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Short circuits in the Corrsin–Obukhov cascade
Emmanuel Villermaux, Claudia Innocenti, and Jérôme Duplat
IRPHE, Universite´ de Provence, Centre de Saint Je´rôme, Service 252, 13397 Marseille Cedex 20, France

~Received 13 April 1999; accepted 20 September 2000!

Experiments show that a blob of scalar released in the inertial range of scales of a turbulent medium
is rapidly converted into a set of disjointed sheets whose spectrum exhibits ak21 shape for wave
numbers larger than the injection wave number 1/d. The sheets diffusive uniformization onsets at
a timets5(d/u)f(Sc) with f(Sc); ln(Sc) function of the injection time of the blob in the medium
d/u, of the Schmidt numberSc, independently of the Reynolds number. This time is appreciably
smaller than the time needed to cross the Kolmogorov cascade, which is ‘‘bypassed’’ by a strong
and constant stretching rate acting at the injection scale. ©2001 American Institute of Physics.
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I. INTRODUCTION

It is a known fact that the timetm necessary to achiev
uniformity at the molecular level of a passive constitue
released in a closed volume of linear scaleL and stirred at a
typical velocityu(L) is

tm;
L

u~L !
, ~1!

with a prefactor depending on the detailed geometry of
mixing volume, the stirring device, and the nature of the d
being mixed. The above relationship is a rule of thumb in
engineering practice and is known to hold independently
the Reynolds number provided it is large enough, say lar
than 104.1,2 The apparent simplicity of~1! hides several dif-
ficulties. First, the fact that the mixing timetm relates to the
largest scales of motions in the flow may appear contra
tory with the fact that the ultimate molecular uniformizatio
of the scalar occurs at small scales compared toL. The mix-
ing time ~1! bears no trace, however, of straining motio
and characteristic times associated with small scales. C
sider, for example, a dye with a Schmidt numberSc5n/D
close to unity, wheren stands for the kinematic viscosity o
the fluid andD for the molecular diffusion coefficient of th
dye. The dye dissipation scale is, in that case, usually e
mated as being identical to that of vorticity, namely the K
mogorov scale h5L Re23/4, whose turnover timeth

5L/u(L) Re21/2 is appreciably smaller thantm.
Second, it is clear that the intrinsic diffusive properti

of the dye~i.e., its diffusion coefficientD) should appear in
~1!, the molecular uniformization requiring an infinite time
the limit D→0.

These difficulties are partly removed in the cascade
scription of turbulence stemming from Kolmogorov3

Obukhov,4 Corrsin,5 and Onsager.6 Mixing of a passive sca-
lar is in this frame represented as a succession of reduc
of length processes, from the injection scale of the sc
blob to the scale where the thinning action of the stre
balances the spreading rate of the dye by molecular di
sion. These processes are assumed to be local in spa~a
blob of scaler is stretched at a rate corresponding to t
2841070-6631/2001/13(1)/284/6/$18.00
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scaler ) and assumed to occur successively in time. Fr
there, it is not difficult to estimate the timetc for the blob to
travel through the cascade from its injection sized to the
scale where it is dissipated. Letg i be the stretching rate o
scaler i and t i its associated persistence time; one obviou
hasg i t i5O(1) ~see Ref. 7 for a discussion of the constan!.
After the first step of the cascade, the transverse size of
blob is r 15de2g1t1, after the secondr 25r 1e2g2t2, and so
on down tor n5r n21e2gntn, so that aftern steps, the typical
transverse size of the stretched blob isr n5de2n. Now, if the
blob initially has a size lying in the inertial range of scal
~that is,h!d!L), the time necessary to cross each step
t i;e21/3r i

2/3, with e;u(L)3/L according to the standar
estimate.3–6

The timetK for the blob to reach the viscous scale of t
flow h, where the stretching timest i become scale indepen
dent and are all equal toth5(n/e)1/25L/u(L) Re21/2, is
tK5( i 51

n t i'e21/3d2/3 for n@1. The timetK is dominated by
the injection time scale. Assume that the Schmidt numbe
the dye is larger than unity. The thin sheets of scalar at
Kolmogorov scaleh further dissipate at the Batchelor scal8

hB5ADth5hSc21/2.
The time needed to travel fromh to hB is tB5( i 51

m ti

5( i 51
m th5mth , with hB5he2m, and thustB5 1

2th ln Sc.
The total time to reach uniformity thus defines as ‘‘ca

cade time’’ for the scalar

tc5tK1tB5e21/3d2/31 1
2 thln~Sc!. ~2!

The cascade picture, at least as it has been originally c
ceived, assumes stationarity, meaning that the decay tim
the scalar variance in the flowC82(t) is long compared to all
the time scalest i involved in the cascade. In this limit, th
rate at which the scalar varianceC82(t) is injected is the rate
x at which the variance is transferred to smaller scales
also the rate at which it is dissipated 2D(¹C)2. The funda-
mental property of this stationary, forward cascade is that
reasoning can be reformulated for any mean squared con
tration increment c2(r )5^(C(x1r )2C(x))2& averaged
over a volume of sizer ~with r ,d), c2(r )/x representing
the time needed to reach the dissipation scale, starting f
r. This time is precisely given by~2! for the special caser
© 2001 American Institute of Physics
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FIG. 1. Instantaneous planar cuts of the scalar field~disodium fluorescein in water,Sc52000) downstream of the injection point illustrating how a scalar bl
initially compact and smooth, is progressively converted into disjointed sheets with broad fluctuations in thickness and concentration.d51 cm. Left: the
picture covers the region just downstream of the injection tube 0,x/d,4. Right: further downstream 4,x/d,8.
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5d; that is, c2(r )/x5tc(r )5e21/3r 2/31 1
2th ln(Sc). The

Fourier spectrumF(k);*eikrC2(r )dr is thus

F~k!;x~e21/3k25/31 1
2thk21 ln~Sc!! . ~3!

The relation ~3! is a slightly altered reformulation of th
Corrsin,5,9 Obukhov,4 Batchelor8 theory. The spectrum inter
polates from ak25/3 behavior in the inertial range~wheretc

is dominated bye21/3r 2/3) to a k21 dependence in the vis
cous range~where 1

2th ln(Sc) dominatestc). The crossover
scale ish(ln(Sc))3/2, larger thanh ~this result is reminiscen
of high Schmidt number experiments10 where the spectrum
has been observed to bend earlier than aroundkh'1). How-
ever, the spectrum of the passive scalar usually exhibi
dependence less steep than25/3 in the inertial range,10–14

the phenomenon being particularly clear in shear flows;10–12

the existence of a21 range at high wave numbers is n
firmly established even at very large Schmidt numbers10 so
that it appears useful to re-examine the assumptions sum
up above on a novel experimental basis.

II. EXPERIMENTS

The sequential cascade picture does not leave room
singular, efficient events which would directly connect inje
tion scales to dissipative scales, thus participating majorl
the variance decay. We report in this paper on experime
suggesting that these events are the rule rather than the
ception.

We follow the dilution of three types of scalars, dis
dium fluorescein (Sc52000), temperature (Sc57) in water,
and temperature (Sc50.7) in air, hastened by the high Re
nolds number turbulence produced in the far field of a wa
jet. The experimental setup is described in Villermaux a
Innocenti.15 The scalar stream is injected continuously on
axis of the jet carrying the turbulence, through a tube wh
diameterd is smaller than the local integral scaleL ~that is,
d/L50.05, 0.1, 0.16! and larger than the Kolmogorov sca
L Re23/4 so that the scalar injection scale lies in the inert
range of scales. The injection point is located 30 diame
Downloaded 18 Dec 2000  to 195.221.102.97.  Redistribution subject 
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downstream of the exit of the main jet and the turbulen
Reynolds numberRe5u8L/n is varied from 6000 to 45 000
u8 denotes the local rms velocity (u8/u'0.25). The exit
velocity of the injection tube is maintained constant a
equal to the mean velocity of the main jet carrying the t
bulence at the injection point in such a way that the tu
behaves neither as a source, nor as a sink of momentum
the mean.

Figure 1 shows how the scalar, initially confined in
compact region of space, is progressively fragmented
packets whose frontier gets more and more corruga
These corrugations ultimately degenerate in thin elonga
sheets, with broad fluctuations of transverse size and lo
concentration along the sheets. Fluctuations of concen
tions and temperature are measured in the three diffe
experiments on the axis of the jet by a fiber optics probe
cold film thermometer, and a cold wire thermometer co
structed at the laboratory, respectively. The resolution of
probes matches the Kolmogorov scale, in all cases; we re
space to time byx5ut for x up to about one local integra
scale, and we convert frequenciesf into wave numbersk via
Taylor hypothesis, i.e., 2p f 5ku. As can be seen in Fig. 2
the presence of the injecting tube does not perturb a regio
more than two to three diametersd downstream of the injec-
tion point. The longitudinal velocity spectra recorded on t
axis of the jet are essentially identical to their free stre
analog~i.e., with the tube removed! at x/d54.

In this configuration, Villermauxet al.16 have measured
the shape and the evolution as time progresses of the re
ing one point concentration probability density functio
~PDF!. The scalar concentration fluctuations PDF,P(C/C0),
whereC0 denotes the injection concentration, rapidly exh
its a self-preserving shape, whose tail is an exponential w
an argument increasing linearly in timet as

PS C

C0
D;expS 2

t

ts

C

C0
D , ~4!

for t@ts , with the mixing timets being found to be
to AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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ts5
d

u
f ~Sc!, ~5!

as shown in Fig. 3. The factorf (Sc) is a slowly increasing
function of the Schmidt number. A fit consistent with th
data isf (Sc)50.12 ln(5Sc), but a power-law dependence o
the form f (Sc);Sc0.2 is not inconsistent as well.

The mixing timets is both consistent with~1! and with
the fact that the uniformization period increases with
bounds in the limitD→0.

The full PDF incorporates a Dirac delta at the orig
(C50) accounting for the dispersion of the scalar suppor
the diluting medium so that the average concentration va
as (ut/d)22 ~see Ref. 15!. However, the leading contributio
to the concentration fluctuationsC82(t)5^(C2^C&)2& de-
cay is given by the evolution of the PDF tail, and accordi
to ~4!, the variance decays asC82(t);C0

2(t/ts)
23 for t

FIG. 2. Spectra of the longitudinal velocity fluctuations measured on
center line and 30 diameters downstream from the exit of the main jet.
local integral scale isL56 cm. Dashed line: Atx/d54 downstream of the
exit of the injection tube, withd51 cm. Solid line: With the injection tube
removed. The straight line has a25/3 slope.

FIG. 3. Fluctuations PDFs, normalized by the initial concentration~tem-
perature!, recorded for the three Schmidt numbers 20 diametersd down-
stream from the injection point. The PDFs exhibit an exponential decay@Eq.
~4!# of the form P(C/C0);exp(2aC/C0). Inset: The argument of the
exponentials for different distancesx/d5ut/d and three Schmidt numbers i
such thata5(ut/d)/@0.12 ln(5Sc)#. d: Sc52000,Re56000 and 12 000,
d/L50.05, 0.1, 0.6.h: Sc57, Re56000,d/L50.05, 0.1, 0.16.j: Sc50.7,
d/L50.08,Re523 000;s, n: Sc50.7, d/L50.08,Re545 000.
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@ts. The use of three different injection diameters indica
that the characteristic time of the onset of the decay is a
ally proportional tod ~Fig. 4!, unlike tK , or tc , which scale
like d2/3 @see~2! and Ref. 9#.

The power spectrum of the stationary scalar fluctuatio
signal recorded at different locations downstream of the
jection point displays a cleark21 range, between the injec
tion scaled and the vicinity of the dissipation scaledPe21/2,
when the latter can be resolved by the probe~the Sc50.7
series of experiments! or down to the resolution scale of th
probe otherwise~Fig. 5!.17 The spectra decay fairly self
similarly at large Schmidt number for increasing distanc
from the injection point, and tend to deviate slightly from th
21 slope at moderate, or order unity Schmidt numbers,
developing a more and more pronounced, but still slight c
vature.

At the same location in the flow, the velocity spectru
displays a decay very close tok25/3 from 1/L to higher iner-
tial range wave numbers~Fig. 2!. As can be seen from Fig. 5
the ‘‘k21 shape’’ is indeed the gross feature of the spec
Their detailed shape is even not a pure power law, and t
evolution reveals a more and more pronounced curvatur
time elapses, particularly sensitive at low Schmidt numbe
It is not our aim to discuss this second~and probably impor-
tant! aspect here; we emphasize thatk21, or close-to-k21, is
certainly different fromk25/3, as expected from the cascad
arguments summed up in Sec. I.

III. CASCADE BYPASS

The observations reported above suggest that the pro
of reduction of scale by sheet thinning in turbulent flow
does notfollow step by stepthe cascade prescribed by th
pre-existing hierarchy of structures in the flow, even at la
Reynolds numbers, but instead ‘‘bypasses’’ the cascade
permanent, and efficient, stretching rate associated with
initial size of the blob and the maximal velocity in the flow

We introduce below a mechanism which accounts
the continuous generation of scalar sheets by the small-s
~smaller thand, see Fig. 1! activity of the flow as an inter-

e
e

FIG. 4. Decay of the rms fluctuationsC8(t) downstream from the injection
point for three different Schmidt numbers.s, d/L50.16; m, d/L50.1;
d, d/L50.05.
to AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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mediate step in the fragmentation process of a scalar blo
its route dissipation.

Let s0 be the transverse size of a scalar sheet peeled
from the initial blob (s0,d a priori!. The timets(s0) nec-
essary to reduce the transverse thickness of this diffu
lamellae down to the equilibrium valueAD/g where
stretching-induced thinning balances diffusive spreading
der the action of a permanent stretching rateg is

ts~s0!;
g21

2
lnS s0

2g

D D . ~6!

Equation~6! is reminiscent of the experimental mixing tim
~5! provided thatg21/2'0.12d/u; that is, g'4u/d. The
scale reduction process of the scalar sheets is mediated
constant stretching rate, acting at the injection scale.
experiments reported in Fig. 3 also suggest that the mix
time is independent of the Reynolds number. This fact c
strains the initial sizes0 of the scalar lamellae peeled o
from the blob to be a decreasing function of the Reyno

FIG. 5. Compensated power spectrakF(k) of the scalar fluctuations a
different successive times of the mixing process for the two extre
Schmidt numbers (kd5d/r ). Top: Sc50.7, d/L50.16, L520 cm, u52
m/s. The dissipation scaledPe21/2 corresponds here to a dimensionle
wave number equal toPe1/2'55, below the resolution wave number of th
probekcd5165. In the direction of the arrow,x5ut510, 13, 15, 18, 21 and
30 cm. Bottom:Sc52000, d/L50.1, L56 cm, u50.4 m/s. The probe
resolution cutoff wave number iskcd530 and the dissipation scale in tha
case is not resolved (Pe1/2'700). In the direction of the arrow,x5ut
51.5, 3, 4.5, 6, 7.5 and 9 cm.
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number, precisely such thats05A5n/g;d/Au8d/n. The
size of the initial scalar lamellae scales like the Taylor sca
based on the injection diameterd.

Then, the dissipation scale AD/g5s0Sc21/2

;d/Au8d/D 5dPe21/2 decreases like the square root of t
Péclet numberPe5 u8d/D based on the injection diamete
d. Note that according to the lines above, both the init
sheet thickness and the dissipation scale are expected
independent of the turbulence integral scaleL and are both
proportional to the injection diameterd.

The ratio of the mixing timets given by ~5! to the time
tc needed to travel through the ‘‘Kolmogorov cascade’’~2!,
i.e.,

ts

tc
5

0.12
d

u
ln~5Sc!

e21/3d2/31
L

u
Re21/2ln~Sc!

'0.12
u8

u S d

L D 1/3

ln~5Sc!, ~7!

is notably smaller than unity~of the order of 0.1 in the
present experiments!, even for large Schmidt numbers. Fro
there originates the bypass.

The time ts is the time needed to connect the initi
peeled-off structures of sizes0 ~these are produced in a ver
short time of the order ofAu8d/n times smaller thants),
with the dissipation scaledPe21/2. The scalar field is indeed
found to be composed mainly of thin sheets, although lar
blobs do persist for all times. These larger scales originat
an incomplete peel off, or result from a subsequent diffus
reamalgamation of disjointed sheets.

For scalesr larger thans0 in the direction towards the
inertial range of scales, up tod which is a priori the largest
initial transverse size of a scalar lamellae, the sheet for
tion time ts(r ) is somewhat larger thants(s0), within a loga-
rithmic correction

ts~r !;g21 lnS Pe1/2
r

dD . ~8!

Equations~6! and~8! are equivalent. Equation~8! is the ver-
sion of ~6! holding for a priori any scaler ,d, thus formal-
izing the idea of the bypass for any scale up to the inject
scale of the scalard and therefore allowing us to make
prediction on the shape of the spectrum. Indeed, as soo
the global variance decay rate2@1/C82(t)#@dC82(t)/dt#
;1/t is smaller than 1/ts(r ) for Pe21/2,r /d,1, the quasi-
equilibrium limit for any mean squared concentration inc

mentc2(r ) is

c2~r !

ts~r !
;

C82~ t !

ts~d!
, ~9!

with ts(d) being the largest sheet formation time of the fe
structures whose size has remained of orderd at time t. The
Fourier spectrum derives from~8! and ~9! as

F~k!;
C82~ t !

ln~Pe1/2!
k21, ~10!

s
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which holds for all wave numbers between the injecti
wave number 1/d and the dissipation wave numberPe1/2/d.

In this picture, sketched in Fig. 6, the pre-existing hie
archy of scales in the flow is completely ignored, and t
bypass also holds when a developed, nonintermittent s
trum prevails in the underlying velocity field, as for th
present experiments. We do not interpret the intermitt
(k21) character of the scalar spectrum as reflecting interm
tency in the velocity spectrum.18 On the contrary, these ex
periments rather suggest that the scalar distribution and
underlying displacement field are very loosely coupled
each other and that the mixing properties of a turbulent fl
are very little sensitive to its detailed structure.19,20

The spectrum given in~10! decays in amplitude for in-
creasing Reynolds number and Schmidt number (F(k)

; @C82(t)/ ln(Pe1/2)# k21), but its integral*1/d
Pe1/2/dF(k)dk

5C82(t) is actually conserved, independent of the Reyno
number, and with no spurious Schmidt number depend
factor other than that originally contained inC82(t), which
itself decays faster in time than the upper bound of the i
nite Schmidt number limit.21

IV. CONCLUSION

We have presented a purposely designed transient
periment consisting of following the dilution of an initiall
segregated scalar blob in a sustained turbulent medium.
kinetics and spectral features of the mixture have b
shown to be at odds with the sequential Corrsin–Obuk
cascade picture of scalar advection in turbulent flows.

The starting point of this work was exposed in Sec
where it was recalled that the sequential Corrsin–Obuk
cascade picture has a direct consequence on~i! mixing times,
and therefore~ii ! on the spectral content of the mixture. Th
picture is confronted by an experiment designed to test it
the facts are presented in Sec. II: the mixing time of a blob
size d scales as ts;d/u8 ln(5Sc), as opposed to
L/u8(d/L)2/3 in the Corrsin–Obukhov vision and the spe
trum of the mixture isk21, as opposed tok25/3, in the iner-
tial range of scales, and for scales smaller than the injec

FIG. 6. Sketch of the route to dissipation by the ‘‘cascade bypass.’’
scales are directly connected to the dissipation scales0Sc21/25dPe21/2 via
the injection scale stretching rateg;u/d. Possible diffusive reamalgam
ation of the sheets produces larger scales.
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scaled. Moreover, the mixing timets has been found to be
smaller than the cascade timeL/u8(d/L)2/3. We have thus
suggested that the process of mixingdoes notfollow the
sequential route expected from cascade arguments, but
the contrary dominated by a more efficient~i.e., with a
shorter time scale! mechanism, that we call bypass and f
which we have imagined a possible scenario in Sec. III.

The k21 shape is the ‘‘natural’’ spectral signature of a
intermittent collection of disjointed sheets whose approach
uniformity is governed by a permanent stretching rate rela
to the injection scale of the scalar. We have interpreted
as a sign of nonlocal interactions bridging the injection sc
of the blobd with the dissipation scale, which we anticipate
to be given bydPe21/2, and we have underlined the spectr
consequences of this point of view.

The permanence of the injection features of the scala
the flow is manifested by the Reynolds number indep
dence of the mixing timets; d/u8 ln(5Sc) and by the fact
that the scalar dissipation scale depends solely on its in
segregated scaled, and on its molecular properties throug
the Péclet numberu8d/D.

Molecular viscosity does, however, play a role. T
‘‘cascade bypass’’ scenario we have imagined in this pa
involves, as an intermediate step, the formation of scalar
mellae peeled off from the initial segregated blob, who
size s0 scales like the Taylor scale based ond as s0

;d/Au8d/n. These structures originate from the destabiliz
tion of internal shear layers consecutive to the relative m
tion of the blob with its surrounding environment. The d
stabilization of these shear layers is made possible as soo
the Reynolds number based on their own thicknessu8s0 /n
5Au8d/n is larger than about 150,22,23 otherwise the insta-
bility is smoothed out by viscous spreading. The injecti
Reynolds numberu8d/n has thus to be large enough, that
typically larger than 104, for this ‘‘mixing transition’’ to
occur.2 Provided this condition is fulfilled, that is, provide
the Reynolds number ishigh enough, the mixing time be-
comesindependentof the Reynolds number as we have e
plained in Sec. II.

The persistence of the injection conditions of the sca
goes even further. It not only determines the global de
rate of the inhomogeneities through the mixing time, but a
the whole statistics of the concentration distribution,
shown in Fig. 2. This observation has already been mad
shear flows dominated by a mean scalar gradient24,25 where
the skewness of the temperature~concentration! derivative
parallel to the mean gradient was found to be of order un
and very weakly dependent on the Reynolds number.

The disjointed scalar sheet distribution resulting from
punctual injection in a flow is the ‘‘quantum’’ of scalar mix
ing. The interaction between several distributed sources
the amalgamation of the sheets as they diffuse, which oc
all the more early when the Schmidt number is low~and is
probably a phenomenon sensitive to the Reynolds numbe! is
the next ingredient to examine for understanding how
scalar field finally adapts to the hierarchical structure of
stirring field in the uniform, well-mixed limit.10,12,26

l
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