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On the geometry of turbulent mixing
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We investigate the temporal evolution of the geometrical distribution of a passive
scalar injected continuously into the far field of a turbulent water jet at a scale
d smaller than the local integral scale of the turbulence. The concentration field
is studied quantitatively by a laser-induced-fluorescence technique on a plane cut
containing the jet axis. Global features such as the scalar dispersion from the source,
as well as the fine structure of the scalar field, are analysed. In particular, we define
the volume occupied by the regions whose concentration is larger than a given
concentration threshold (support of the scalar field) and the surface in which this
volume is enclosed (boundary of the support). The volume and surface extents,
and their respective fractal dimensions are measured as a function of time t, and
the concentration threshold is normalized by the initial concentration Cs/C0 for
different injection sizes d. All of these quantities display a clear dependence on t, d
and Cs, and their evolutions rescale with the variable ξ = (ut/d)(Cs/C0), the fractal
dimension being, in addition, scale dependent. The surface-to-volume ratio and the
fractal dimension of both the volume and the surface tend towards unity at large ξ,
reflecting the sheet-like structure of the scalar at small scales. These findings suggest
an original picture of the kinetics of turbulent mixing.

1. Introduction
It is of common experience that mixing, the process which aims at reaching

uniformity of a set of two or more initially segregated constituents, induces complex,
stretched and folded structures, interlacing the phases while they interpenetrate.
Practical examples may range from the deformation of a drop of milk in a stirred
cup of coffee to the large-scale patterns of contaminants in geophysical flows (see e.g.
Ottino 1989 for a review).

The involved, multiscale geometry of the interface between the two streams being
mixed is not only a spectacular facet of the process, but is sometimes at the core of
the physical problem, such as for combustion of premixed, or unpremixed reactants.
The total extent of the flame area dictates the propagation speed of the flame in the
first case (Damköhler 1940), and the net combustion rate in the second (Hawthorne,
Wendell & Hottel 1949; Villermaux 1995).

Notwithstanding the fact that mixing is, in the strict sense, a transient process, the
attack on the problem of a passive scalar convected in a turbulent flow has focused
on hypothetical ‘stationary conditions’. This approach parallels the quasi-equilibrium
picture of turbulence (Oboukhov 1949; Corrsin 1951) and in this limit it is assumed
that the timescales of the stirring motions which distort the scalar field are all shorter,
at least in a certain wavenumber range, than the global mixing time (i.e. the variance
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of the scalar fluctuations is stationary), allowing the possibility of resorting to cascade
arguments, and spectral analysis.

The dissipation scale of the scalar ηB in this frame is then estimated from a balance
between a stretching time at small scales, independent of the scalar injection scale,
and a diffusion time. It was shown by Batchelor (1959) and Batchelor, Howells &
Townsend (1959) that depending on whether the Schmidt number ν/D is smaller or
larger than unity, where D denotes the diffusivity of the scalar, the stretching time
has to be estimated in the viscous range (for Sc � 1) leading to ηB = ηSc−1/2 or
in the inertial range (for Sc � 1), leading to ηB = ηSc−3/4, η being the Kolmogorov
scale, i.e. the dissipation scale of vorticity, whose diffusivity is ν.

In keeping with this approach where the absolute time has disappeared, several
investigators have subsequently tried to describe not only the characteristic scales of
the mixture, but its global geometry through a number indicative of the hierarchy of
motions giving birth to the complexity of the scalar field, namely fractal dimensions
(Mandelbrot 1975). The fractal nature of interfaces separating a turbulent from a
non-turbulent medium (Sreenivasan, Ramshankar & Meneveau 1989; Meneveau &
Sreenivasan 1990; Prasad & Sreenivasan 1990), of iso-scalar contours in turbulent
flows (Constantin, Procaccia & Sreenivasan 1991; Lane-Serff 1993; Flohr & Olivari
1994; Catrakis & Dimotakis 1996) or random flows (Ramshankar & Gollub 1991;
Gluckman, Willaime & Gollub 1993; Cardoso et al. 1996) has been demonstrated
either on two-dimensional sections, or on one-dimensional cuts through the scalar
field (Miller & Dimotakis 1991; Sakai et al. 1995; Frederiksen, Dahm & Dowling
1996).

Though all of these studies agree that, at least on a certain range of scales and
concentration levels, interfaces and iso-concentration contours are less smooth than a
Euclidean surface (i.e. the dimensions of contours extracted from two-dimensional cuts
are generally found to be larger than unity), the possible scale dependence, Reynolds
number dependence (see Catrakis & Dimotakis 1996 and references therein), threshold
height of the level set dependence (Prasad & Sreenivasan 1990; Miller & Dimotakis
1991; Lane-Serff 1993; Flohr & Olivari 1994; Sakai et al. 1995), scalar diffusivity
dependence (Gluckman et al. 1993) and time dependence when the scalar is followed
along its transient evolution (Ramshankar & Gollub 1991; Villermaux & Gagne
1994; Nicolleau 1996) of the usually defined dimension have never been considered
on a general basis.

Transients and time dependences are explicitly taken into account in studies on
dispersion addressing the problem of the radius growth rate of a tracer blob immersed
in a prescribed displacement field. In addition to pure molecular diffusion on the still
substrate, motions in flows usually enhance dispersion (Taylor 1921, 1953) and even
alter the diffusion law, not only by a renormalization of the diffusion coefficient, but
the structure of the law itself. Due to persistent ballistic motions, and ever larger jumps
in turbulent flows, dispersion laws exhibit, in the absence of traps or slow recirculating
motions, a rate of growth of the mean-squared radius of the blob which can be faster
than linear in time (Richardson 1926). The presence of bypasses or dead-ends in
complex geometries alters, in continuous flow systems (e.g. a river, a valley through
which wind blows, an open chemical reactor), the residence time distribution of a
tracer deposited at the inlet of the system. The novel features of this distribution are
spikes at short times if a short circuit is present, and/or long tails caused by traps
and slow motions in confined cavities as first described by Danckwerts (1953).

Dispersion may result solely from a spatial reorganization of the quantity to be
mixed, with no interpenetration with the substrate at the molecular level. Mixing,
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as opposed to stirring, actually means homogeneization at the smallest, i.e. diffusive,
scales. The mixing time (for instance in a tank stirred with an impeller familiar in the
chemical industry) is known to be solely determined by the large-scale features of the
flow (integral scale, root-mean-square velocity, see e.g. Nagata 1975), regardless of the
intimate structure of the turbulence, provided the Reynolds number is high enough
(typically larger than 104), in a wide variety of flows. The order of magnitude of this
critical Reynolds number for the onset of the ‘mixing transition’ has been documented
in shear layer experiments (Breidenthal 1981; Koochesfahani & Dimotakis 1986), as
well as its sensivity to the initial contacting conditions between the streams (Huang &
Ho 1989; Kassaro & Mungal 1996). These studies emphasize the role of the persistent
large-scale motions in the interpenetration between the phases. A more recent study
has shown that the mixing time is proportional to the injection scale of the scalar
when the latter is smaller than the integral scale of the flow (Villermaux, Innocenti &
Duplat 1998).

Watching the dynamics of material ‘coloured bands’ (O. Reynolds) in a flow may,
following the early suggestions of Reynolds (1894) and also Welander (1955) reveal
the nature of the underlying motion. We suggest here that the study of the birth and
kinetics of the complexity of an initially regular scalar field in a purposely designed
transient configuration is a key route for understanding the mechanisms of turbulent
mixing.

2. Experimental setup and procedures
2.1. Flow configuration

The present experiment consists in following the sequence of events which contribute
to the incorporation and mixing of a scalar stream released in a sustained turbulent
medium.

To obtain information about the kinetics of the incorporation process, we purposely
decouple the development of the turbulent velocity field from the process of mixing.
We use a water jet discharging into a large tank filled with water at rest as a turbulence
generator and we inject the scalar continuously through a tube, in the direction of
the mean flow and at the same velocity (figure 1). The exit velocity of the injection
tube is maintained constant and equal to the mean velocity of the main jet carrying
the turbulence at the injection point so that the tube behaves neither as a source nor
as a sink of momentum, in the mean. The diameter of the tubes d can be varied but
remains smaller than the turbulence integral scale L so that the mixing distance from
the injection point (respectively the mixing time) is smaller than the integral scale
(respectively the integral turnover time) for the turbulence to remain fairly stationary
compared to the natural evolution of the mixing (see Villermaux et al. 1998 for a
discussion of the mixing times). We use three tubes such that d/L = 0.05, 0.1 and
0.16.

The injection tube is placed 30 diameters downstream of the turbulence generator
jet exit. The local integral scale (L = 6 cm) was measured and found to be consistent
with the relation proposed by Antonia, Satyaprakash & Hussain (1980). The r.m.s.
velocity u′ is about 25% of the mean velocity u, giving a turbulent Reynolds number
Re = u′L/ν = 6000 for u = 0.4 m s−1, and 12 000 for u = 0.8 m s−1. The distance x is
computed from the injection tube exit, and we relate space to time via x = ut.

The presence of the injection tube was checked not to perturb a region of more than
2 diameters d downstream of the injection point. Both the velocity power spectrum
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Figure 1. Sketch of the experiment. The scalar is injected by a small tube of diameter d on
the axis and 30 diameters D downstream of the turbulence generator jet exit. D = 2.7 cm. The
scalar injection scale (d/L = 0.05, 0.1, 0.16) lies in the inertial range of the turbulent flow field, i.e.

η = LRe−3/4 < d < L with L = 6 cm. Re = u′L/ν ≈ 104.

(Eu(k) ∼ k−5/3) and the PDF of the longitudinal velocity increments for a separation
distance of d i.e. δux(d) = 〈ux(x + d) − ux(x)〉 were identical to their free-stream
analogues (with the tube removed) for x/d & 2.

2.2. Visualization methods

The images of the scalar field were obtained by a standard laser-induced-fluorescence
technique. We use disodium fluorescein as a laser-fluorescent dye, the Schmidt number
being about Sc = 2000. A thin laser sheet is produced by spanning a 5.4 W Argon-ion
laser beam, collimated by a long-focal-length lens (f = 2 m) with a mirror oscillating
at 4 kHz. This provides a uniformly illuminated region in the vizualisation window;
the thickness of the sheet is of the order of 300 µm. The images are acquired by
a SONY D7CE video camera with a Paillard 75 mm f/2.8 lens at a rate of 25
images per s and exposure time of 1/1000 s. They were either directly digitized by a
NEOTECH 8 bits A/D converter and written to the computer disk, or stored on a
S-VHS magnetoscope, and further digitized and processed. The images are initially
digitized on 768× 512 pixels and were shrunk to 384× 256 pixels before processing.
The pixel size on a final image corresponds to a real dimension of 125 µm, a distance
slightly above the Kolmogorov scale (η ≈ 100 µm at Re = 6000), itself 44 times larger
than the Batchelor dissipation scale ηB = ηSc−1/2. The dissipation scale relevant to
that configuration (Villermaux et al. 1998) is sD = d(RedSc)

−1/2, with Red = ud/ν the
injection tube Reynolds number. It is in that case of the same order as the Batchelor
scale.

Each pixel thus receives a fluorescence signal integrated on a 125× 125× 300 µm3

volume. The calibration of the background-subtracted images is linear up to the
injection concentration C0 = 5 × 10−7 mol l−1, corresponding to a grey level of 155.
The r.m.s. noize of the images is less than 1% of the injection concentration. A
lower injection concentration level resulted in negligible laser attenuation across the
visualization window.
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(a) (b)

Figure 2. Instantaneous planar cuts through the scalar field downstream of the injection point;
d = 1 cm, u = 0.4 m s−1: (a) the region just downstream of the injection tube 0 < x/d < 4;
(b) farther downstream 4 < x/d < 8.

3. Global quantities
The plume emerging from the source meanders in the radial direction while being

progressively converted into disjointed sheets which are diluted in the surrounding
turbulent medium (figures 2 and 6). The centre of mass of each scalar packet released
from the source (whose size is of the order of d) is translated as a whole by large-scale
motions (of the order of L) of the underlying turbulence.

We first depict the mean width of the plume downstream of the injection point,
independently of the concentration level it carries. We thereby characterize the dis-
persion of the support of the scalar. We define the probability of presence of the
scalar, Pp(x, y), at each point (x, y) of each image, as

Pp(x, y) =
1

N

N∑
i=1

pi(x, y), (1)

pi(x, y) = 1 if Ci(x, y) > Cd,

pi(x, y) = 0 if Ci(x, y) 6 Cd,

where N = 500 is the number of averaged images, Ci(x, y) is concentration (grey
level) of the ith image at point (x, y) and Cd = 0.16C0 is the lowest concentration level
which can be distinguished from the image background (detection threshold). The
radial dispersion in the y-coordinate σ(x) of the scalar plume support is the standard
deviation of the radial distribution Pp(x, y) at different downstream locations x:

σ(x) =

(∫
(y − y)2Pp(x, y) dy

)1/2

, (2)

and we have checked that y =
∫
yPp(x, y) dy ≈ 0, i.e. that the distribution is centred

on the axis of injection.
Figure 3(a) shows the resulting field of probability of presence for d = 0.3 cm, and

figure 3(b) the radial dispersion σ(t) as a function of time (remember that t = x/u) for
the three different injection diameters d. Searching for the radial location of the centre
of mass yci(x) of the instantaneous probability-of-presence distribution pi(x, y) on each
image and on each slice of the image in the x-direction, we compute the standard
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Figure 3. (a) Field of probability of presence of scalar Pp(x, y) defined by equation (1) for
d = 0.3 cm. (b) Standard deviation σ (equation (2)) of the radial distribution Pp(x, y) with the
distance x converted to time t by x = ut. �, d = 1 cm; �, d = 0.6 cm; 4, d = 0.3 cm. (c) Same as in
(b) with the coordinate transformation of equation (3).

deviation of the centre of mass σc(x) =
(

1
N

∑N
i=1[yci(x)− yc(x)]2

)1/2

, where yc(x) ≈ 0.

We have checked that σc(x) ≈ σ(x). The dispersion σ(t) is essentially dominated by
the meandering motion of the plume whose transverse size remains of the order of
d. This meandering motion is a consequence of the large-scale displacements caused
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Figure 4. Net scalar flux F(x) (equation (4)) through cross-sections downstream of the source
(t = x/u). �, d = 1 cm; �, d = 0.6 cm; 4, d = 0.3 cm.

by the turbulence before the plume has been divided into disjointed sheets (see e.g.
Stapountzis et al. 1986).

The role of the turbulent large-scale motions in the dispersion of the plume at
these early stages is further confirmed by the fact that σ(t) has, for t > d/u, a linear
dependence on time t, with a slope, independent of d, of the order of half the r.m.s.
turbulence velocity σ(t) ≈ 1

2
u′t (figures 3b, 3c). Consequently, the σ(t)-dependences all

collapse on a single curve when rescaled according to the transformations (figure 3c)

σ → σ

d
and x→ x

d
, that is t→ ut

d
. (3)

The conservation of the net scalar flux F(x) through all cross-sections downstream of
the source is written in axisymmetric coordinates as

F(x) = 2πu

∫
C(x, y)y dy = F(0) = C0π(d/2)2u, (4)

where we assume a constant velocity equal to u in the dispersion region, an approx-
imation justified by the fact that σ(x)/L � 1. The mean concentration field C(x, y)
is

C(x, y) =
1

N

N∑
i=1

Ci(x, y), (5)

and it can be seen on figure 4 that the net flux is actually roughly conserved for all
times. The slight decrease of F(x) observed for d/L = 0.1 and d/L = 0.16 is due
to the fact that for the largest values of d, the large radial excursions of the plume
eventually exit the visualization window. The decrease of F(x) for the smaller tube
(d/L = 0.05) is due to the fact that, at large distances from the injection point, an
appreciable fraction of scalar sheets have a concentration level below the detection
threshold Cd and do not contribute to the integration (5). This ‘loss of mass’ is a
manifestation of the fine-scale mixing process discussed in the two next sections.

The mean concentrations on the centreline C(x, 0) for the different injection diam-
eters d rescale, again, in the x/d = ut/d coordinates and follow a power law decrease
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Figure 5. Continuous lines: mean concentration on the axis C(ut/d, 0)/C0 for the three diameters

d. Dotted lines: ratio fa(t) = C(ut/d, 0)/Pp(t, 0).

for x/d & 2 (figure 5)

C
(
ut/d, 0

)
C0

∼
(
ut

d

)−2

. (6)

This is an immediate consequence of the mass conservation constraint (4) together
with the linear increase of the dispersion width σ (as shown on figure 3; the standard
deviation computed from the concentration profile is parallel to σ). The exponent −2
is peculiar to the axisymmetric injection geometry. The decay law downstream of a
line source (instead of a point source) would be characterized by an exponent −1,
as observed for instance in Stapountzis et al. 1986 (see also Csanady 1973; Tong &
Warhaft 1995).

The mean concentration decay (6) is strictly related to the dispersion properties
of the flow, themselves directly related to the meandering motion of the plume. Also
included in figure 5 is the ratio of the mean concentration C(t, 0) to the probability
of presence Pp(t, 0) on the axis, i.e. fa(t) = C(t, 0)/Pp(t, 0). It is clear that the ratio
fa(t), which reflects the concentration decrease due to the true mixing by molecular
diffusion, decreases more slowly than C(t, 0). The evolution law of fa is related to the
evolution of the one-point concentration PDF, as discussed below and in Villermaux
et al. (1998).

4. Fine structure of the scalar distribution
4.1. Volumes and surfaces

We concentrate now on the geometry of the small scales of the scalar field inside
the plume whose global dispersion properties have been described in the previous
section. Our aim here is to characterize how the volume occupied by the scalar and
the surface of the interface which separates the volume from the clear surrounding
medium and in which it is enclosed evolve in time. Since we only have access to a
planar cut of the three-dimensional structures through the scalar plume, by ‘volume’
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and ‘surface’ we actually mean ‘area’ and ‘contour length’ of the objects we visualize
on a two-dimensional image.

Figures 2, 6 and 13 show snapshots of the plume and of its subsequent degeneration
into disjointed sheets. As described in the previous section, the scalar is initially
confined in a compact region whose front is further distorted into multiscale elongated
structures. As the core of the plume is converted into thin sheets, the concentration
distribution widens and the scalar elements with a concentration close to the injection
concentration get less and less numerous.

We choose a given concentration threshold Cs to define the geometrical support
of the scalar field, that is the largest region of space occupied by the scalar, as seen
with a detection level Cs. This threshold level might be different (higher) from the
detection threshold Cd we chose in the previous section to define the support of
the scalar. It is clear, in particular far from the injection point when the plume has
appreciably diluted into the clear water, that the geometry of the scalar distribution is
threshold dependent, because of the blurring action of diffusion on the definition of
the contours. One might thus expect that both the surface and volume of the scalar
support will present a concentration threshold dependence and our aim is precisely to
determine their sensitivity to the choice of Cs, in addition to their natural dependences
on d, u and t.

The sequence of operations for measuring volumes and surfaces as a function of
time for a given threshold Cs is the following: we divide an instantaneous image
into n vertical rectangles (figure 6) of size w × 256 pixels, where w = int(384/n). For
example we chose n = 9 and w = 40 pixels in figure 6, corresponding to a real width
of about 5 mm. The x-coordinate of the centre of each rectangle is

xcj = w/2 + (j − 1)w, j = 1, n, (7)

and corresponds to a convection time from the source of tj = xcj /u±w/2u. Then (see
figure 6), we proceed as follows:

(i) We binarize the image with respect the chosen concentration threshold Cs for
five different relative levels, i.e. Cs/C0 = 0.16, 0.25, 0.38, 0.51 and 0.63 according to

Ci(x, y) = 1 if Ci(x, y) > Cs, (8a)

Ci(x, y) = 0 if Ci(x, y) 6 Cs. (8b)

(ii) We differentiate the image pixel by pixel to extract the contours of the objects
obtained by the conditional procedure (i). We thereby obtain the surfaces of the
objects.

(iii) We sum the images obtained by the procedures (i) and (ii), thereby obtaining
the volume of the objects, the volume being defined here as the sum of the pixels
within closed contours plus the pixels constituting the contour.

The number of pixels different from zero contained into the jth rectangle of the
images at steps (ii) and (iii) are respectively the measure of the instantaneous surface
and volume of the mixture at time tj . The mean values of the volume and surface are
obtained by averaging over N = 100 images.

We defined the volume of the scalar as the sum of the binarized image plus its
contour (step iii) to account for the fact that the volume of the smallest and thinnest
objects (such as lines or points) are ‘confused’ with their boundaries. Another choice
could have been made, for instance excluding the surface from the definition of the
volume, with not many consequences on the relative evolutions of the surface and
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(a)

(b)

Figure 6. (a) Division of an image into nine equal rectangles. (b) Example of the procedure applied
to the 6th rectangle of (a) to extract, after binarization (2), surface (3), and volume (4) of the object
contained in (1).

of the volume as long as these are judged from discrete images built with finite-size
elementary bricks, namely pixels.

For short times (t . 2d/u, see figure 7), the surface S increases fairly linearly with
time t independently of Cs, but for t > 2d/u, the temporal evolution of S becomes
strongly dependent on the threshold Cs. For the lowest values of Cs/C0, the surface
continues to increase, although at a reduced rate, while for the highest values of
Cs/C0, the surface evolution reaches a maximum, whose value increases as Cs/C0

decreases, and then finally decreases as time goes on.
We will come back to this trend specifically in § 5 but the general behaviour

can at this point be explained heuristically in the following way: the stretching of
the underlying turbulent motions tends to increase the extent of the plume front,
producing the elongated structures observed, for instance on figures 2 and 6. This
production activity is slowed down when molecular diffusion starts to become effective,
smoothing the concentration distribution at the edge of the structures. At this point
the surface extent becomes dependent on the concentration threshold Cs/C0. The
subsequent decrease of the surface extent is a manifestation of the predominance
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Figure 7. Surface of the plume as a function of ut/d for different values of the threshold height.
In the direction of the arrow, Cs/C0 = 0.16, 0.25, 0.38, 0.51 and 0.63. d = 0.6 cm.

1000

100
0 1 2 3 4 5 6 7 8

ut /d

Cs

V c
s (

pi
xe

ls
)

Figure 8. Volume of the plume as a function of ut/d for different values of the threshold height.
In the direction of the arrow, Cs/C0 = 0.16, 0.25, 0.38, 0.51 and 0.63. d = 0.6 cm.

of the action of diffusion over the production mechanism. It is more pronounced,
and happens earlier when the threshold is higher. Correspondingly, the volume V
occupied by the scalar remains almost constant for thresholds Cs close to the detection
threshold Cd and decreases considerably for higher concentrations (figure 8). The
formation of more and more divided and elongated structures is clearly demonstrated
by the evolution of the surface to volume ratio R = S/V (figure 9) which exhibits a
continuous increase with time, at a rate that increases as the threshold gets higher.

For a given concentration threshold Cs/C0, the S , V and R dependences of the
different injection diameters d collapse on a single curve when time is rescaled
according to the transformation of equation (3), that is ut/d (figure 9b). This is a
direct indication, to which we return in § 5, that the fine-scale kinetics of the mixing
process involves, like the dispersion properties of the plume discussed in the previous
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Figure 9. (a) Surface to volume ratio as a function of time for different values of thresh-
old height. In the direction of the arrow, Cs/C0 = 0.16, 0.25, 0.38, 0.51 and 0.63. d = 0.6 cm.
(b) Surface to volume ratio for Cs/C0 = 0.16 for the three injection sizes �, d = 1 cm; �, d = 0.6 cm;
4, d = 0.3 cm as a function of ut/d.

section, large-scale motions in the flow, or at least motions associated with the
injection scale of the dye being mixed.

The scalar volume V is such that the dependences VCs(t) (volume computed at a
given concentration threshold as a function of time, figure 8) and Vt(Cs) (volume
computed at a given instant of time as a function of the threshold height, figure 10)
both exhibit a similar behaviour, close to an exponential decay. This suggests that
the effect of increasing time at constant threshold results in a change of the scalar
distribution geometry similar to the change observed by increasing the threshold at
constant time.

This equivalence between time and threshold height is very strong. Plotting all the
measurements of the volume V (t, d, Cs) obtained for all injection sizes d, times t and
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Figure 10. Volume of the plume as a function of the threshold height Cs/C0 for successive
instants of time. In the direction of the arrow, t = 0.006, 0.031, 0.056, 0.081 and 0.106 s. d = 0.6 cm.

thresholds Cs/C0, as a function of the dimensionless variable

ξ =
ut

d

Cs

C0

, (9)

it is seen on figure 11 that all the experimental values collapse on a single curve
whose functional form fits the empirical law

V (ξ)

V0

= (1 + ξβ)e−αξ, (10)

where V0 = w × d is the initial volume occupied by the plume in the first window
of width w and α = 1.02, β = 1.14 are the best-fit exponents. Note that the variable
ξ incorporates the transformation (3) and expresses, in addition, the relation of
the definition of the scalar distribution geometry to the (a-priori free) observation
threshold.

4.2. Roughness and fractal dimensions

Surface and volume of the scalar distribution are quantities which incorporate contri-
butions of all the scales which contribute to the rugosity, or roughness of the plume.
A fractal dimension is an index which measures the relative weight of the different
scales in the global roughness. We computed the temporal evolution of the fractal
dimension of the two-dimensional objects whose ‘volume’ and ‘surface’ have been
defined above for, again, different concentration thresholds.

The procedure is similar to the one described before for the extraction of surfaces
and volumes, except that, in order to use a standard box-counting algorithm on two-
dimensional images composed of square pixels, we divided each image into square
boxes instead of rectangles (other choices can be made, see Catrakis & Dimotakis
1996). The linear size of the computational boxes, w, and their positions on the images
have been chosen to cover the plume entirely. The x-coordinate of the centre of each
box, xj , is given by relation (6), for a convection time from the source tj .

In each box, and for a set of N = 100 images, we compute the average number
N(r) = (1/N)

∑N
i=1 Ni(r) of boxes of size r needed to cover the set of non-zero pixels
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Figure 11. Volume of the plume for all diameters of injection, times and concentration thresholds
plotted against the similarity variable ξ = (ut/d)(Cs/C0). The dashed line is the fit of equation (10).

contained in the computational box of image i and located at distance xj on the
image. The procedure is repeated for both the scalar support, or volume, and for its
contour, thus providing the fractal dimensions of the object dfo and of its contour
dfc, respectively, and for different thresholds Cs as

N(r) ∼ r−df, r = 1, w pixels. (11)

Since N(r) does not follow a pure power law for r for the range of scales covering
a whole image and as the apparent dimension is a function of r (see § 5), we define
here the exponent df as an average slope in logarithmic coordinates, fitting the N(r)
versus r dependence in a narrow subrange ∆ = {rmin − rmax} with rmin = 2 pixels and
rmax = 10 pixels. This allows the evolution of a single number, df, to be followed as
a function of time and concentration threshold, the natural dependence of df on r
being discussed separately (§ 5).

We have checked that this procedure is experimentally equivalent to computing
the fractal dimension on each image, and then averaging the fractal dimensions.
Specifically,

df =
1

N

N∑
i=1

dfi where dfi =

〈
dlnNi(r)

dlnr

〉
∆

was found to be numerically very close to

df =

〈
dlnN(r)

dlnr

〉
∆

where N(r) =
1

N

N∑
i=1

Ni(r).

This is consistent with the fact that the distribution of the Ni(r) was found to be
peaked around the mean value N(r). Correspondingly, the dimension measured on a
single image is representative of the mean.

The evolution of dfo and dfc is shown, for d = 0.6 cm, as a function of time t and
for different thresholds Cs. We chose here w = 80 pixels ≈ 1 cm and we partially
overlapped consecutive boxes to increase the number of measurement locations in the
x-direction. At short times the fractal dimension of the surface (dfc) increases until
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Figure 12. Fractal dimensions of the object (b) and of its contour (a) for different thresholds Cs.
In the direction of the arrow, Cs/C0 = 0.16, 0.25, 0.38, 0.51 and 0.63. d = 0.6 cm.

t ' 4d/u, reaching its maximum value (' 1.3). Note that this value is an average,
and that maximal dimensions larger than 1.3 are encountered on instantaneous
fields, up to 1.4–1.5 typically. Discussing the absolute values of df (Constantin et al.
1991; Procaccia & Constantin 1993; Constantin & Procaccia 1994; Cardoso et al.
1996), S or V is, as we stress in this paper, of little interest. These are, in essence,
variable quantities, and understanding their temporal evolution and dependences on
the external parameters ruling the process of mixing seems more useful.

If dfc is fairly threshold independent during its phase of increase in time (figure
12), it becomes strongly dependent on Cs after having reached its maximum, in
the decreasing phase. The fractal dimension of the volume dfo is always threshold
dependent and decreases regularly towards 1, reflecting the fact that the plume,
initially a thick compact object, is progressively converted into a set of elongated
sheets. This trend is consistent with the observation that the values of the fractal
dimensions of the volume and of the surface tend to approach each other as time
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goes on, and this all the more rapidly when the threshold is higher. The structures
tend to identify themselves with their boundary.

5. Analysis
5.1. Stirring as a kinematic construction

It is known that the deformation tensor in turbulent flows has, in the mean, two
directions of stretching and one direction of compression (Betchov 1956) and that
this property leads to the increase of the length and area of material lines and surfaces
(Batchelor & Townsend 1956). The condition for the net increase of lengths and area
was later recognized to be even weaker, and such that only incompressibility and
isotropy of the flow is required (Cocke 1969; Orszag 1970). In a multiscale flow, i.e. in
a flow where the velocity difference (we mix here Lagrangian and Eulerian estimates)
δu(r) separated by a distance r is a function of r as δu(r) ∼ u(r/d)ζ , Villermaux &
Gagne (1994) showed that, provided the r-dependence of δu(r) is convex (i.e. ζ < 1),
the increase of the length of a material line in time is itself scaled dependent, and
that small scales contribute more to the net increase than larger ones. From this the
fractality of material lines and surfaces originates, explaining how an initially straight
and smooth contour gets more and more corrugated as time elapses.

Let us summarize the main idea. Consider an initially smooth scalar blob of linear
size d. The number of boxes needed to cover its contour N(r, 0) is of order d/r, in two

dimensions (
(
d/r
)2

in three dimensions). We assume that the blob has been formed
in a flow field with prescribed stationary velocity increments δu(r) like in the present
experiments. Now, after a time t not too large compared to t(r) = r/δu(r), the number
of segments needed to cover the contour is

N(r, t) = N(r, 0)

[
1 +

t

t(r)

]
. (12)

The origin of the fractality is clear from this: provided t(r) ∼ (d/u)(r/d)1−ζ is an
increasing function of r, that is provided ζ < 1, the corrective factor to the trivial
factor N(r, 0) = d/r in N(r, t) of equation (12) increases as the scale r decreases.
Recasting (12) in the form of a power law (although one sees that the dynamics does
not generate pure power laws) N(r, t) ∼ N0(r/d)

dc(r,t), it is clear that both a scale r and
a time t dependence of the local, apparent fractal dimension dc(r, t) can be expected.

This is a purely kinematic argument. Note that, as it stands, it accounts for the
roughly linear temporal increase of what we called the surface of the blob, that is the
length of its contour measured at the resolution scale rmin and which is proportional
to N(rmin, t) (figure 7). But the purely geometrical argument of equation (12) does not
incorporate the fact that the ‘line’ defining the contour of the blob eventually fades
away and disappears by diffusive spreading.

5.2. The blurring action of diffusion

At a given instant of time, the extent and structure of a diffuse interface is the result of
two opposing, continuous processes: the birth of new structures at a rate prescribed,
according to (12), by their size through the characteristic time t(r), and the destruction
of these structures due to their dilution in the medium by molecular diffusion. We
investigate now the interplay between these two effects to give a realistic model of
the flow field in connection with the experiments reported here and we purposely
confine our analysis to the case of a line. The extension of the analysis to a surface
(a scalar blob immersed in the three-dimensional space), as for mixing in the real
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world, is straightforward. The reasoning is not sensitive to the precise form of the
field of velocity increments δu(r) provided that (i) it exhibits a convex shape on r and
that (ii) it has a regular functional dependence δu(r) ∼ r/d in the small r-limit (see
Villermaux & Gagne 1994).

We model the field of velocity increments in the following manner: the maximal
mean velocity difference which can be encountered in the flow equals the mean velocity
of the carrier flow itself, that is u, and is likely to be encountered at large separation
distances r. At smaller scales, due to the regularizing action of the viscosity in the
dissipative range, only simple shear or solid rotation is allowed so that δu(r) ∼ r. We
choose the crossover lengthscale as the size of the blob d, thus expressing that the
motions which appreciably distort the blob are those associated with scales of the
order of its own size. Thus δu(r) has the form

δu(r)

u
= f

( r
d

)
(13a)

with

f
( r
d

)
=

r/d

1 + r/d
, (13b)

the crossover function f
(
r/d
)

being chosen here in the form of a Batchelor-like
parametrization (Batchelor 1951, see also Durbin 1980, Sawford & Hunt 1986) for
analytical convenience, with d as the crossover scale. Provided the two above limits
(i) and (ii) are fulfilled, the precise mathematical shape of f

(
r/d
)

is not crucial for
the present discussion and other forms would lead to the same conclusions.

Stretching on the contour of a fluid element is, as expressed by (12), at the root of its
corrugation process. Cumulated stretching with variable persistency also explains, as
shown by Villermaux et al. (1998), the existence of a wide distribution of concentration
levels. The PDF of concentration resulting from the transient mixing of a scalar blob
of initial size d is given, in the present set-up, by

P

(
C

C0

)
∼ exp

(
− t
ts

C

C0

)
for t� ts, (14)

a time t after the release of the blob in the medium, with

ts = 0.12
d

u
ln (5Sc) (15)

being the mixing time, proportional to the injection timescale d/u in the medium.
Thus, the fraction of fluid elements constituting the blob whose concentration is
larger than a given concentration threshold Cs (with 0 < Cs < C0) is∫ C0

Cs

P

(
C

C0

)
dC ∼ exp

(
− t
ts

Cs

C0

)
(16)

to leading order. This fraction of elements having ‘survived’ has a direct geometrical
interpretation. What we called the volume of the blob V (ξ), with ξ = (ut/d)(Cs/C0) is
given by the number of fluid elements whose concentration is larger than Cs at time
t, and we have found (equation (10)) that V (ξ) ∼ V (0) exp (−αξ) with α = 1.02, for
large ξ. This result is nicely consistent with (15) and (16) since

t

ts

Cs

C0

=
ut

0.12d ln 5Sc

Cs

C0

≈ 0.9
ut

d

Cs

C0

with Sc = 2000, the prefactor 0.9 being essentially very close to α = 1.02.
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The relation (12), giving the number of segments covering the contour of the blob,
is thus modified to account for the destruction by diffusion as

N(r, t, Cs) = N(r, 0)

[
1 +

t

t(r)
exp

(
− t
ts

Cs

C0

)]
(17)

with t(r) = r/δu(r) and δu(r) being given by (13a) and (13b). For a fixed scale r and
concentration threshold Cs, the number N(r, t, Cs) first increases linearly with time
and independently of the threshold Cs because of the production term t/t(r). Then
N(r, t, Cs) decreases by the exponential damping factor because the concentration of
all the fluid elements being continuously stretched progressively falls below Cs, this
last process ‘erasing’ the action of the first one. This trend reflects the evolutions of
the blob surfaces reported on figure 7.

The relative contribution of the different scales r to the increase of the blob
surface is measured by the fractal dimension of the contour defined by N(r, t, Cs) ∼
N0(r/d)

dc(r,t,Cs). As noted above, since neither (12) nor (13) exhibit pure power laws in
r, we expect dc(r, t, Cs) to be both a function of time and scale, but also a function
of the threshold Cs/C0 defining the contour. Together with (12), (13) and noting that
N(r, 0) ∼ d/r, (17) is written as

N(r, t, Cs) ∼ 1

z

[
1 +

B

1 + z

]
(18a)

with

B =
ut

d
exp

(
− t
ts

Cs

C0

)
(18b)

and

z =
r

d
. (18c)

Elementary manipulations show that the dimension dc(r, t, Cs) = −d lnN/d ln r is

dc(r, t, Cs) = 1 +
Bz

(1 + z)2 + B(1 + z)

z→0−→ 1 +
B

1 + B
z (19)

that is, for r/d� 1 and t� ts,

dc(r, t, Cs) ≈ 1 +
ut

d
exp

(
− t
ts

Cs

C0

)
r

d
. (20)

For a given concentration threshold Cs and time t, the ‘dimension’ dc(r, t, Cs) is
an increasing function of the scale r. This last point has been demonstrated and
studied in great details by Catrakis & Dimotakis (1996) who showed that the fractal
dimension of the cross-section contour of a turbulent jet measured in a fixed frame
goes gradually from 1 (smooth frontier at the small scales) to 2 (space-filling object
at large scales). Catrakis & Dimotakis designated these objects as scale-dependent
fractals and they also noted the weak dependence of the N(r, Cs) versus r relationship
on the Reynolds number (measurable, however), as well as the Reynolds number
independence of the large excursion wing of the concentration PDF, consistently with
(14) and (15). This Reynolds number independence goes back, in fact, to the Reynolds
number independence of the mixing time in turbulent flows (see e.g. Nagata 1975,
equation (15) and Villermaux et al. 1998).
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(a)

(b)

Figure 13. Instantaneous images of the scalar distribution recorded for distances 8 < x/d < 12
downstream of the injection point, with d = 1 cm for two different carrier fluid velocities corre-
sponding to (a) Re = u′L/ν = 6000 and (b) Re = 12 000.

The fact that the N(r, Cs) versus r dependence is continuously bent is due to the
iterative construction of the contour (equation (12)) and to the convex r-dependence
of the field of velocity increments δu(r), going gradually from a regular behaviour
δu(r) ∼ r to a turbulent one δu(r) ∼ rζ (with ζ = 0 in the present analysis, see
equations (13a) and (13b)) through the crossover function f

(
r/d
)
.

As an illustration, consider the pictures of figure 13. They represent instantaneous
images of the scalar field for distances such that 8 < x/d < 12 downstream of the
injection point, with d = 1 cm for two different carrier fluid velocities corresponding to
Re = 6000 and Re = 12000, respectively. The concentration PDFs of these two images
(figure 14) are superimposable (within the fluctuations due to the limited statistical
convergence on a single image) suggesting a Reynolds number independence of the
mixture structure consistently with (14) and (15). They exhibit an exponential tail with
an argument close to 6 corresponding to that distance and to Sc = 2000 (Villermaux
et al. 1998). The iso-concentration contours of figure 13 are shown on figure 15 for
four different concentration thresholds Cs/C0 = 0.2, 0.3, 0.4 and 0.5. These values
are chosen to be clearly in the exponential part of the PDF, and within sufficiently
converged probability levels.

Obviously, the regions of the flow with a concentration level above a given threshold
Cs are less and less numerous, more and more sparse as Cs is increased, consistently
with the decaying shape of the PDF. The pictures of figure 15 all correspond to the
same instant of time, and they only differ by an increased threshold. The same trend
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Figure 14. Concentration PDFs of the scalar fields of the pictures shown on figures 13(a) and 13(b).
Within the fluctuations due to the limited statistical convergence on a single image, the two PDF’s
are superimposable and exhibit an exponential decrease whose argument is close to 6 (straight line).

(a) (b)

(c) (d)

Figure 15. Contours of the level sets of the scalar field of figure 13(a), for four different
concentration thresholds heights. (a) Cs/C0 = 0.2, (b) 0.3, (c) 0.4 and (d) 0.5.

would be observed for a given Cs, and increasing time t (see figures 2, 6 and § 4.1).
The equivalence of the roles played by time t and Cs on the morphology of a blob
of scalar being mixed is expressed by the fact that the argument of the concentration
PDF involves the product of Cs and t, as emphasized in § 4.1, and by equations (14)
and (17).

Figure 16 shows the number of boxes N(r, Cs) needed to cover the different iso-
concentration contours obtained by a standard box-counting algorithm for the four
values of Cs/C0, fitted by relation (18), B being the fitting parameter. The fit is rea-
sonably good, although not perfect, and accounts for the continuous curvature of the
N(r, Cs) versus r dependence with a local slope going from −1 to −2 as r increases.
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Figure 16. Box-counting relationships for the isoconcentration contours of figure 15. CS/C0 = 0.2
(•), 0.3 (◦), 0.4 (�), 0.5 (4). Continuous line: fit by equation (18).

100

10

1
0.2 0.3 0.4 0.5

Cs/C0

B

Figure 17. Fitting parameter of equation (18) for the threshold levels of figures 15 and 16.

The parameter B is expected to follow an exponential decrease with Cs/C0, with an
argument identical to that of the global concentration PDF (see (14) and (17)). This
is not contradictory to figure 17 where the best-fit value of B is plotted against each
value of Cs/C0. The constant B is found to decay exponentially with Cs/C0, with an
argument close to 6, identical to that of the concentration PDF (figure 14).

The curvature of N(r, Cs) becomes more pronounced as Cs/C0 gets lower. This
trend, already noticeable on the data of Sakai et al. (1995) is due to the fact that
the correction to the pure and trivial power-law dependence (r−1) is weighted by B,
a constant which decreases with Cs/C0 (equation (18)).

5.3. Average dimensions on a narrow spatial interval

The functional dependence of N(r, Cs, t) on r curves continuously from r−1 at small
scales (respectively r−2 in three dimensions) to a steeper dependence at larger scales
for times t larger than the mixing time ts. This feature is due to the iterative increasing
complexity of contours (equation (12)), and to the regular change of the stirring law,
through the function f

(
r/d
)

as the scale is varied from small to large. The conjunction
of these two factors results in a non-pure-power-law dependence of N(r, Cs, t) on r,
implying a fractal dimension dc(r, t, Cs) which depends on scale.

Nevertheless, it may appear useful, as in the present experiments (see § 4.2), to
follow the temporal evolution of an average dc(t, Cs) of dc(r, t, Cs) over a given fixed
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range of scales ∆ = {rmin − rmax} as

dc(t, Cs) =
1

ln(rmax/rmin)

∫ rmax

rmin

dc(r, t, Cs) d(ln r), (21)

the average being performed at logarithmic scales. Clearly

dc(t, Cs) =
ln(N(rmin, t)/N(rmax, t))

ln(rmax/rmin)
.

Note that the procedure (21) is implicitly the same as drawing a straight line on a log–
log plot of N(r, Cs, t) versus r close to the resolution scale rmin of the iso-concentration
contour. Using (20) as an estimate of the behaviour of dc(r, t, Cs) in the small-r limit,
we get

dc(t, Cs) ≈ 1 +
ut

d
exp

(
− t
ts

Cs

C0

)
rmax/d

ln
(
rmax/rmin

) (22)

if the average has been extended up to rmax such that rmin � rmax < d as for the
present experiments. The average (22) is a weak function of the outer integration
limit, and therefore the value of dc(t, Cs) is weakly dependent on the choice of the
extent of the averaging region.

The average dimension dc(t, Cs) is a function of time and concentration threshold.
The concentration threshold dependence of dc(t, Cs) for fixed t was already noted
by Lane-Serff (1993) (although he mentions he did not fully clarify the role of the
noise in his results) and by Flohr & Olivari (1994) who found an evolution of the
dimension in the cross-section of a jet very similar to ours in figure 12(a): for a given
time, the apparent dimension dc(t, Cs) is decreasing as Cs/C0 is increased, ultimately
relaxing towards 1.

It is interesting to note that the high threshold limit of dc(t, Cs) is closer to 1 than
to 0, suggesting that the shape of the structures with the strongest concentration in
a scalar turbulent field is close to a sheet with homogeneous concentration (whose
intercept with the visualization plane is a line with dimension 1) instead of a filament
(whose intercept would be a point of dimension 0). The stretched sheet is, as noted
long ago (see e.g. Ranz 1979), the paradigm of scalar mixing.

6. Conclusions
Watching the evolution of a scalar plume initially segregated from the surrounding

turbulent medium in which it is ultimately diluted has revealed that the process of
mixing is a transient process of birth and death of complexity.

Mixing, as suggested by our common sense, is the operation by which a system
evolves from one state of simplicity (the initial segregation) to another state of
simplicity (complete uniformity). Between these two extremes, complex patterns are
born, and die. Two questions then naturally arise: how can the complex pattern
geometry be characterized, and what is the clock, the timescale of the process?

The present study has shown that, at least in the case of a scalar deposited by a small
tube (smaller than the integral scale of the turbulence, but larger than the dissipative
scales) in the sustained turbulent field of a jet, the clock is set by the injection time
d/u. This timescale appears both in the mean dispersion properties of the scalar
distribution (§ 3) and in the fine-scale evolution laws of the mixture (§ 4). The fact
that the kinetics of the uniformization process involves large-scale features of the flow
and of the initial scalar distribution only, thus curiously bypassing the hierarchical
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structure of turbulence, reflects the well-known Reynolds number independence of
mixing times (Nagata 1975; Villermaux et al. 1998).

The intimate structure of the mixture consists of stretched sheets whose transverse
size gets thinner and thinner as time progresses (see e.g. the surface to volume ratio
on figure 9), and then they fade away by the smoothing action of molecular diffusion
(figures 7 and 8).

In the course of time, two concomitant, opposing processes occur: a process of
birth of new structures by the underlying motions, dominant at short times, and
then a process of uniformization, dominant in the last stages. The crossover time
depends on the concentration threshold of observation (see figures 7 and 12). At
a given instant of time, the mixture does not exhibits the same shapes; it has not
the same geometrical structure when the level of concentration threshold is varied.
The relation of the scalar field geometry to the concentration level height chosen to
define it is expressed by the rescaling variable ξ = (ut/d)(Cs/C0), omnipresent in the
experimental evidence (figures 11 and 12), and in the analysis (§ 5).

The interplay between these two effects is best illustrated by equation (17) giving,
in our analysis, the number of boxes of size r needed to cover the contour of a scalar
blob:

N(r, t, Cs) = N(r, 0)

[
1 +

t

t(r)
exp

(
− t
ts

Cs

C0

)]
.

This relation illustrates the effect of the competition between the production factor
t/t(r) and the dissipation exp

(−(t/ts)(Cs/C0)
)

on the total extent of the blob interface,
and also on its hierarchical (fractal) structure.

In the same manner as all the geometrical features of the scalar distribution were
found to depend on time t and concentration threshold Cs/C0, fractal dimensions
were found to depend in addition on scale, showing that if the geometry is related to
time and level of observation, it is also related to the spatial scale of observation and
is a non-scale-invariant quantity (figures 12 and 16).

The nature of mixing is transient, and the laws which describe it express crossovers
between trivial extremes. The very essence of the process has not been better expressed
than by Henri Bergson in L’évolution créatrice (1941): ‘Ce qui est réel, c’est le
changement continuel de forme: la forme n’est qu’un instanné pris sur une transition.’,
which could be translated by: ‘What is real is the ceaseless change of shape: the shape
is nothing but a snapshot taken on a transition.’.
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