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1IRPHE, Université de Provence, 13384 Marseille Cedex 13, France
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What is the physical length scale which supports the concentration content in a stirred mixture? Among
the length scales familiar in stirred mixtures is the dissipation scale which equilibrates substrate de-
formation and diffusive smearing rates. That scale is a decreasing function of the deformation rate and is,
thus, a decreasing function of the Reynolds number in turbulent flows. Experiments show that the mixture
concentration content is defined on a support whose elementary brick � � LSc�2=5 is much larger. It
scales like the stirring scale L, depends on the Schmidt number Sc, and is independent of the Reynolds
number. The above law is supported by measurements covering two decades in L and three decades in Sc.
We suggest that this scale results from the aggregation of bundles of elementary stretched scalar sheets
merging under large-scale substrate deformation.
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There are several physical length scales naturally in-
volved in a stirred scalar mixture. Suppose that a blob of
dyed fluid is deposed in a medium of the same fluid. First,
in the absence of stirring, that is, in the pure diffusion limit
on a still substrate, an obvious spatial scale is the initial
size s0 of the blob. The concentration in the blob has
appreciably decayed from its initial value when the blob
has been smeared by diffusion, that is, when its current
radius

������
Dt
p

is appreciably larger than s0, and this happens
when t� s2

0=D according to the usual estimate if D is the
scalar diffusion coefficient. Then, with stirring, the picture
is substantially altered. Diffusive smearing is hastened in
the presence of stretching because the scalar gradient is
constantly steepened by compression. Stretching motions
are accompanied, in incompressible fluids, by compressive
motions. The scalar concentration is close to uniform along
the stretching directions and varies rapidly along the com-
pressive one, thus forming a sheetslike topology [1,2].
This, in turn, also sets a characteristic equilibrium scale
in the field itself. Let s�t� be the distance between two
material points aligned with the compressive direction. The
reduction of the sheet concentration profile width goes on
until the rate of compression � � �d logs�t�=dt balances
the rate diffusive broadening on its current size D=s�t�2,
that is,
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and this equilibrium is reached at the mixing time ts of the
sheet. If the rate of compression � is constant in time, then
s�t� � s0e

��t and ts �
1

2� ln��s2
0=D�. The typical width of

the scalar gradient which ‘‘dissipates’’ the scalar differ-
ences equals

 s�ts� � s0e��ts �

����
D
�

s
; (2)

usually called the Batchelor scale [3]. When stretching of
material surfaces is algebraic in time like s�t� � s0��t�

��,
with � some positive exponent, the rate of compression
diminishes in time like � � �=t. The concentration gra-
dient at the mixing time spans over a typical distance of the
order of [4–6]

 s�ts� � s0��ts��� � s0Pe��=�2��1�; (3)

with the Péclet number Pe � �s2
0=D� 1. The same pro-

cedure applies to a compression rate ��s� constant in time
but which depends on the separation distance s itself.
Choosing, for instance, ��s� � ��s�1=3=s as suitable for
high Reynolds number turbulent flows [7], the correspond-
ing ‘‘dissipation scale’’ equilibrating substrate compres-
sion and diffusive broadening is

 

�
D3

�

�
1=4
; (4)

a scale usually referred to as the Corrsin-Obukhov [8,9]
length scale.

This local equilibrium paradigm applies beyond the
scalar mixing context and is successful at describing the
aspect ratio of drops immersed in a nonmiscible sheared
substrate [10] or the maximal size of drops and bubbles in a
turbulent flow [11,12], by an appropriate balance between
hydrodynamics stresses and capillary restoration forces at
the scale of the drops themselves.

The global coarse grained scale.—All of the above
scales describe the size of an isolated object arising from
the local balance between a time characteristic of the
motions in the underlying substrate and a diffusion time.
However, evidences have been provided suggesting that
the global concentration content of a stirred mixture results
from the merging of nearby objects, namely, scalar sheets,
which interact though a random aggregation process [13].
This phenomenon has an incidence on some geometrical
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facets of the mixture. In particular, we show below that the
concentration field C of the mixture is smooth on a scale
which is much larger than the typical scale of its gradient
estimated from the above length scales and that this
‘‘coarse grained scale’’ directly reflects the aggregation
construction of the concentration field.

Experimentally, the scalar is injected (at scale d) in
various sustained, large-scale advected turbulent shear
flows (integral scale L) in which it disperses and mixes
[14,15]. Concentration is recorded at one point down-
stream of the source providing a signal C�x�, where dis-
tances x and time t are related to each other by Taylor
hypothesis. Some measurements have also been made on
two-dimensional cuts through the field using a fluorescent
dye (Fig. 1). Table I summarizes the range of Reynolds and
Schmidt numbers and the injection ratio used (see also
Fig. 2).

We denote V>�r� the variance of the concentration field
coarse grained at scale r. If F�k� is the field spectrum
[15,16], then

 V>�r� �
Z 2�=r

2�=L
F�k�dk: (5)

Equivalently, V>�r� can be computed by filtering the origi-
nal concentration fieldC�x�with a top hat window of width

r defining a coarse grained field Cr � C�x� �Hr�x�, with
Hr�x� equal to 1=r for 0< x< r and equal to 0 for x > r.
Then

 V>�r� � h�Cr � hCri�
2i: (6)

We have used the above definition to compute V>�r� from
the original concentration signals. The operation can be
seen visually in Fig. 1 on a two-dimensional cut though the
field and the dependence of V>�r� on r is shown in Fig. 2
for different injection and stirring conditions. The coarse
grained variance presents an inverted S shape with the
following features: It is independent of the Reynolds num-
ber Re and is shifted by varying the diffusivity of the scalar
measured by the Schmidt number Sc. It is, however, inde-
pendent of the scalar injection scale d. Half of the variance
has been erased by coarse graining the field up to the scale
r � �, which coincides approximately with the location of
the S-shape inflection point. All measurements for differ-
ent scalars and flows in Fig. 3 are consistent with

 � � LSc�2=5: (7)

The coarse grained scale � depends solely on the large,
stirring scale of the flow and on the diffusional properties
of the scalar. We explain below its origin.

Aggregation of a bundle of sheets.—Consider no more
an isolated scalar sheet being stretched, but instead a
bundle of parallel sheets in the process of merging into
each other under the action of a large-scale stretching rate.
This process occurs permanently in a stirred mixture and
gives rise to the self-convolution construction of the con-
centration distribution [13]. We will consider that the
sheets are stretched in two directions parallel to their plane
under the action of an elongation rate �, identical in the
two directions, constant in time, and uniform over a scale L
resulting in a global compression along the x axis so that

 s�t� �
s0

1� ��t�2
: (8)

This law applies to sustained shear flows such as shear
layers [4] or jets like in the present experiments. We choose
a simple initial scalar field C�x; t � 0� consisting in a
bundle of parallel sheets, each separated from their imme-
diate neighbors by a distance 2�=k0, and piled up over a
distance of the order of L. The sheets are compressed in the
direction x parallel to their transverse size. We first dis-
regard the distribution of the concentration levels between
the sheets. A functional form for C�x; t � 0� having the
required features is

FIG. 1. Coarse graining operation on a two-dimensional cut
through a scalar field (Sc � 2000). The original field (top) has
been coarse grained up to the scale � (bottom).

TABLE I. Range of experimental parameters. The flow rms
velocity is u0, kinematic viscosity is �, and D is the scalar
diffusivity.

Re � u0L=� Sc � �=D d=L

103–107 0:7–2000 0:05–1
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 C�x; t � 0� � 1� cos�k0x�; (9)

for �L=2< x< L=2 and equal to 0 elsewhere. The
convection-diffusion equation for C�x; t�

 @tC� ��t�x@xC � D@2
xC (10)

is a pure diffusion equation in the f�; 	g variables thanks to
a suitable transformation of space and time [4,5,13,17]

 	 � D
Z t

0

dt0

s�t0�2
and � �

x
s�t�

(11)

and is solved to give the concentration field at any time as

 C�x; t� � 1� cos���e�	; (12)

with

 � � k0x�1� ��t�2�; 	 � Dk2
0t�1�

2
3��t�

2 � 1
5��t�

4�:

(13)

The time needed to complete sheet coalescence in the
bundle is the time required to make concentration modu-
lations small compared to unity, that is, to make the factor
e�	 appreciably small [see Eq. (12)]. This occurs from the
instant of time making 	 of order unity, defining the mixing
or coalescence time as

 ts �
1

�
Pe1=5; with Pe �

�

Dk2
0

� 1: (14)

At that instant of time, the concentration in the bundle of
merged sheets is close to uniform; the modulations have
been essentially erased (Fig. 4). The transverse size of the
bundle, initially equal to L, has decreased accordingly. It
has been compressed by an amount 1� ��ts�

2 	 Pe2=5

[see Eq. (8)]. The transverse size of the bundle defining a
region of close-to-uniform concentration is thus

FIG. 3. Coarse grained scale � versus integral scale L for
various flows, stirring conditions, and Schmidt numbers. The
dotted line is the exact solution from Eq. (13) with 	 � 0:15. The
continuous line is the asymptotic trend for Pe� 1 in Eq. (7). For
Pe
 1, � � L.

FIG. 4. (a) Concentration profile of a bundle of sheets piled up
initially between �L=2< x< L=2 and evolving according to
Eq. (12). (b) At t 	 ts �

1
�Pe1=5, concentration modulations in

the bundle have been substantially reduced while the size of the
bundle has been shrunk by a factor 1� ��ts�

2, thus defining �.

FIG. 2. The coarse grained variance of the concentration field
V>�r� as a function of the coarse grained distance r for different
scalars and stirring conditions with L � 6 cm. (a) V>�r� versus r
for three Schmidt numbers at a fixed location downstream of the
scalar source. Half of the variance of the field has been erased by
coarse graining at the scale r � �, which depends on Sc. (b) At a
fixed location x=d � 20 downstream of a d � 3:3 cm source in
air (Sc � 0:7) for u � 3 m=s (Re � 9000), u � 6:2 m=s (Re �
19 000), and u � 11:6 m=s (Re � 35 000). The corresponding
Corrsin-Obukhov length is �CO � LRe�3=4Sc�3=4 	 0:1 mm.
(c) At a fixed location x=d � 12:5 and Sc � 7 for Re � 6000
and two different injection diameters d � 6 mm (dotted line)
and d � 10 mm (continuous line). The corresponding Batchelor
length is �B � LRe�3=4Sc�1=2 	 0:03 mm. (d) Change of the
concentration distribution P�C� as the coarse graining scale is
increased for x=d � 10, Sc � 0:7, and Re � 45 000: r �
2–256 mm by factors of 2. There are 5 curves with r < � and
3 with r > � (dashed).
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 � � LPe�2=5: (15)

For Pe
 1, the mixing time ts is of order s2
0=D and � �

L=�1� Pe2� 	 L, independent of Pe. If k�1
0 is further set to

s0 �
���������
�=�

p
, the Taylor microscale of the flow [18], as

suggested by the discussion in Ref. [14] explaining how
this choice is the only one compatible with the indepen-
dence of the scalar concentration distribution on the
Reynolds number (see also Fig. 2), then Pe � �=Dk2

0 �
�=D � Sc, and � coincides with the anticipated value
given in Eq. (7).

This result is not contingent to the particular choice
made for the initial concentration profile in Eq. (9). If,
instead, one considers a set of adjacent sheets of width s0

with distributed initial concentrations, the spectrum of
such a concentration field is computed exactly as F�k� �
��2

0=�s0k2��1� cos�ks0�� if �2
0 � V>�0� is its initial vari-

ance. It can be shown [19] from the diffusive relaxation of
the spectrum that the variance �2 at any later time is

 

�2

�2
0

�
1����
�
p

 
�e� 

2
� 1� � erf� �; (16)

with  � 1=
������
8	
p

. The variance has been reduced by a
factor close to 1=2 when  � 1, which is precisely the
criterion used to define �. The analysis can be conducted
with an initial distribution of sheet thicknesses [20] as well.

The above mechanism showing the existence in the
scalar field of a scale of the order of the large, stirring
scale is reminiscent of the ramp-cliff-plateau structures
observed long ago in shear flows. There, L-wide regions
of nearly uniform concentration are separated by steep
cliffs absorbing a concentration difference of the order of
the mean [21–24].

As opposed to local balances setting the fine-scale gra-
dient size of elementary sheets, this new scale results from
a nonlocal, fusion mechanism itself consistent with the
construction mechanism of the concentration distribution.
Indeed, the concentration distribution of randomly stirred
mixtures has been shown to evolve, in some cases, through
a self-convolution process: As soon as the mixture is stirred
in a more or less random manner, its concentration content
evolves by diffusive coalescence of the concentration lev-
els between nearby elements in an additive fashion and
occurs at random among the levels available in the current

distribution, which is found to be very well represented by
this process [13]. This fusion mechanism between nearby
sheets is, also, precisely the one giving rise to the coarse
grained scale �.
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