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Mixing as an Aggregation Process
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Experiments show how a stirred scalar mixture relaxes towards uniformity through an aggregation
process. The elementary bricks are stretched sheets whose rates of diffusive smoothing and coalescence
build up the overall mixture concentration distribution. The cases studied, in particular, include
mixtures in two and three dimensions, with different stirring protocols and Reynolds numbers which
all lead to a unique family of concentration distributions stable by self-convolution, the signature of the
aggregation mechanism from which they originate.
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FIG. 1. Mixing of a dye discharging from a jet of diameter
d � 8 mm in a square (L� L with L � 3 cm) duct. From
1 to 3, successive instantaneous planar cuts of the scalar field
at increasing downstream locations in the duct showing the
tion for the gamma distribution of Eq. (1) to fit the progressive uniformization of the dye concentration.
A mixture is a transient state between the initial seg-
regation of the constituents and their ultimate homoge-
neity. The overall mixing process of a drop of dyed fluid
in a stirred medium involves two phenomena: a process of
dispersion of the drop in the diluting medium by which
the phases interpenetrate, and a process of interaction
between the dispersed elements from which homogeneity
arises. We report in this Letter on findings suggesting that
the nature of the interaction is of an aggregation type and
that this phenomenon is the key to understanding the
concentration distribution of a stirred mixture.

Let a jet of water plus a diluted fluorescent dye (diso-
dium fluorecein) discharge in a square, transparent,
long duct. For a given duct cross section, the injection
diameter d and the velocity of the coflow at the entrance
of the duct can be varied so that the average concentration
of the dye in the channel hCi can be set at will. Since
the cross section of the duct and the average velocity of
the mixture in the downstream direction are constant, the
average concentration is conserved. The jet velocity u is
such that the Reynolds number Re � ud=� ’ 104.

The flow is made visual by means of a plane argon laser
sheet slicing the duct along its axis, and as can be seen in
Fig. 1, the dye rapidly invades the whole duct cross
section, erasing its concentration differences as it travels
downstream to relax towards a more or less uniform
mixture.

After the dye has filled the channel cross section and
evolves around a constant average concentration, the dis-
tribution P�C� presents a skewed, bell shape which gets
narrower around hCi in time (axial distances are con-
verted to time through the average axial velocity with
confidence as the radial velocity profile in a turbulent duct
is flat [1]). The shape of P�C� is very well described by a
family of one parameter distributions, namely, gamma
distributions

P�X � C=hCi� �
nn

��n�
Xn�1e�nX: (1)

The parameter n is adjusted at each downstream loca-
0031-9007=03=91(18)=184501(4)$20.00 
experimental one. It is seen in Fig. 2 that the fairness of
the fit holds for the whole concentration range, down to
quite low probability levels, and accounts for the down-
stream deformation of P�C� through the single parameter
n, whose dependence on the downstream location is quite
strong: Fig. 2 suggests a power-law dependence with an
exponent close to 5=2. The dependence of n on the jet
Reynolds number is, although noticeable, very weak.

The stirring motions progressively convert a compact
blob in a set of sheets of increasing surface and decreasing
thickness [2–5]. The intersections of these sheets with the
visualization plane are visible in Fig. 1 in the form of
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FIG. 2. Left: Downstream evolution of the concentration
distribution P�C� as the dye progresses along the duct as shown
in Fig. 1. The concentration distribution of the evolving mix-
ture gets narrower around the average concentration hCi � 0:3.
Solid line: experimental distributions; dashed line: distribu-
tions given by Eq. (1). Right: Fitting parameter n of the
distributions (1) as a function of the downstream distance
�x� d�=L. �, Re � 104; �, Re � 5� 103.
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ligaments. Let s�t� be the distance between two material
particles in the direction z perpendicular to a sheet, and
��t� � @lns�t�=@t its rate of compression. If c�z; t� is the
scalar concentration profile across the sheet, the convec-
tion-diffusion transport equation reduces to a one-
dimensional problem provided the radius of curvature of
the sheet is large compared to its thickness [6]. In that
case the direction z aligns with the direction of maximal
compression and for a species with diffusion coefficient D

@c�z; t�
@t

	 ��t�z
@c�z; t�
@z

� D
@2c�z; t�

@z2
: (2)

By the change of variables � � D
R
t
0 dt

0=s�t0�2 and � �
z=s�t�, Eq. (2) reduces [7–10] to a simple diffusion equa-
tion @c��; ��=@� � @2c��; ��=@�2. The topology of the
stirring motions select particular forms for s�t�.
Starting with a sheet of initial uniform concentration
and thickness s0, the maximal concentration in z � 0
writes

c�0; t� � erf�1=4
���
�

p
� ���!�
1 1���

�
p : (3)

We describe several generic examples: in incompress-
ible flows in two dimensions where the length of material
lines grow like �t [11], the mean transverse thickness of
the scalar filaments decreases as s�t� � s0=

��������������������
1	 ��t�2

p
and thus � � Dt

s20
�1	 ��t�2

3 �, providing c�0; t� � �t=ts��3=2

for t > ts, with ts �
1
� Pe

1=3, where Pe � �s20=D is a
Péclet number. If material surfaces in three dimensions
grow like ��t�2, then [12] s�t� � s0=�1	 ��t�2� and � �
Dt
s20
�1	 2

3 ��t�
2 	 1

5 ��t�
4�, providing c�0; t� � �t=ts��5=2 for

t > ts, with ts �
1
� Pe

1=5. For flows in which the length of
material lines increases exponentially in time like e�t as
realized by a succession of stretching and folding motions
in random flows [13], s�t� � s0e

��t and � � Dt
s20
�e2�t � 1�

providing c�0; t� � e��t for t > ts with ts �
1
2� lnPe.
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These time scales are the relevant mixing times as soon
as the inverse of the elongation rate ��1 is smaller than
the diffusive time of the sheet constructed on its initial
size s20=D, that is, for Pe 
 1. In this limit, ts is essen-
tially given by the time needed to deform the sheet ��1

and pure diffusion [for which c�0; t� � �Dt=s20�
�1=2] is

enhanced by the substrate motion.
However, the sheets interact as they move in the flow so

that their diffusive boundaries interpenetrate to give rise
to new sheets whose concentration profile is the addition
of the original ones. This elementary interaction rule is a
consequence of the linearity of the Fourier diffusion
Eq. (1) and dictates the kinetic evolution equation for
P�C; t�. Let Q�c; t� be concentration distribution of the
elementary sheets and ~QQ�s; t� �

R
1
0 Q�c; t�e�scdc its

Laplace transform. The change of Q�c; t� between t and
t	 �t is composed of two ingredients: First, the decay of
c due to the stretching of the sheets results in a global
shift of Q�c; t� towards the low concentration levels with-
out altering its shape as � @

@c �h
dc
dtiQ��t � �� @

@c �cQ��t.
Second, the sheets interact with nearby neighbors and
because of the irregular stirring motions, the addition
of the concentration levels is made at random among
those available in the population Q�c; t� at time t which
therefore evolves, through this process, by self-convolu-
tion as

R
Q�c� c0; t�Q�c0; t�dc0 � Q�c; t��2. The time it

takes to complete a convolution is the time needed to
coalesce two sheets �t � ��1 � �c�0; t�=�dc�0;t�dt �; the
continuous version of this convolution step thus
writes in the Laplace space as ~QQ�s; t	 �t� � �1�
��t� ~QQ�s; t�1���t 	 ��t ~QQ�s; t�2 	O����t�2� which both
leaves ~QQ�s; t� unchanged for �t � 0 and provides ~QQ�s; t	
��1� � ~QQ�s; t�2. Taking the limit �t ! 0, the global rate
of change of ~QQ�s; t� accounting for the two ingredients is
thus given by

@ ~QQ
@t

� ��s
@ ~QQ
@s

	 ��� ~QQ	 ~QQ2 � ~QQ ln ~QQ�: (4)

The above interaction rule leads, irrespective of the
initial condition for Q�c; 0�, to decaying exponential dis-
tributions [14] of mean hci � c�0; t� as defined in Eq. (3).
The concentration C results from clusters of several of
these interacting sheets. If these clusters are made of n
independent coalesced sheets, then the distribution of the
concentration P�C; t� is the nth convolution of Q�c; t�, that
is, ~PP�s; t� � ~QQ�s; t�n, whose overall kinetic equation de-
rives from Eq. (4) as

@ ~PP
@t

� ��s
@ ~PP
@s

	 �n�� ~PP	 ~PP�1	1=n��

	

�
1

n
dn
dt

� �
�
~PP ln ~PP: (5)

With �n � dn
dt , the asymptotic solution of Eq. (5) is ~PP �

�1	 hCi sn�
�n, providing a gamma distribution of order n

for P�C; t�, that is, a convolution of n exponentials. The
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FIG. 3. Top: The stirring protocol of a drop of ink deposed at
the surface of pure glycerol using a small rod. The sequence
displays the initial state, half, and a completed stirring cycle.
Bottom: The mixture’s state after 2 1

2 completed stirring cycles.

FIG. 4. Left: Contour length of the drop as it deforms
through the mixing cycles for three different concentration
thresholds. The length increases linearly independently of the
concentration thresholds chosen to define the contour up to the
mixing cycle ps � 2:5. For p > ps, the contour length depends
on the concentration threshold and, at fixed threshold, de-
creases as p increases. Right: Corresponding average transverse
sheet, or striation thickness s before the mixing cycle; the line
has a slope �1.
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average concentration hCi of the mixture is conserved
when the damping factor � balances exactly the coales-
cence rate, that is, when n � 1=c�0; t�. This condition is
realized provided n� �t=ts�5=2 in this three-dimensional
flow, as expected from Fig. 2 [15].

By changing the dimensionality of the flow from three
to two, it is expected that as long as the stirring motions
are sufficiently irregular to ensure an addition of the
concentration levels at random, the distribution is, as
in the three-dimensional case, generated by self-
convolution. It is, by contrast, also expected that the
dependence of n on time will be different. We illustrate
this difference on hand of a simple experiment consisting
of stirring a blob of dye with a rod in a thin layer of a very
viscous fluid, by a two-dimensional quasiperiodic proto-
col which mimics the motion of a straw in a milk shake.
The diluting fluid is pure glycerol, and the drop is made of
the same fluid colored with india ink. A number of
parallel cuts are made in one direction, and then the
same number at right angles, this operation defining one
cycle (Fig. 3).

In this low Reynolds number flow (the typical Reynolds
number of the motion of the rod is Re � us0=� � 10�1),
the fluid is deformed by the passage of the rod on a scale
which is given by its own size s0. The length of material
lines is equal to the distance traveled by the rod in the
medium, and it is actually observed that the net contour
length of the deformed scalar drop increases in propor-
tion to the number of cycles (Fig. 4). The mixing time, or,
alternatively, the number of cycles p needed to start
mixing the drop in the surrounding medium is thus,
since L=L0 � 1	 �t � 1	 17:5� p, given by �ts �
17:5� ps � ��s20=D�1=3 � �ReSc�1=3 with � � u=s0 the
typical elongation rate, u � 4:6 cm=s the rod velocity,
giving, with s0 � 2 mm and Sc � 106, a mixing cycle
ps of the order of 2.5 (see Fig. 4).

The maximal rate of stretch is obtained for fluid par-
ticles close to the rod trajectory, while the protocol leaves
nearly unstretched fluid parcels which therefore keep a
concentration close to the initial concentration as the
number of cycles is increased. Concomitantly, fluid par-
ticles are brought together in the wake of the rod and
coalesce. The amplitude of the slicing movements is
constant through the cycles, so that the average concen-
tration of the dye must be conserved; these are the in-
gredients required for the aggregation scenario we have
described to occur. The distributions displayed on Fig. 5
are actually reasonably well described by the gamma
functions family of Eq. (1) with an average concentration
hCi constant. The maximal concentration in each
single scalar filament decreases as c�0; t� � �t=ts��3=2

and the orders of the gamma distributions consistently
follow n� �number of stirring cycles�3=2 in this two-
dimensional flow.

As soon as a mixture is stirred in a more or less
irregular manner, the addition is made at random among
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the levels available in the current distribution. This op-
eration implies that the concentration distribution evolves
by self-convolution and, when it actually does, gives an a
posteriori precise definition of what ‘‘random’’ means.
This process, which basically amounts to a convolution of
exponentials [16–20], might certainly be generic of the
construction mechanism of the skewed distributions with
exponential tails widespread in various instances includ-
ing turbulent convection [21], grid turbulence [22,23],
184501-3



FIG. 5. Left: Evolution of the dye concentration distribution
P�C� after 3, 4, 5, 6 and 13 cycles according to the protocol
shown on Fig. 3. The concentration distribution of the evolving
mixture gets narrower around the average concentration hCi.
solid line: experimental distributions, dashed line: distribu-
tions given by Eq. (1). Right: Fitting parameter n and average
concentration of the distributions (1) as a function of the
number of cycles.
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shear layers [12], randomly stirred two-dimensional
flows [24–26], or jets [27]. This scenario not only ac-
counts for the distributions tail [28–31], but for their
whole shape and evolution.

It is finally instructive to note that an experiment
performed at a very low Reynolds number produces com-
position fields very similar to those obtained at a much
larger Reynolds number (Figs. 2 and 5). The reason is that
the evolution mechanism is the same. The motion of the
rod in the two-dimensional viscous fluid plays the role of
the random stirring motions present in high Reynolds
number flows. Their role is to ensure the indepen-
dence —in the statistical sense of Eq. (5)—of the addition
of the concentration levels; a particularly simple para-
digm for the impact of turbulence on mixing.
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