of the waves decreases
continuously as k goes to zero since, because of incompressibility, the inertia of the
liquid is proportional to the wavelength 2π/k. There will thus, in this limit, always
exist a wavenumber range for which the group velocity is smaller than a given velocity
difference U0 with the less dense phase, which sets the destabilizing pressure scale
discussed in § 3.1, i.e. ρaU

2
0 . As soon as there is a velocity difference between the

phases, the instability occurs.
Now, the group velocity of the waves on a sheet with a finite thickness has a

non-zero minimum value as k goes to zero, equal to
√

2σ/ρh, precisely because the
inertia of the liquid is fixed by the sheet thickness, independently of the wavelength.
The velocity difference with the less dense phase U0 thus must be larger than

√
2σ/ρh

for an instability to be possible. Otherwise, the capillary waves propagate without
amplification as can be seen from equation (7) (see also Taylor 1959a). This condition
implies

U0 >

√
2σ

ρh
, i.e. Weh > 2, (8)

as can be seen, again, from equations (7) and (10), providing the threshold condition.
Note that the dynamics of these liquid sheets in the long-wave limit bears a strong

similarity with fluid–structure interaction problems, as first investigated by Bourrières
(1939). The generic problem is the buckling of a pipe conveying fluid (see the review
by Päıdoussis & Li 1993). Leaving aside the flexural rigidity of the pipe which has no
counterpart in Newtonian liquids, the two problems are analogues, the mass per unit
length of the pipe m playing the role of the density ρa of the outer medium and the
axial tension of the pipe T the role of the liquid surface tension σ, as can be seen
from the evolution equation of the lateral deflection of the pipe envelope y(x, t)

(m+ ρS)
∂2y

∂t2
+ (ρSU2

0 − T )
∂2y

∂x2
+ 2ρSU0

∂2y

∂x∂t
= 0,

where ρS denotes the mass per unit length of the liquid in the pipe. The dispersion
relation of the above equation is equivalent to the long-wave limit of equation (7)
(see also De Langre & Ouvrard 1999).

4. Mode selection on a continuously thinning sheet
4.1. Dispersion relation

The thickness h(r) of a radially expanding liquid sheet resulting from the impact of a
jet on a solid axisymmetric surface decreases with the radial distance r. It has been
shown in Clanet & Villermaux (2002) that, as a consequence of mass and momentum
conservation, the thinning of the sheet is described by

h(r) =
D2

0

8r
(9)
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until a particular effect at the rim of the sheet fixes its radius R. In the smooth regime,
the value of R is fixed by the equality of the incoming, conserved momentum flux ρU2

0

with the capillary constraint at the rim 2σ/h(R). When the sheet sustains a sinuous,
flag-like instability, it will be shown in § 5 that the mechanism which causes the sheet
to disperse into droplets, and therefore which limits the radius of the continuous
part of the sheet is specific and directly associated with the features of the flag
instability.

The thinning of the sheet along the radius r does not alter the selection of the order
of magnitude of the instability mode since, as discussed above, the most amplified
wavelength (6) is independent of the sheet thickness. The associated growth rate is,
in turn, a function of the thickness: when Weh � 2, the instability is increasingly
amplified as the sheet thins, as can be seen from equation (2b) and figure 6, and
its growth is slowed down as Weh approaches 2. If it is expected that the most
amplified wavelength at any radial position r on the sheet will scale like equation
(6), its precise value depends on the relative history of each mode in the dispersion
relation (7) incorporating its sensitivity to the local sheet thickness (9) accounted for
by the thickness-based Weber number. The dispersion relation Ω(κ) of the sinuous
mode is, according to (7) in the limit κ� 1,(

1 +
2α

κ

)
Ω = κ

{
1±

√
2α

κ

(
2

Weh
− 1

)
+

2

Weh

}
, (10)

providing, when Ω is split into a real part Ωr and an imaginary part Ωi,

Ωr =
κ

1 + 2α/κ
, (11)

Ωi =
(2κ)1/2

1 + 2α/κ

{
α

(
1− 2

Weh

)
− κ

Weh

}1/2

(12)

where only the positive determination of Ωi in the unstable range has been retained.
Weihs (1978) provides a similar result in axisymmetric coordinates.

Defining the dimensionless radius and wavenumber as r̃ ≡ 16r/D0 and k̃ ≡ kD0,
we rewrite (11) and (12) accounting for the radial evolution of the thickness (9) as

ωrD0

U0

=
k̃

1 + αr̃/k̃
(13)

ωiD0

U0

=
(αk̃r̃)1/2

1 + αr̃/k̃

{
1− r̃

We
− k̃

αWe

}1/2

, (14)

where We = ρU2
0D0/σ. The amplification factor at the radial position r of an initial

disturbance of amplitude a(k, 0) is such that

s(k̃, r̃) = ln

(
a(k̃, r̃)

a(k̃, 0)

)
=

∫ t

0

ωi dt,

that is,

s(k̃, r̃) =

∫ r̃

0

ωi
dr

vg
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Figure 7. (a) Amplification factor s(k̃, r̃) of equation (15). (b) Maximal amplification given by
equation (16). We = 1600, α = 1.2/1000.

with vg = dωr/dk the group velocity of a modulation of wavenumber k at the radial
location r. From equations (13) and (14), we have

s(k̃, r̃) =
1

16

∫ r̃

0

dr
1 + αr/k̃

1 + 2αr/k̃
(αk̃r)1/2

{
1− r

We
− k̃

αWe

}1/2

. (15)

4.2. Most amplified wavenumber and spatial growth

The shape of the amplification factor s(k̃, r̃) is displayed on figure 7 for the maximal
range of variation of the scaled coordinates r̃ and k̃ above, i.e. 0 < r̃ < We and
0 < k̃ < αWe. As expected from the above discussion, s(k̃, r̃) increases with r̃ for
small r̃, and then saturates, because of the thinning of the sheet. The increase is
fairly independent of k̃ for small r̃ and the maximal amplification of wavenumber k̃
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(a)

(b)

Figure 8. Transverse cut of the liquid sheet along its radius with a planar laser illumination. (a) A
succession of instantaneous views showing the shape of the sheet as it breaks close to the rim, from
top to bottom with a time interval of 2.2 ms. (b) Average probability of concentration field c(r, y);
r is the coordinate parallel to the sheet, and y is the coordinate perpendicular to it. The width of the
images covers radial distances ranging from r = 0 to 50D0, with D0 = 3 mm. Air/water, We = 1600.

is obtained for s(k̃,We− k̃/α), found from (15) to be close to

s(k̃,We− k̃/α) ≈ απWe2

128

(
k̃

αWe

)1/2(
1− k̃

αWe

)2

, (16)

and whose maximum provides the most amplified wavenumber

k̃max =
αWe

5
, (17)

consistently with equation (6). The transient growth along the sheet radius of the
disturbances can be followed by making a cut through the liquid, perpendicular to
the undisturbed interface, using a planar laser illumination. When the liquid has been
seeded with a fluorescent dye, the sheet appears as a bright corrugated ribbon on a
dark background (figure 8). As long as the liquid sheet remains continuous, that is
before it breaks into droplets, the evolution of the transverse width of the brightness
concentration profile along r reflects directly the disturbance spatial amplification
which can, at least in the linear part of the instability development, be compared with
(15).

Specifically, if c(r, y) denotes the brightness concentration of the average field
of figure 8(b), the thickness δ(r) = c(r, 0)/(dc(r, y)/dy)max is a measure of the mean
transverse width of the liquid sheet profile, reflecting the instability amplitude to some
proportionality factor (see also Taylor 1960; Asare, Takahashi & Hoffman 1981). The
evolution of δ(r) is shown on figure 9 for We = 1600. Also shown on figure 9 is the
prediction from the amplification factor of equation (15) corresponding to the most
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Figure 9. Radial evolution of the thickness δ(r) of the concentration profile c(r, y) for We = 1600,
α = 1.2× 10−3 (air/water). The continuous line is the amplification predicted by equation (18).

amplified wavenumber derived in (17)

s(k̃max, r̃) ≈ αWe1/2r̃3/2. (18)

The radial increase of δ(r) is stronger than exponential because of the thinning of the
liquid sheet, as can be seen from equations (12) and (15).

4.3. Group velocity

Another specific consequence of the liquid sheet thinning due to its axisymmetric
development is the radial evolution of the group velocity vg = dωr/dk:

vg = U0

2αr̃/k̃ + 1

(αr̃/k̃ + 1)2
. (19)

The group velocity can be measured from the radial displacement of the crests of
the sheet disturbances, on a time-resolved movie of the instability development, as
illustrated on figure 10. It is observed, as shown on figure 11, that the velocity of the
crests gradually decreases as they approach the sheet rim, where they almost stop as
they break into droplets. The regular decrease of their group velocity far from the
rim is compared on figure 11 with the one expected from equation (19) for, again, the
most amplified wavenumber kmax. Note that the same procedure of using a passive
marker on the liquid had confirmed, as explained in Clanet & Villermaux 2002, that
the liquid radial velocity is constant and equal to U0 from the impact to the rim in
the smooth regime.

Finally, and once the group velocity of the crests is known, the mode selection of
this instability can be investigated experimentally by measuring the duration of the
time interval between two crests as they reach the rim. This is an observable which
is determined in a much more deterministic way than the direct visualization of the
wavelength on instantaneous pictures. Indeed, the gradient of group velocity on r
induces a slight wave compression close to the rim which makes the measurement
of the wavelength fuzzy. On the other hand, this compression phenomenon does not
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Figure 10. A time-resolved series of the sheet undulation waves propagating towards the rim.
Ethanol/air (α = 1.2/800). We = 1800. The images are equally spaced in time, from top to bottom,
left then right, and the whole series last for about 8 ms. The distance between two consecutive crests
is about 3 cm.

affect the passage frequency 1/τ of the sheet undulation crests, which is conserved
along r. From (17) and (19), we have, with λ = 2π/kmax.

τ =
λ

vg
=

10πσ

ρaU
3
0

, (20)

a relation which is found to be in quantitative agreement with the measurements of
τ for a range of Weber number covering a decade (figure 12).
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Figure 11. Radial evolution of the velocity of the crests as they approach the rim for conditions
identical to those of figure 10. The rim location is R/D0 = 50 approximately. The continuous line

is the dependence expected from equation (19) with k̃ = k̃max. Note the rapid decrease of the speed
of the waves (highlighted by the black dots) as they reach the rim and break into droplets.
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Figure 12. Time interval τ between the passage of two consecutive crests at the rim compared to
the expected interval of equation (20). Ethanol/air (α = 1.2/800). The Weber number ranges from
103 to about 104 for these measurements.

5. The sheet disintegration criterion

From the features of the primary shear instability, we propose in the following
a possible mechanism for the sheet disintegration. The aim is to predict the critical
amplitude of the primary waves on the sheet at breakup, the radial location of the
breakup, and the resulting droplet sizes.
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λ

γ

Figure 13. Sketch of the shape of the liquid sheet y(r, t) close to the rim showing a primary
undulation of wavelength λ and the component γ of the acceleration experienced by the liquid
parallel to the sheet.

5.1. Acceleration at the rim

In the frame of reference of the liquid propagating at constant velocity in the plane
of the sheet, the periodic passage of the sheet undulations gives the liquid a periodic
acceleration. The forces acting on a fluid particle moving in the sheet are nearly
balanced: they are strictly balanced when α = 0 (when the surrounding medium has a
vanishingly small density) since in that case the sheet sustains neutrally stable waves
resulting from the equilibrium between the liquid inertia and surface tension as shown
by equation (7). When α 6= 0, the disequilibrium induced by the depressions in the
ambient phase result in the increase of the wave amplitude through the instability
we have described in § 3. However, because of the difference in velocity U0 − vg
between the liquid and the waves, a fluid particle experiences transient accelerations.
In particular, the component γ of the acceleration parallel to the sheet is alternately
directed towards the incoming liquid and in the opposite direction (figure 13). This
component of the acceleration is obviously the one that tears off the drops from the
continuous part of the sheet at its rim, when the force balance ensured by surface
tension has been broken. Similarly, the rim destabilization of rotating liquid films,
such as those formed in spinning cups (see e.g. Eisenklam 1964; Fraser et al. 1963;
Hinze & Milborn 1950) involve centrifugal forces whose direction lies in the plane
of the sheet. The problem to solve is to find how these transient accelerations are
involved in the process which prevents the sheet from remaining continuous, i.e. the
breakup process at the rim.

We know from Rayleigh (1883) and Taylor (1950), that a density interface separat-
ing two infinite media subjected to an acceleration may be unstable. The instability
occurs under gravity when a heavy layer is supported by a light one (which was
the situation investigated by Rayleigh) and equivalently under the acceleration of
the whole system in the direction towards the denser fluid. A layer of dense fluid
immersed in a lighter fluid accelerated perpendicular to its plane is also unstable,
as shown by Taylor (see also Keller & Kolodoner 1954). For a density interface
separating two infinite media subjected to an acceleration γ, as is the case if one
considers the sheet rim and the component of the acceleration parallel to the sheet,
the range of unstable wavenumbers extends from 0 to kc =

√
(ρ− ρa)γ/σ and the

most amplified wavenumber is kc/
√

3.
The procedure adopted here is the following: we assume the existence of a Rayleigh–

Taylor type of instability at the sheet rim triggered by the periodic passage of the
sheet undulations. We compute the magnitude of the acceleration γ induced by the
undulations as a function of their wavelength λ, amplitude ξ and passage period τ.
Then we compute the growth rate s of the Rayleigh–Taylor instability as a function
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of γ and we assume that the instability will set in as soon as s−1 is shorter than
the persistence time of γ. Since the acceleration γ is oscillating in time, we mean by
‘persistence time’ the time during which the acceleration is larger than a given level.
From there, the problem is closed, providing the intensity of γ, the corresponding
critical amplitude ξ and finally the typical size of the small-scale rim indentations,
namely the Rayleigh–Taylor wavelength λ⊥ ∼

√
σ/ργ.

Since the amplitude of the primary wave is a function of the radial location, the
determination of the critical amplitude for breakup also sets the sheet radius R. The
droplet size resulting from the pieces of liquid torn off from the sheet rim follows.
The primary wavelength is always smaller than the sheet radius (i.e. λ/R � 1) and
we formalize the problem in a Cartesian frame, the direction r being aligned with the
radius of the sheet. The shape of the undulated sheet close to the rim is

y(r, t) = ξ(R) cos

(
2π

(
t

τ
− r

λ

))
, (21)

where ξ(R) is the amplitude of the crest corrugations close to the rim, τ the passage
period of the crests at the rim given by equation (20), and λ their wavelength. The
acceleration γ experienced by the sheet parallel to itself is γ = (∂2y/∂t2)(∂y/∂r), that
is

γ ∼ λ

τ2

(
ξ(R)

λ

)2

sin

(
4π
t

τ

)
=
U2

0

λ

(
ξ(R)

λ

)2

sin

(
4π
t

τ

)
(22)

at the rim. We have deliberately removed the spatial constant (r = R) phase factor in
(22), since the discussion below will only be concerned with the temporal modulation
of γ. We have for simplicity approximated the velocity difference between a fluid
particle in the sheet and the waves velocity by U0, a fair estimate close to the rim. The
oscillation frequency of γ is twice the passage frequency. Note that γ is, as expected,
a function of the aspect ratio of the wave ξ(R)/λ. During half of the oscillation
period of γ, that is for a maximal time interval λ/4U0, the acceleration γ is negative,
oriented in the direction towards the liquid. During that time interval, the rim is
thus potentially unstable in the sense of Rayleigh–Taylor. For the instability to occur,
however, the persistence time of a given acceleration level γ has to be larger than the
inverse of the growth rate of the Rayleigh–Taylor instability based on this acceleration
level. Specifically, the (inviscid) instability growth rate is

s ∼
(
ργ3

σ

)1/4

, (23)

and if ∆t(G) represents the time interval during which the acceleration is larger than,
say Gγmax (see figure 14a), with γmax = (U2

0/λ)(ξ(R)/λ)2, then the condition for onset
of the instability is

∆t(G) > s−1(G). (24)

The time interval ∆t(G) is

∆t(G) =
λ

4U0

(
1− 2

π
sin−1(G)

)
, (25)

and together with relations (17) and (23), condition (24) provides

G3

(
1− 2

π
sin−1(G)

)4(
ξ(R)

λ

)6

> α. (26)
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Figure 14. (a) Half of the oscillation period of the sheet acceleration during which the rim is
Rayleigh–Taylor unstable. ∆t(G) represents the time interval during which the acceleration is larger
than Gγmax. (b) The aspect ratio of the undulation waves at the rim as they break, ξ(R)/λ, versus
G given by equation (26).
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Figure 15. The aspect ratio of the undulation waves at the rim as they break, 2ξ(R)/λ, as a
function of the Weber number.

It is seen on figure 14(b) that the above condition is fulfilled, for α = 1.2/1000, once

ξ(R)

λ
> 0.6 = 1.85× α1/6 and G ≈ 0.58. (27)

Note that since G < 1 by construction, condition (26) can be approached analytically:
making sin−1(G) ≈ G, one finds that ξ(R)/λ > (147α/84(3π)3)1/6 ≈ 0.6 for G = 3π/14,
consistently with the full solution of (26) displayed on figure 14(b). For a broad range
of Weber numbers in the flag instability regime, the aspect ratio of the waves is found
to be a constant, to the extent that this quantity can be measured with accuracy
(see figure 15), and of order unity, consistently with (27). In the scenario we have
depicted above, the order of magnitude of the small-scale rim indentations is expected
to be given by the Rayleigh–Taylor wavelength λ⊥ ∼

√
σ/ργ estimated at the critical

acceleration corresponding to the conditions (27), and is therefore

λ⊥ ∼ σ

ρaU
2
0

(
ρa

ρ

)1/3

, i.e.
λ⊥
λ
≈ α1/3 ≈ 0.1, (28)
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an acceptable order of magnitude if one considers, for instance, figure 2. Note that
this scenario is not intended to account for the waviness of liquid sheets at a scale
much larger than their thickness, as one can see from figure 2, whose origin requires
examination (see e.g. Bernal & Roshko 1986; Kim & Sirignano 2000), but rather
is intended to represent the fine-scale indentations of rim as droplets tear off. The
mechanism we have proposed is, in essence, distinct from a parametric instability, or
Faraday mechanism. The reason is that the basic state, that is the shape of the rim in
the smooth regime, does not sustain waves (the large cusps at the sheet rim are steady
on a short timescale, see Clanet & Villermaux 2002), which could otherwise be excited
by the incoming undulations of the sheet. On the contrary, the rim behaves, in the
scenario we describe, as a filter, whose motion follows those imposed by the incoming
undulations up to a cut-off frequency, equal to the growth rate of a Rayleigh–Taylor
instability, above which it disintegrates.

5.2. Liquid sheet radius

We have just shown that the liquid sheet is likely to break up once the primary
undulations have reached a critical aspect ratio, namely ξ(R)/λ ≈ 1.85 × α1/6. This,
since we know how the amplitude depends on the radial location (equation (18) and
figure 9), conversely fixes the sheet radius R. Since

ln

(
ξ(r)

ξ(0)

)
≈ αWe1/2r3/2, (29)

the critical radius is

(α1/2We)1/3 α
1/2R

D0

∼
(

ln

(
1.85D0/ξ0

α5/6We

))2/3

≈ const, (30)

the logarithm evolving only slightly with the Weber number because of the large
value of its argument due to the large value of D0/ξ(0).

The sheet radius R/D0 decreases like α−2/3We−1/3 with increasing Weber number,
because the critical aspect ratio of the primary waves is reached earlier when the
Weber number is larger. The above evolution law for the sheet radius is expected to
hold once R given by (30) becomes smaller than the radius characterizing the smooth
regime and which was found to be R/D0 ∼ We (see Clanet & Villermaux 2002).
Therefore, the critical Weber number above which the flag instability regime sets in
is such that

α1/2Wec = const. (31)

The value of the constant is 40, as can be seen from figure 16.
Equation (31) has a special meaning as it expresses the crossover between the two

acceleration scales which cause the droplets to detach from the continuous liquid sheet.
The relevant acceleration in the smooth regime was shown in Clanet & Villermaux
(2002) to be given by U2

0/R, where R is the radius of curvature of the cusps-like
indentations close to the sheet rim, given by the sheet radius R/D0 ∼ ρU2

0D0/σ.
We have shown here that the corresponding acceleration is U2

0/λ, with λ ∼ σ/ρaU
2
0 .

Equation (31) expresses the condition U2
0/λ > U2

0/R, within numerical prefactors.
Note that equation (31) also means that the liquid sheets at the onset of the flag
regime have self-similar shapes, whatever the initial diameter D0, since λ/R is a
constant at onset. The acceleration due to gravity g is always negligible in the
flapping regime. The ratio U2

0/gλ = αWe(U2
0/gD0) is much larger than unity since

αWe = O(1) and the Froude number Fr = U2
0/gD0 � 1.
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Figure 16. Sheet radius dependence on the Weber number and density ratio in the scaled
coordinates of equation (30): •, air (ρa = 1.2 kg m−3); ◦, SF6 (ρa = 6 kg m−3).

Figure 16 shows the variation of the radius R for two distinct experiments, using
the same injector and the same liquid (i.e. with the same D0 and therefore the same
We for a given exit velocity U0), but with a different density for the ambient gas,
therefore allowing to examine the intrinsic influence of the density ratio α. We have
α = 1.2/1000 for the couple air/water, and α = 1.2×5/1000 for the couple SF6/water.
It is seen on figure 16 (the data are those of figure 3) that the evolution of the sheet
radius for the two experiments collapse when plotted against the scaled Weber number
α1/2We for the two different values of the parameter α.

5.3. Droplet size

Drops in this regime are released in a ‘chaplet’ at the tip of the Rayleigh–Taylor
indentations. Those have the shape of strips of liquid which, once they are formed,
further fragment into disjointed droplets by a Plateau capillary instability, and whose
size is therefore very close to the instability wavelength λ⊥. Other examples in related
contexts can be found in the case of unstable liquid surfaces accelerated at a constant
level perpendicular to their plane (Lewis 1950), or concerning the drops formed from
sheets centrifuged in spinning cups (Eisenklam 1964). It is thus expected that the
drop size d will scale like

d ∼ λ⊥ ∼ D0

α2/3We
. (32)

As shown on figure 17, the measured droplet sizes are not inconsistent with this trend.
In particular, a good collapse is obtained between water and ethanol, for two different
values of α. The ratio λ⊥/h(R) ∼ (αWe)−4/3 eventually becomes smaller than unity as
We increases so that the droplet size becomes smaller than the thickness of the sheet
h(R) at its rim.

Note that equation (32) can also be interpreted as a force balance involving the
acceleration seen by the droplets as they detach, in the spirit of the derivation in
Clanet & Villermaux (2002). At the very moment when a droplet of size d detaches
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Figure 17. Droplet mean arithmetic diameter d/D0 versus Weber number scaled by the density
ratio α (see equations (30) and (31)). •, D0 = 2.7 mm, water (α = 1.2/1000); ◦, D0 = 2.7 mm, ethanol

(α = 1.2/800). The flag instability regime corresponds to α1/2We > 40, that is α2/3We & 13 since
α = O(10−3). The lines are drawn to guide the eyes.

from a strip of thickness λ⊥ under the action of an acceleration γ we have

ρd3γ ∼ σλ⊥, (33)

a relation which, with γ given by condition (27) and λ⊥ given by (28) leads identically
to (32), not surprisingly since the two descriptions have the same ingredients.

6. Conclusion and discussion
The objective of this study was to elucidate the mechanisms of drop formation

from a liquid sheet, a generic object which is frequently formed, at least transitorily,
in various atomization processes. We have followed the development of the sheet
from the impact point of the jet which gives birth to it, up to its disappearence into a
set of discrete droplets. The study has been substantiated experimentally for a broad
range of control parameters, using different liquids and ambient medium densities.

For a drop to detach from the continuous part of a liquid volume, the body force
acting on it has to overcome surface tension effects. This simple fact has led us
to investigate in Clanet & Villermaux (2002) the intensity of the centrifugal force
experienced by the detaching drops at the rim of the cusp-like indentations of a
smooth, radially expanding liquid sheet resulting from the impact of a jet on a
solid, circular surface. The present paper is devoted to the regime where the sheet
interacts with the surrounding medium. This interaction amounts to a shear instability
which induces a flag-like, sinuous unstable motion of the liquid which destabilizes,
and detaches from the continuous portion of the sheet because of the acceleration
associated with the passage of the crests of instability at the sheet rim. The critical
amplitude of the wave crests for which the atomization of the sheet occurs is linked
to the instability properties of the sheet, which also determines the droplet size d torn
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(a) (b)

Figure 18. Liquid sheet issuing from a fan spray nozzle ((a) front and (b) side views, reproduced
from Crapper et al. 1973) showing both the formation of drops at the edge of the curved rim of
the sheet by a centrifugal instability, and the formation of finer droplets at the bottom of the sheet
due to the flag instability.

off from the continuous part of the liquid and the sheet radius R as

d/D0 ∼ α−2/3We−1 and R/D0 ∼ α−2/3We−1/3,

where D0 is the initial jet diameter and We = ρU2
0D0/σ is the impact Weber number.

These laws are valid for α1/2We > 40. This condition expresses the crossover between
the two acceleration scales causing the droplets to detach from the continuous liquid
sheet. In the smooth regime, the relevant acceleration is given by U2

0/R, where R is
the radius of curvature of the cusp-like indentations close to the sheet rim, given by
the sheet radius R/D0 ∼ ρU2

0D0/σ. In the flag regime, the corresponding acceleration
is U2

0/λ, with λ ∼ σ/ρaU
2
0 , and the transition condition corresponds to U2

0/λ > U2
0/R.

The above breakup scenario is in contrast with the one imagined by Fraser et al.
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(1962), in discussing the size of drops formed by a sheet issuing from a fan spray nozzle.
These authors imagined that a strip of liquid of width λ and thickness h detaches
from the sheet, forming a cylindrical ligament from which, by a Rayleigh capillary
instability, drops are formed whose size was expected to scale as

√
λh ∼We−1/3, since

λ ∼We−1 and h ∼We1/3 in this regime. Their measurements display a dependence of
the droplet size close to We−1/3. However, this scenario violates the Plateau–Rayleigh
theorem, stating that a flat liquid sheet is linearly stable with respect to surface tension
effects, as opposed to the circular jet geometry, and neither on their photographs,
nor on ours in the related system we have studied, does a strip of liquid detach from
the sheet. On the contrary, the sheet produced from the fan nozzle in Fraser et al.’s
experiment (see also Crapper et al. 1973; Dorman 1952 and figure 18), takes the shape
of a leaf with curved rims and presents, at its edges, a series of cusps very similar to
those we observe in the smooth regime and from which big (compared to the local
sheet thickness) droplets detach. It is plausible that the measurements of Fraser et
al. are in fact reminiscent of the process we analysed in Clanet & Villermaux (2002)
where the droplet size was shown to decay like We−1/3.

The scenario we have depicted here, as well as providing satisfactory scaling
relations for the present study, may have a relevance in the more general context of
‘airblast atomization’ (Lefebvre 1989), that is high-speed gas-assisted drop formation.
In these processes, a shear instability is usually responsible for the primary destabil-
ization of the liquid phase, producing sheets, or ligaments which further degenerate
into droplets. The Rayleigh–Taylor instability of the liquid interface induced by the
acceleration caused by the shear instability is probably a relevant mechanism to
consider in investigating the process of drop formation in these situations.

The work presented in this paper has been supported by the Société Européenne de
Propulsion (SEP) under contract 910023. We thank Geoff Searby for helpful remarks,
suggestions, and interest.
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