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The stirring and mixing properties of one-phase coaxial jets, with large outer (annular)
to inner velocity ratio ru = u2/u1 are investigated. Mixing is contemplated according
to its geometrical, statistical and spectral facets with particular attention paid to
determining the relevant timescales of the evolution of, for example, the interface
area generation between the streams, the emergence of its scale-dependent (fractal)
properties and of the mixture composition after the mixing transition. The two key
quantities are the vorticity thickness of the outer, fast stream velocity profile which
determines the primary shear instability wavelength and the initial size of the lamellar
structures peeled-off from the slow jet, and the elongation rate γ = (u2 − u1)/e
constructed with the velocity difference between the streams and the gap thickness
e of the annular jet. The kinetics of evolution of the interface corrugations, and the
rate at which the mixture evolves from the initial segregation towards uniformity is
prescribed by γ−1. The mixing time ts, that is the time needed to bring the initial
scalar lamellae down to a transverse size where molecular diffusion becomes effective,
and the corresponding dissipation scale s(ts) are

ts ∼ Sc1/5

γ
, s(ts) ∼ eRe−1/2Sc−2/5,

where Re and Sc denote the gap Reynolds number and the Schmidt number, respec-
tively. The persistence of the large-scale straining motion is also apparent from the
spectra of the scalar fluctuations which exhibit a k−1 shape on the inertial range of
scales.

1. Introduction
When two fluid streams liable to react chemically merge, the extent and topology

of the reaction zone coincide, provided the chemical reaction has very fast kinetics,
with the region of diffusive interpenetration between the streams. This is the so-
called high Damköhler number limit (see e.g. Williams 1985; Dimotakis 1991). Most
exothermic combustion reactions (some simple reactions in liquids such as acido-basic
neutralizations, for example), in practice, occur within this limit.

In that case, the contacting geometry and the stirring conditions just after contact
play a crucial role on the overall consumption rate since they set the extent of the
diffusion front between the phases.

The use of coaxial jets is widespread in the context of ‘airblast atomization’, that
is to say high-speed gas assisted spray formation (Lefebvre 1989). The coaxial jets
geometry, operating with a large outer (annular) to inner (central) momentum ratio
is used for its ability to destabilize, fragment and mix the central stream in the outer,
rapid stream.
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Aside from the atomization context and in spite of their potential practical use-
fulness, few studies have discussed the quantitative mixing properties in the field
near from the injector outlet. Beér & Lee (1965) have measured the residence time
distribution (RTD) of tracer particles injected into the central jet, and have linked
the shape of the RTD with the operating parameters. The complex interaction of
the instabilities resulting from the development of the two nearby shear layers (one
between the inner jet and the outer jet, and the other between the outer jet and
the surrounding medium) have been documented in one-phase coaxial jets by Dahm,
Clifford & Tryggvanson (1992).

Rehab, Villermaux & Hopfinger (1997) have studied the flow regimes in the near
field as the velocity ratio between the streams is varied. These authors have, in
particular, shown how the velocity ratio determines the inner jet potential core length,
and the condition for a recirculation, wakelike transition, which occurs when the
velocity ratio is increased above a critical value.

At the root of the interpenetration between the phases is a strong shear. Since the
disturbances at the interface between the streams are convected by the mean flow,
this geometry offers the opportunity of following in space the precise sequence of
events which contribute to the interpenetration between the phases subsequent to the
development of the shear instability, up to the onset of molecular mixing and diffusive
uniformity of the mixture.

Plane shear layer experiments have emphasized the role of the persistent large-scale
motions on the interpenetration between the phases, and have determined how the
spreading rate of the resulting ‘mixing layer’ depends on their velocity ratio (Brown
& Roshko 1974). In this configuration, the existence of a ‘mixing transition’ has been
shown (Breidenthal 1981), and the evolution of the medium composition after the
transition has been documented (Koochesfahani & Dimotakis 1986), as well as its
sensitivity to the initial contacting conditions (Huang & Ho 1990; Karasso & Mungal
1996; Slessor, Bond & Dimotakis 1998).

The internal structure of the concentration field in a mixture can be investigated
through the spatial scaling of the concentration increment distributions with the
separation distance. In particular, the second-order moment of the distributions,
equivalently the power spectrum of the concentration fluctuations, has led to predic-
tions based on cascade arguments (Oboukhov 1949; Corrsin 1951; Batchelor 1959)
that are currently critically checked (see e.g. Sreenivasan 1996 for a review). The
relation of the spectral signature of a mixture with its mixing state is still unclear.

The multiscale geometry of a passive interface immersed in a disordered flow has
long been recognized (Welander 1955) and has stimulated, guided by the concept
of fractal objects, a large amount of work (see e.g. Sreenivasan 1991 for a review;
Catrakis & Dimotakis 1996 and references therein). Mixing is, in essence, a process
dependent on time. The link between the transient shape of a scalar blob being
mixed in a flow, the birth and death of its multiscale structure and the composition
histogram of the scalar field has been recently established (Villermaux & Innocenti
1999).

In the present coaxial jet flow, the geometrical, structural and statistical facets of
the mixture, evolving from a complete segregation at the injector outlets, to a state
where the concentration levels are continuously distributed farther downstream, are
examined concomitantly and put in relation to each other. We first describe the
nature and mechanism of the basic shear instability between the outer and the inner
stream. From there, an ‘entrainment velocity’ is derived which allows us to discuss
the dependencies of the dilution lengths of a scalar injected in the central jet on
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Figure 1. Sketch of the injector outlets and development of the flow. Inner and outer jets have
diameters D1 = 2 cm and D2 = 2.7 cm, and velocities u1 and u2, respectively.

the velocity ratio, and on the concentration level chosen to define this length (§ 3).
Then, we depict in detail the process of interface area generation between the streams
(§ 4.1) and the emergence of scale-dependent corrugations of the interface (§ 4.2).
The shear-induced thinning of the initial disturbances in the approach of the onset
of molecular mixing is analysed quantitatively (§ 4.3). The evolution of the medium
composition after the onset of molecular mixing is presented (§ 4.4) as well as the
spectral properties of the mixture (§ 5). Finally, we discuss the possible relevance of
this case study for the problem of turbulent mixing.

2. Set-up and procedures
2.1. Flow configuration

Two coaxial injectors are supplied with water by a constant-head reservoir and
discharge into a large tank of water at rest. The flowrates are controlled by precision
valves and electromagnetic flowmeters. Premixing chambers far upstream on the
feeding lines allow both streams to be seeded with a fluorescent dye. The diameters of
the inner and the outer jet nozzles are D1 = 2 cm and D2 = 2.7 cm with a contraction
ratio of 2 and 4, respectively (figure 1). The mean velocities at the nozzles exit are in
the ranges 0.1 < u1 < 1 m s−1 and 0.3 < u2 < 4 m s−1.

We are interested in the regime in which the ratio of the maximal velocities of the
outer to the inner jet ru = u2/u1 is larger than unity. The overall Reynolds number
defined from the net momentum input is, for ru � 1, ReM = (u2D2/ν)[1− (D1/D2)

2]1/2

and is of the order of 5.4× 103 to 7× 104. The Reynolds number constructed on the
gap thickness e = (D2−D1)/2 and the annular momentum dominating stream velocity
u2, Re = u2e/ν ranges from 103 to 1.4× 104. Residual turbulence levels represent less
than 5% of the mean velocities in both streams.

The vorticity thickness δ of the rapid stream at the lip of the injector exit is
such that δ/e = 9.5Re−1/2, giving a Reynolds number Reδ = u2δ/ν about 800 at
u2 = 2 m s−1. The thicknesses of the boundary layers on each side of the gap actually
represent a small fraction of the gap width, of the order of 1/10, in the range of
Reynolds number investigated (see also Rehab et al. 1997).
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2.2. Measurement methods

The images of the scalar field of the dye, diluted in one or the other stream, were
obtained by a standard laser induced fluorescence technique, using disodium fluores-
cein as a laser fluorescent dye, whose Schmidt number, the ratio of the kinematic
viscosity ν to the molecular diffusivity of the dye D is about Sc = ν/D ≈ 2000. A
thin laser sheet is produced by spanning a 5.4 W argon-ion laser beam, collimated by
a long focal-length lens (f = 2 m) with a mirror oscillating at 4 kHz. This provides a
uniformly illuminated region in the visualization window. The images are captured by
a SONY D7CE video camera with a Paillard 75 mm f/2.8 lens at a rate of 25 images
per second and an exposure time of 1/1000 s. They were either directly digitized by a
NEOTECH 8 bits A/D converter and written to the computer disk, or stored on an
S-VHS magnetoscope, and further digitized and processed. The images are initially
digitized on 768 × 512 pixels and were shrunk to 384×256 pixels before processing.
The calibration of the background-substracted images is linear up to the injection
concentration C0 = 5× 10−7 mol l−1, corresponding to a grey level of about 200. This
diluted injection concentration level results in a negligible laser attenuation across the
visualization window. The r.m.s. noise of the images never exceeds 1%.

The pixel size on a final image corresponds to a real dimension of 150 µm and
since the thickness of the laser sheet is of the order of 300 µm, each pixel receives a
fluorescence signal integrated on a 150× 150× 300 µm3 volume.

The dissipation lengthscale, that we denote s(ts), relevant to that configuration will
be shown (see § 4.2) to be s(ts)/e = 16Re−1/2Sc−2/5 and is of the order of the resolution
of the final images for the smallest gap Reynolds numbers investigated. Most of the
results reported here are based on slightly under-resolved images for which s(ts) is
approximately half a pixel.

Long temporal traces of the advected scalar field were obtained by a series of
concentration measurements, using a fibre optic concentration probe. The probe
consists of two optical fibres, with a core 200 µm thick, and whose extremities are
joined and placed at right angles to each other. The emitting fibre is coupled to an
argon-ion laser and the receiving fibre conveys the fluorescence light emitted in the
measurement volume to a photodiode. The measurement volume is the intersection of
the optical paths of the two fibres, and provides a resolution of the order of the fibre
diameter (§ 5). The signal delivered by the photodiode was checked to be proportional
to the amount of dye present in the measurement volume.

Velocity measurements were performed by a standard hot-film anemometry tech-
nique using a TSI probe with an active length of 250 µm.

3. Shear instability and entrainment
3.1. Primary instability

This study concentrates on the limit where the central jet carries significantly less
momentum as compared to the outer jet. The inner jet is entrained and mixed by
the motions originating from the destabilization of the outer jet. Since the density of
both jets and of the medium at rest in which they issue is uniform, we are therefore
concerned with a velocity ratio ru = u2/u1 larger than unity. The other limit is the
case of the simple jet.

Actually, the near field of coaxial jets is characterized by the existence of two
shear layers, the outer one between the core of the annular jet and the surrounding
medium at rest, absorbing a velocity difference ∆u = u2 − 0 = u2, and the inner
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Figure 2. Instantaneous planar cuts containing the jet axes of the near field of coaxial jets. The
annular jet is seeded with a fluorescent dye and the velocity ratio is ru = u2/u1 = 4 for both pictures.
(a) Re = u2e/ν = 700. (b) Re = 1400.

one, between the annular jet and the central jet, absorbing a velocity difference
∆u = u2 − u1 = u2(1 − 1/ru). When the vorticity thickness δ ∼ (D2 − D1)Re

−1/2 of
the boundary layers of the velocity profile at the injector exit is not negligibly small
compared to the gap width e, the inner and outer shear layers interact, giving rise to
complex vorticity dynamics, resulting essentially in a sinuous instability mode, with
possible phase jumps due to the difference of group velocities between the layers (see
e.g. Squire 1953; Dahm et al. 1992).

However, as shown in figure 2, for a given gap width e, the vorticity thicknesses δ
of the annular velocity profile become smaller as u2 is increased, and the instabilities
of each shear layer develop progressively, independently of each other. Their features
(wavelength, group velocity) are all close to each other because the velocity ratio
ru is large at fixed u1. We will therefore, for the sake of simplicity, assume that a
single layer develops its instability as in an infinite medium. We will also consider the
instability problem in the plane approximation, the thickness of the sheet δ being small
compared to its spanwise radius of curvature 1

2
D1 (i.e. δ/ 1

2
D1 ∼ ((D2/D1)− 1)Re−1/2).

Our aim is to derive the instability wavelength and its associated growth rate to
estimate an entrainment velocity of the slow phase by the rapid one.

A free shear layer presenting an inflectional velocity profile is unstable in the
sense initially depicted by Helmholtz & Kelvin for the case of a sharp discontinuity
of velocity. This result was soon generalized by Rayleigh (1880) to the case of a
finite non-zero-layer thickness with a uniform shear adapting the low-speed to the
high-speed stream. Expanding the disturbances to the basic flow in Fourier modes
proportional to exp (ikx − iωt)) and letting κ = kδ, Ω = ω/k(u2 − u1) with δ the
thickness the profile, the dispersion relation is found in the form

e−2κ = [1− κ(2Ω + 1)][1 + κ(2Ω − 1)]. (1)

The layer is unstable for all wavenumbers such that kδ < 1.28, and the maximal
growth rate r = max[Re {−iω}], corresponding to kmδ ≈ 0.8, is such that r ≈ 0.2
(u2 − u1)/δ. The numerical factors are weakly sensitive to the detailed shape of the
velocity profile (see e.g. Esch 1957) so that the piecewise linear profile is actually a
generic caricature. The generalization of the dispersion equation (1) to the case where
the two streams have different densities, with surface tension at the interface, has
been made in Villermaux 1998a in connection with atomization studies. The growth
rate r and most amplified wavenumber km are insensitive to viscosity as soon as the
Reynolds number constructed on the velocity jump and the thickness of the layer
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Figure 3. Radial profile of the r.m.s. fluctuations of concentration at x/e = 3, Re = 1400.

(u2 − u1)δ/ν is larger than about 150 (Betchov & Szewczyk 1963; Villermaux 1998b),
as it is always the case in these experiments.

The development of the shear instability between the streams is reflected by the
downstream evolution of the mean concentration thickness δc defined by

δc = C0/

(
dC̄

dy

)
max

, (2)

where (dC̄/dy)max denotes the maximum value of the gradient of the mean concen-
tration profile in the y-direction across the shear layer (figure 3). At short times,
or at short distances from the injector outlet, when molecular diffusion has not yet
set in, that is as long as the instantaneous scalar field remains binary, composed
of sheets bearing the injection concentration, the thickness δc is a measure of the
mean transverse width of the layer, itself reflecting the instability amplitude to some
proportionality factor.

As emphasized in the next section, the scalar field remains essentially fully seg-
regated up to the first roll-up of the shear layer and farther. The r.m.s. fluctu-

ation concentration at a given point in the flow C ′ =
√〈((C(t)− C̄)2)〉 normal-

ized to the injection concentration C0 is for a binary concentration field given by

C ′/C0 =
√

(C̄/C0)(1− C̄/C0), and peaks at 1/2 for C̄/C0 = 1/2. Figure 3 shows how
the presence of the inner and outer shear layers results in two symmetrical maxima
for C ′/C0 reaching about 0.45, slightly below the expected maximum and slightly
above the value measured in the early development of a plane mixing layer by Bernal
& Roshko (1986) who found C ′/C0 ≈ 0.35.

As shown in figure 4, δc first increases exponentially in the x-direction, before
reaching a plateau when the initial concentration difference C0 is absorbed on a
distance of the order of the gap width e, that is when (C0/e)/(dC̄/dy)max = δc/e ≈ 1.

The distance xc at which the condition δc/e = 1 is reached corresponds qualitatively
to the formation of the first roll-up and is related to the ‘wave breaking length’
described by Becker & Massaro (1968) in a single round jet. It is found to decrease
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Figure 4. (a) Close-up of the average concentration field of the inner (top) and outer (bottom)
layers on a planar cut containing the jets axis; u2 = 0.4 m s−1, ru = 4, Re = 1400. (b) Downstream
evolution of the average concentration profiles across the inner layer for x/e = 1, 2, 3 and 4.
(c) Normalized concentration thickness δc/e versus downstream distance x/e. (d) Critical distance
for which δc/e = 1 as a function of the gap Reynolds number.

proportionally to the initial vorticity thickness of the fast stream velocity profile when
the gap Reynolds number Re is increased. The distance xc is also proportional to the
wavelength λ selected by the shear instability giving (figure 4d),

xc

e
= 164Re−1/2,

λ

e
= 75Re−1/2. (3)

The wavelength in equation (3) is quantitatively consistent with the mode selected
in the instability of the Rayleigh profile, i.e. kmδ ≈ 0.8 (equation (1)). The spatial
growth rate of the concentration thickness δc is well estimated in order of magnitude
from a simple transformation relating time to space via the mean convection velocity
u = u2(1 + 1/ru)/2 (i.e. t = x/u). With r = 0.2u2(1 − 1/ru)/δ, δ/e = 9.5Re−1/2 and
Re = 1400, it is found that rt = 0.94x/e when the numerical prefactor measured
on figure 4(c) is 0.54. The quantitative difference can be attributed to at least two
factors: the use of the Gaster transformation (x = ut) to infer the spatial growth rate
from the temporal growth rate which is known, depending on the initial shape of
the profile, to induce significant differences (Monkewitz & Huerre 1982; Freymuth
1966), and the fact that we have neglected the radius of curvature of the layer. The
recourse to equation (1) is only meant to discuss the origin of the instability and
selected wavelength dependence on the velocity profile shape.
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Figure 5. (a) Average concentration field of a dye injected in the central jet for ru = 3. The
white isoconcentration contours correspond to the dilution levels Cs/C0 = 0.5 and 0.9. (b) Average
concentration profiles along the axis, with the central jet seeded. From right to left, ru = 2, 3 and 4.
(c) Collapse of the profiles of (b) with the scaled spatial distance (x/D1)ru. (d) Dependence of the
dilution lengths Ld on the velocity ratio ru. �, Cs/C0 = 0.99; ◦, Cs/C0 = 0.9; •, Cs/C0 = 0.5.

3.2. Dilution lengths

The time needed for an instability structure of initial width λ = 2π/km to grow up to
a transverse size where it is rolled up and peeled off from the interface is of the order
of 1/r. As it will be shown in § 4, the time necessary to mix it at the molecular level is
longer. The entrainment velocity, which represents the size of the structures multiplied
by the rate at which they are peeled off from the interface (but not necessarily mixed,
see e.g. figure 6) ue ∼ rλ is thus written as

ue ∼ u2 for ru =
u2

u1

� 1. (4)

On the averaged concentration fields such as the one shown in figure 5(a), the
isoconcentration envelopes particularized by the concentration threshold Cs have
a shape intermediate between a cone and a cylinder, depending on the value of
Cs/C0. The base width is D1 and the height of the cone is Ld. The length Ld of the
isoconcentration contour can be interpreted by a scalar mass balance involving the
entrainment velocity ue. During a time interval ∆t, the amount of scalar injected by
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(a) (b)

Figure 6. Snapshots of the destabilization of the inner seeded jet by the fast annular jet for ru = 4
and Re = 1400. (a) Planar cut containing the jet axis. (b) Transverse cut at downstream location
x = D1/2.

the inner jet is 1
4
πD2

1u1C0∆t. In a steady-state regime, each isoconcentration surface
in the entrainment region is crossed at the velocity ue. The quantity of scalar injected
during the time ∆t will thus be diluted in a volume πD1Ldue∆t (for simplicity, the
isoconcentration envelope is assumed to be cylindrical) down to the concentration
level Cs which defines Ld. By diluted, we do not necessarily mean molecularly mixed,
we just require the probability of presence of the scalar to be Cs/C0, independently
of its segregation state. The scalar mass balance is thus

D2
1u1C0∆t ∼ LdD1ueCs∆t, (5)

providing the dependence of the dilution length Ld as a function of the velocity ratio
and concentration threshold level

Ld

D1

∼ A

ru

C0

Cs
, (6)

the constant A being found to be equal to 8 (figure 5d). The structure of the law in
equation (6) is very general and is similar to the law giving the length of the potential
core of the inner jet as the velocity ratio is varied, as shown by Rehab et al. (1997).
The inner potential core length coincides with the dilution length for Cs/C0 = 0.9.
Equation (6) holds up to the recirculation transition (Villermaux et al. 1994; Rehab et
al. 1997). The reasoning can be generalized to situations where the jets have different
densities, the square root of the momentum ratio M1/2 = (u2/u1)(ρ2/ρ1)

1/2 replacing
the velocity ratio ru. It can also be extrapolated to the limit M → 0 for the case of a
single jet issuing in an environment at rest, the relevant shear velocity becoming u1 in
that case, yielding Ld/D1 = A(ρ1/ρ2)

1/2(C0/Cs), in accordance with the compilation
made by Dahm & Dimotakis (1987).

Consistent with the fact that the dilution lengths are inversely proportional to ru
for all Cs/C0, the average concentration profiles on the jet axis of figure 5(b) collapse
when the downstream coordinate is rescaled according to (x/D1)ru, as shown in figure
5(c).

At large distances x/D1 from the end of the inner potential core, when the two jets
have merged in a single jet carrying the sum of the momenta injected in each jet, the
mean concentration decays as (x/D1)

−1, as dictated by mass conservation in the far
field of a round jet (figure 5c).
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(a)
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Figure 7. (a) Isoconcentration contour at Cs = C0/2 of the image of figure 2(b), and division into
successive adjacent rectangular windows of width w. (b) Transverse cuts with the inner jet seeded
at (i) x/D1 = 1/2 and (ii) x/D1 = 1.

4. Fine structure of the mixture
Average concentrations fields and dilution lengths are indicative of the dispersion

properties of one jet in the other, themselves reflecting the intensity of the entrainment
rate of one jet by the other. However, dilution lengths do not provide any information
about the scales involved in the entrainment process, nor about the segregation state
of the mixture, that is, the contents of the flow in concentration levels intermediate
between the injection concentration and zero when molecular mixing has set in.

Coaxial jets at moderate velocity ratio offer the opportunity of following step by
step the sequence of events of the incorporation of one phase into the other from the
initial segregation up to the onset of molecular uniformity.

4.1. Interface generation

The interface corrugations subsequent to the development of the instability increase
the contact area between the streams. The interface area increase is significant at the
end of the linear development of the instability and is directly associated with the
roll-up of the crests of the instability structures, in both the spanwise and streamwise
directions, as shown in figure 6.

The wavelength in the transverse direction is somewhat larger than half the wave-
length in the streamwise direction, a proportion consistent with previous observations
(Bernal & Roshko 1986).

The downstream evolution of the interfacial area is measured by following the
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Figure 8. For u2 = 0.4 m s−1, ru = 4, Re = 1400. (a) Simultaneous downstream evolutions of
(left-hand axis) normalized concentration thickness δc/e and (right-hand axis) contour lengths
L‖/L0 normalized to their initial value for �, Cs/C0 = 1/2; �, Cs/C0 = 2/3. . . . , evolution of

the average concentration dissipation χw =
∫
Sw
{(dC/dx)2 + (dC/dy)2} dx × dy. (b) Simultaneous

downstream evolutions of �, the longitudinal L‖/L0 and ◦, transverse L⊥/L0 contour lengths for
Cs/C0 = 1/2.

extent of the intercept of the isoconcentration surfaces with the visualization plane:
we first extract the isoconcentration contour for a given concentration threshold Cs
by a standard binarization/differentiation procedure. Then, on the longitudinal cuts,
those containing the jet axes, we divide each instantaneous image into 12 adjacent
rectangular windows, as shown in figure 7. The width w of each window has been
chosen to be somewhat larger than the gap thickness, i.e. w ≈ 3e/2. The length of the
contour is computed in each window as the number of pixels contained in the window.
The sequence of operations is repeated on 100 different images decorrelated in time,
providing in each window the averaged contour length L‖ at concentration threshold
Cs. The x downstream location of the centre of the jth window is xj = w/2+(j−1)w,
for 1 6 j 6 12.

The same procedure of {binarization/differentiation/contour length extraction} is
applied to the transverse cut images, defining the contour length L⊥ at threshold
Cs in the plane perpendicular to the direction of the flow for successive well-defined
downstream locations. In both cases, the contributions of the spanwise and streamwise
structures of the inner and outer layers are intermingled by this procedure.

In figure 8, the evolutions of the interface lengths in the longitudinal and transverse
planes are displayed, together with the downstream evolution of the concentration
thickness δc defined in equation (2). Also shown is the evolution of the component
perpendicular to the plane containing the jet axes of the average concentration
dissipation χw =

∫
Sw
{(dC/dx)2 + (dC/dy)2} dx× dy, where Sw denotes the area of the

windows, normalized to its value in the first window.
It is observed that during the linear part of the instability development, that

is, in the phase of exponential increase of δc, up to xc/e = 4.5 at the Reynolds
number corresponding to figure 8, the contour lengths L‖ and L⊥ representative of
the interface area between the streams increase very weakly. The increase reflects the
slight oscillation of the interface owing to the instability development. However, from
the vicinity of the first roll-up and beyond (i.e. for xc/e > 4.5 in figure 8), the contour



172 E. Villermaux and H. Rehab

1.0

0.8

0.6

0.4

0.2

0
–3

(y–1
2 D1)/e

–2

u (y)
u2

–1 0 1 2
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lengths, in both the longitudinal and transverse directions increase markedly, as well
as the dissipation χw .

Note that L‖ and L⊥ both grow concomitantly and at the same rate. The increase
is fairly linear with downstream distance and weakly dependent on the concentration
threshold Cs/C0 chosen to define the contours up to x/e ≈ 12. For x/e > 12,
the evolutions of both L‖ and L⊥ saturate, then decrease and become significantly
dependent on Cs/C0. This location also corresponds to the point where the dissipation
χw defined above starts to decrease, indicating that, after the phase of production
of the interfacial area, which is the support of the scalar dissipation, the onset of
molecular uniformity of the mixture follows.

These observations offer a very simple picture of the early stages of the interpen-
etration between the streams. Sheets of scalar whose transverse size is of the order of
the primary shear instability wavelength are peeled off from the central jet and further
stretched so that their linear dimensions in the streamwise and spanwise directions
grow proportionally to L‖ and L⊥, respectively.

Contour lengths L‖ and L⊥ grow linearly in time, as they would if they were a
material line spiralling in a vortex of constant circulation (Fung & Vassilicos 1991;
Cetegen & Mohamad 1993), or a material line stretched in a parallel shear flow
(see e.g. Ottino 1989). In these simple flows, the length of a material line evolves as
L(t)/L0 = (1 + (γt)2)1/2.

The rate of elongation γ clearly coincides with the velocity gradient between the
streams, involving a lengthscale which prescribes the steepness of the velocity jump
u2− u1 across the layer. There are a priori four different ways to estimate the velocity
gradient: (u2 − u1)/δ, (u2 − u1)/e, (u2 − u1)/λ and (u2 − u1)/x. The first holds close to
the injector exit, setting the instability growth rate, as already noted. The last holds
far downstream from the first roll-up when the thickness of the layer grows linearly
with x (Rehab et al. 1997). In between these extremes, the velocity gradient is of order
(u2 − u1)/λ when the gap width e is much larger than the primary wavelength λ (as
for plane mixing layers between semi-infinite streams, Huang & Ho 1990; Karasso &
Mungal 1996), and is of order (u2 − u1)/e when λ > e. The latter condition is always
fulfilled in these experiments (see equation (3) and figure 4c) and the velocity gradient
is indeed found to be of order (u2 − u1)/e after the first roll-up as shown in figure 9.

Time t and downstream distance x are linked by the mean convection velocity so
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that with

L(t)/L0 = (1 + (γt)2)1/2, (7a)

and

γ =
u2

e
(1− 1/ru), t = 2x/u2(1 + 1/ru), (7b)

we obtain
L(x)

L0

= 2
ru − 1

ru + 1

x

e
for x > xc, (7c)

in close agreement with the slope measured for ru = 4 in figure 8 (L stands for L‖
and L⊥ indifferently).

The structure of equation (7) is identical to that giving the thickness of a shear
layer separating two streams of velocity ratio ru as a function of downstream distance
x (Brown & Roshko 1974). Note that such a linear dependence holds not only for the
thickness of the layer, but also for the length of material lines, or isoconcentration
contours within the layer. By contrast, a succession of stretchings and foldings
would have induced an exponential growth for the contour lengths, an eventuality
incompatible with figure 8.

4.2. Scale-dependent interface corrugations

The downstream evolutions of the isoconcentration contours L‖ and L⊥ computed
from two-dimensional cuts in the medium, in windows of constant surface is a direct
measure of the downstream evolution of the contact surface area per unit volume
between the streams. The isoconcentration surface area was found (see § 4.1) to
increase, before the onset of molecular mixing, like 1 + (γt)2 since the longitudinal
and transverse contour lengths were both found to evolve as L(t) = L0(1 + (γt)2)1/2.

The length of a contour is defined by the number of boxes N(r) required to cover
it multiplied by the linear size of a box r. The dependence of N(r) on the scale r
is informative about the process which contributes to the contour corrugation. This
dependence was extracted on successive windows of instantaneous images as shown
in figure 7, for a concentration threshold Cs/C0 = 1/2.

We used a standard box-counting algorithm to cover the contours in each window
with box sizes r smaller than the width of the window providing the N(r) dependence
from the resolution scale of the images up to the gap width e.

As shown on figure 10, the dependence of N(r, x/e) versus r is continuously
deformed as the downstream distance x/e increases. For small x/e, when the instability
between the streams has not yet developed, the contour is smooth, rectilinear, and the
number of covering boxes is inversely proportional to their size on the whole range
of scales r/e.

From the first roll-up and farther downstream, N(r, x/e) presents a more and more
pronounced concave curvature. N(r, x/e) is tangent to (r/e)−1 for small r/e but the
local dependence is all the more steep when the scale r compares to the gap width
e and, for a given scale r, all the more steep when the downstream distance is large.
The emergence of this scale-dependent fractal character is a consequence of the
dependence on scale of the stirring motions themselves.

Once produced by the primary instability, the structures are progressively elongated
in the sustained shear between the streams. The maximal rate of shear, giving the
separation rate of two material points initially close to each other is of the order
of γ given in equation 7(b). However, considering two material points belonging, for
instance, to the same isoconcentration contour, initially separated by a distance r not
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Figure 10. (a) Number of boxes N(r, x/e) needed to cover the contours such as those of figure 7,
in three successive windows at •, x/e = 0.65; ◦, 5.87; and �, 12.4. The continuous lines are the fit
by equation (10a) with the fitting parameter of equation (10b). a = 1.3. (b) Fitting parameter B(x)
of equation (10b) as a function of downstream distance. The line has the slope 2(ru − 1)/(ru + 1)
predicted by equation (10b). ru = 4, Re = 1400.

necessarily infinitely small, the rate at which their separation distance increases γ(r)
is smaller than γ. Velocity gradients δu(r)/r in the flow tend to vanish, in the mean,
for separation distances r larger than the scale of the mean gradient support, namely
the gap width e in the present case. We thus model the elongation rate γ(r) = δu(r)/r
for any scale r by

γ(r) = γe−ar/e with γ =
u2

e
(1− 1/ru), (8)

the constant a being, by construction, of order unity. Equation (8) fulfils the required
limit behaviours, that is γ(r → 0) → γ and γ(r � e) → 0. The number of boxes of
size r required to cover the contour is thus, in the course of time, given by

N(r, t) = N(r, 0) [1 + (γ(r)t)2]1/2, (9)

before the contour has been blurred by molecular diffusion.
Converting time to space with t = 2x/u2(1 + 1/ru), equation (9) becomes

N(r, x/e) = N(r, 0) [1 + (B(x)e−ar/e)2]1/2 (10a)

with

B(x) = 2
ru − 1

ru + 1

x

e
. (10b)

Accounting for the initial smoothness of the contour, namely N(r, 0) ∼ r−1, the
covering relationship (10) is a combination of the trivial 1/r factor, times a corrective
factor, increasing in magnitude with time, and whose weight depends on scale: it is, at
a given instant of time, a decreasing function of scale, expressing the fact that small
scales have, in proportion, contributed more to the corrugation of the contour than
larger scales, precisely because shearing motions are less efficient at large scales than
at smaller ones (equation (8)).

The covering relationship thus exhibits a curvature, weighted by B(x), and which
is all the more pronounced when B(x) is large (figure 10b). Choices other than an
exponential can be made for the crossover function in equation (8) (see e.g. Batchelor
1951; Durbin 1980; Sawford & Hunt 1986; Villermaux & Innocenti 1999) with no
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Figure 11. Evolution of the local fractal dimension df = −d lnN(r, x/e)/d ln(r) through the scales
r/e for successive downstream distances (from bottom to top) x/e = 0.65, 2, 3.2 and 5.8.

other consequence than the quality of the fit in figure 10(a). The absolute value of
B(x) and, even more, its dependence on x/e are essentially insensitive to the precise
shape of the crossover function.

The weighting function B(x) is actually found to coincide, in order of magnitude
and in law, with the downstream development of the contour lengths L‖ and L⊥ given
in equation (7) and figure 8(a). The rate of increase of material lengths and of their
space fillingness is prescribed by the same mechanism involving the same shearing
rate at the largest scale of motion γ.

A direct consequence of the scale dependence of the covering relationship (9) is the
scale dependence of the fractal dimension of the contour df = −d lnN(r, x/e)/d ln(r).
This fact has been recognized in a number of related instances: the dispersion of
material lines in grid turbulence (Villermaux & Gagne 1994), the conformation of
isoconcentration contours in turbulent jets (Catrakis & Dimotakis 1996), of turbulent
flame fronts (Pocheau & Queiros-Conde 1996) or of the shape of scalar blobs in
turbulence (Villermaux & Innocenti 1999).

The local (in scale) fractal dimension has been found in these particular cases to
increase from 1 at small scale, to larger values, possibly reaching 2, characteristic of
space filling objects in two dimensions. The above scenario provides a mechanism for
the origin of this continuous transition (see figure 11). It accounts for the observation
that, at a given scale, the local dimension increases in time when a contour is followed
along its transient evolution. Once molecular diffusion has become effective, this
scenario also accounts for the dimension dependence on the concentration threshold
level chosen to define the contour (Villermaux & Innocenti 1999).

4.3. Onset of molecular mixing

Unstable structures are progressively converted into sheets whose dimensions L‖ and
L⊥ are increasing linearly in time. Consequently, the thickness of the sheets s(t),
initially of the order of the instability wavelength s0 ∼ λ, decreases, at a rate such
that the volume of the structure is conserved, that is s(t)L‖L⊥ is conserved.

Since L‖ and L⊥ both grow approximately at the same rate, a lamella peeled off
from the interface has thus a thickness given in the course of time by

s(t)

s0
=

1

1 + (γt)2
(11)
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as long as molecular diffusion of the scalar does not oppose the stretching induced
thinning of the lamella.

Let C be the scalar concentration in the vicinity of the lamella and z a coordinate
in the direction normal to the isoconcentration surface C . The convection–diffusion
transport equation reduces (see e.g. Ranz 1979; Marble & Broadwell 1977; Marble
1988; Dimotakis & Catrakis 1999) to a one-dimensional problem when the radius of
curvature of the isoconcentration surface is large compared to the lamellae thickness.
In that case, the direction z aligns with the direction of maximal compression of the
substrate perpendicular to the lamella and we obtain

∂C

∂t
+

[
∂ ln s(t)

∂t

]
z
∂C

∂z
= D

∂2C

∂z2
, (12)

where ∂ ln s(t)/∂t is the rate of compression in the direction perpendicular to the
lamella prescribed by its initial thinning rate. By the change of variables

τ = D

∫ t

0

dt′

s(t′)2
, ξ =

z

s(t)
, (13)

equation (12) is reduced to a simple diffusion equation

∂C

∂τ
=
∂2C

∂ξ2
. (14)

The concentration profile across the lamella of initial width s0 is, in the scaled
coordinates of equation (13)

C(ξ, τ)

C0

=
1

2

[
erf

(
ξ + 1/2

2
√
τ

)
− erf

(
ξ − 1/2

2
√
τ

)]
. (15)

The thickness reduction process goes on until the rate of diffusive spreading of
the concentration profile across the lamella balances the rate of compression of the
concentration gradient transverse to the lamella. At this critical time ts, the maximal
concentration in the lamella C(0, t) falls below the initial concentration C0 and the
scalar lamella has reduced to a sheet which starts to vanish in the diluting medium. The
thickness of the lamella reaches a minimum, and re-increases by diffusive spreading,
as shown in figure 12. The time ts is the mixing time relevant to that configuration.
It is readily estimated by noticing that the maximal concentration C(0, t) decays as
soon as 1

2
/2
√
τ is of order unity and

ts ∼ 1

γ

(
γs20
D

)1/5

, (16)

where use has been made of the expression of the warped time τ derived from
equations (11) and (13), τ = (Dt/s20)(1 + 2

3
(γt)2 + 1

5
(γt)4). At that time, the sheet has a

thickness

s(ts) ∼ s0

(γts)2
, (17)

after which, for t� ts, the maximal concentration C(0, t)/C0 = Erf [(t/ts)
−5/2] decays

as (t/ts)
−5/2 and the sheet thickness increases diffusively as (Dt)1/2 (figure 12).

The onset of diffusive uniformity is thus at a downstream distance equal to the
critical distance for the formation of the first roll-up xc discussed in § 3.1 plus the
distance travelled by the lamella during the time interval ts. According to the values
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Figure 12. Evolutions as a function of γt and for γs20/D = 2000 × 752 of: · · · · · · , thickness s(t)/s0
given by equation (11); ——, thickness of the concentration profile across the lamella given by
equation (15) normalized by s0; − ·−, maximal concentration C(0, t)/C0 at the centre of the sheet
given by equation (15).

of xc and s0 ≈ λ given in equation (3), the medium is expected to have lost the trace
of the initial concentration at distance

xc + uts

e
= 164Re−1/2 +

1

2

ru + 1

ru − 1
(50Sc)1/5 . (18)

Note that the mixing time normalized by the elongation rate γts ≈ (50Sc)1/5 is
only a function of Sc, and not of the Reynolds number, precisely because of the
Reynolds-number dependency of the initial size s0 ∼ Re−1/2 (see equation (16)).

The transition distance predicted by equation (18) is approximately 13 gap widths e
at Re = 1400, decomposed in 4.5e for the roll-up and lamella production period and
8.5e for the lamella thinning period. This overestimates the results reported on figure
8, where the transition occurs around x/e ≈ 12. One of the possible reasons is that
the dissipation scale s(ts) is not appropriately resolved on the images corresponding
to figure 8.

The dissipation scale s(ts) is found, with the above estimates of γ and s0, to be given
by

s(ts)

e
=

16

Re1/2Sc2/5
, (19)

and represents approximately half a pixel on the images at Re = 1400, thus inducing
a slight underestimation of the actual transition location.

4.4. Histograms of concentration

The progress of mixing is quantified by following the evolution of the composition
histogram, or probability density function (PDF) of the concentration fluctuations in
the course of time, equivalently for successive downstream locations in an advected
flow (see e.g. Koochesfahani & Dimotakis 1986). Long temporal traces of the con-
centration fluctuations were obtained with a fibre optic probe at the radial position
y = 1

2
D1 and successive downstream distances x/e, providing large samples from

which PDFs can be computed down to low probability levels. The radial position was
chosen to coincide with the position of the inner mixing layer.

Figure 13(a) illustrates how the scalar field, initially close to binary, as manifested
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Figure 13. (a) Concentration of PDFs measured at the radial position y = 1
2
D1 for successive

distances from the injector outlets. x/e = 2.8 (bimodal shape), and, with an increasing slope of the
right wing exponential fall-off: x/e = 10, 12.8, 18.5 and 24.2. Re = 1400, ru = 4. (b) Arguments of
the high-concentration exponential tail for ru = 4 and: ◦, Re = 1400; �, Re = 2450; •, Re = 3500;
�, Re = 5250.

by its quasi-bimodal PDF with two peaks at the injection concentration and at
the diluting concentration, progressively evolves towards a unimodal shape, with a
maximum around the mean composition of the mixture. The composition of the
medium still bears the memory of the initial segregation at x/e = 10, but, farther
downstream, the injection concentration in the inner jet has virtually disappeared in
the medium since it is rejected to very low, and ever-decreasing probability levels.

Of interest is the right wing of the PDFs, representative of the highest concentration
levels in the medium. These are carried by the lamellae peeled-off from the entrained
inner jet and diluting in the outer one in which they have been sufficiently stretched
to reach the dissipative scale and in which they have therefore started to diffuse. The
right wing of the PDF, that we denote P>(C/C0), is thus a measure of the relative
number of sheets bearing a maximal concentration C . It is observed, as shown on
figure 13(a), to decrease fairly exponentially, with an argument increasing roughly
linearly with downstream location x/e above a critical distance xs/e as

P>

(
C

C0

)
∼ exp

(
−x− xs

e

C

C0

)
with xs/e ≈ 7. (20)

The critical distance xs, below which the PDFs are still reflecting the initial segregation
and no clear, regular fall-off can be detected on the high concentration wing is smaller
than xc + uts given in equation (20). The distance xs corresponds to the beginning of
the plateau of the dissipation χw discussed in § 4.1 and figure 8, whereas xc + uts is
the location of the end of the plateau, where the initial concentration is no longer
present in the mixture.

The exponential form (19) is very general and is encountered in several different
situations of both active (Castaing et al. 1989) and passive scalar mixing (Jayesh &
Warhaft 1992; Thoroddsen & Van Atta 1992; Villermaux, Innocenti & Duplat 1998).
It has prompted some interpretations (Pumir, Shraiman & Siggia 1991, Shraiman
& Siggia 1994). We have suggested (Villermaux et al. 1998) that this shape is a
consequence of the distribution of the cumulated stretchings experienced by the
different fluid particles in the flow at a given instant of time. The elongation of a
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lamella is given, at time t, by the product γt, in the mean. However, some lamellae have
been more elongated, and others less than the mean. The elongation, and therefore
the time a onset of diffusive mixing thus fluctuates from one lamella to the other as
a result of the ubiquitous randomness of turbulent flows.

It is, from there, straightforward to show that a distribution of the individual
elongations n around the mean n = γt results for the highest concentrations wing of
the PDF in an exponential fall-off. Let P(n) be the distribution of the elongations n
a time t. Its structure has to reflect the fact that the existence of different histories
among a population of lamellae at a given finite time results from the finiteness of
n. The distribution of cumulated stretchings and therefore of n becomes narrower
relative to the mean as time elapses, expressing the fact that the scalar lamellae in the
population tend to have similar histories as time progresses. This is accounted for by,
for instance, imposing the proportionality of the variance of the distribution P(n) to
its mean n. Among others, the Poisson distribution P(n) = nn−1 exp (−n)/n! presents
this property.

With C(0, t)/C0 = Erf [(t/ts)
−5/2], the high concentration side of the concentration

PDF is well approximated by

P>

(
C

C0

)
∼ exp

(
−(n− ns) C

C0

)
, (21)

where ns is the elongation at the mixing time γts. The influence of the precise shape of
the distribution P(n) on the final concentration distribution is very weak. Of crucial
importance for the value of its argument is, however, the width of the distribution,
measured by n1/2 at the mixing-time elongation ns.

Using the transformations of equation (7b) we thus expect the argument of the
right wing of the concentration PDF to increase at the same rate with downstream
distance as the length of isoconcentration contours before the onset of molecular
mixing (7) and of the curvature parameter B(x) of the covering relationship (10),
namely 2(ru − 1)/(ru + 1)x/e, independently of the Reynolds number. This is in good
agreement, at least in order of magnitude, with the measured slopes reported on
figure 13(b). They are also expected to be independent of the Schmidt number.

Beyond the relatively fair quantitative agreement of this simple model for the PDF,
its interest relies on its consistency with the observed fact that the lamella transverse
scale reduction process is mediated by a coherent, persistent shear, as discussed in § 4.1
and shown in figure 8. The rate of uniformity of the mixture at the molecular level
follows the rate of increase of material lines, itself prescribed by a shear γ sustained
at a scale much larger than the dissipation scale s(ts).

5. Spectra
The power spectrum of the concentration fluctuations reflects, close to the injector

outlets, the passage of the periodic disturbances produced by the primary instability.
When the measurement location is chosen to be close to the first roll-up (see figure
14), the spectrum presents a broad peak centred at the frequency f equal to the
passage frequency, i.e. fλ/u = 1, where λ denotes the instability wavelength given in
equation (3).

Farther downstream, after the onset of molecular mixing, the spectrum loses pro-
gressively the memory of the instability periodicity to give way to a power-law-like
shape (figure 15a), whose exponent is close to −1. This power-law-like decrease



180 E. Villermaux and H. Rehab

10–3

10–4

10–5

10–6

0.1 1 10

F ( f )

fλ/u

Figure 14. Concentration fluctuation spectrum measured at the radial position y = 1
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Figure 15. (a) Concentration fluctuation spectra measured at the radial position y = 1
2
D1 for

successive distances from the injector outlets. x/e = 10, 12.8, 18.5 and 24.2. The corresponding
concentration PDFs are shown in figure 14. (b) Velocity fluctuation spectra measured at the same
positions. Re = 1400, ru = 4.

extends from the gap width (i.e. ke = 1 with the wavenumber k defined by ku = 2πf)
to smaller scales down to the resolution scale of the probe (i.e. ke ≈ 20).

At the same locations in the flow, the power spectrum of the velocity fluctuations
displays a clearly steeper, power-law-like decrease on the same range of scales (figure
15b). The apparent exponent, if any, is close to −5/3, consistent with known results
in mixing layers after the mixing transition (Huang & Ho 1990).

A number of investigations have observed that the spectrum of a passive scalar
mixed in a turbulent flow usually exhibits a dependence less steep than k−5/3 in the
inertial range of scales (Miller & Dimotakis 1996; Sreenivasan 1996; Mydlarski &
Warhaft 1998 and references therein), the phenomenon being particularly marked in
shear flows. This fact can interestingly be put in relation to the permanence of the
large-scale straining motions in the scalar transverse scale reduction process during
the route towards dissipation we have described before (§ 4).

Concerning the interface area generation between the streams (§ 4.1), the emergence



Mixing in coaxial jets 181

of a scale-dependent roughness of the isoconcentration contours (§ 4.2) as well as the
rate at which the initial segregation evolves towards uniformity after the mixing
transition (§ 4.3), we have found that the clock which sets the kinetics of these various
manifestations of the mixing between the streams, before, and after the onset of
molecular mixing, is the large-scale turnover time γ−1. We underline now the spectral
consequences of the persistence of this large-scale motion.

If F(k) denotes the power spectrum of the concentration signal, the fraction of the
variance C ′2 carried by a wavenumber bandwidth ∆k around the wavenumber k is
F(k)∆k. During a time interval ∆t in the course of the thinning of a scalar lamella
given by equation (11), the wavenumber k(t) increases to k(t+ ∆t) = k′ such that

k′

k
=

1 + (γ(t+ ∆t))2

1 + (γt)2
. (22)

The bandwidth ∆k(t) increases to ∆k(t + ∆t) = ∆k′ accordingly. Thus, for t < ts,
that is as long as the wavenumber k has not reached the dissipation wavenumber
ks = 1/s(ts), the energy F(k)∆k contained in the bandwidth ∆k(t) is constant and the
spectrum is such that

kF(k) = constant for k < 1/s(ts). (23)

The above argument is, in essence, the one invoked by Batchelor (1959) in discussing
the shape of the scalar power spectrum for scales below the Kolmogorov scale in a
turbulent flow. The k−1 shape originates in this view from the fact that the intensity
of the straining motions which distort the scalar field around a wavenumber k do not
depend on k.

The permanence of the elongation rate γ in the course of the scalar scale reduction
process is such that it induces persistent enough stretchings to ‘bypass’ the pre-existing
hierarchy of scales in the flow, whose structure is reflected by the close-to-k−5/3

spectrum of the velocity field. This ‘cascade bypass’ in the inertial range of scales
has to be contrasted with the traditional description of scalars being advected in a
turbulent flow (Oboukhov 1949; Corrsin 1951).

6. Discussion and conclusions
The objective of this study was to discover the minimal set of ingredients required

to understand the progress of mixing in a prototype shear flow, namely coaxial jets
with outer to inner velocity ratio larger than unity.

We were first interested in describing global quantities, as dilution lengths of the
inner jet in the outer destabilizing jet. We have shown that the entrainment velocity
can be understood from the primary shear instability between the phases. Since the
selected wavelength λ and its growth rate r are, respectively, in direct and inverse
proportion of the vorticity thickness δ of the fast stream velocity profile at the
injector lip, their product, giving the entrainment velocity, is found simply to be
proportional to the velocity difference absorbed by the inner layer. Thus, the dilution
length Ld, measured at a given threshold concentration Cs, is solely determined by
the velocity ratio ru = u2/u1 and the relative concentration threshold Cs/C0. We also
depicted the chronology of events of the interpenetration between the streams, up
to the onset of the diffusive uniformity. The present work suggests that the only
two quantities necessary to understand the rate of interface corrugation, the time
of onset of molecular mixing and the subsequent rate of change of the medium
composition are the initial vorticity thickness δ, set by the initial Reynolds number
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Re, and the elongation rate γ = (u2/e)(1 − 1/ru) constructed with the net velocity
difference between the streams and the gap width e.

For a given gap width, the Reynolds number fixes the downstream distance of the
first roll-up, and the instability wavelength. Both are proportional to δ, which also
fixes the order of magnitude of the initial transverse thickness of the lamella peeled-
off from the slow jet. The shorter the instability wavelength, that is, the thinner the
initial structures, the earlier they reach the dissipative scale. The transverse thickness
reduction process is mediated by the large-scale rolling-up structures in the shear
layer, in both the streamwise and spanwise directions. Their role is evidenced by
the omnipresence of the Brown–Roshko factor (ru − 1)/(ru + 1) in the spatial growth
of the isoconcentration contour lengths L‖ and L⊥, the curvature parameter of the
covering law N(r, x/e), and the evolution of the highest concentration wing of the
composition PDFs after the mixing transition. All of these quantities evolve as γt
which, when time has been transformed to space equals 2(ru − 1)/(ru + 1)x/e. These
observations are consistent with earlier observations in plane mixing layers. Bradshaw
(1966), Breidenthal (1981) and Roshko (1991) insisted on the role played by the initial
conditions (i.e. the thickness of the velocity profiles at the splitter plate lip) on the
earliness of the mixing transition. Huang & Ho (1990) and Karasso & Mungal
(1996) have shown how the location of the transition downstream of the splitter
lip is best collapsed among different operating conditions when the downstream
distance x is rescaled by the initial wavelength and the Brown–Roshko factor as
(ru − 1)/(ru + 1)x/λ (as explained in § 4.1, λ replaces the gap width e when λ < e, as
for plane mixing layers between semi-infinite streams).

Koochesfahani & Dimotakis (1986) and Dimotakis & Catrakis (1999) have never-
theless pointed out that the local Reynolds number of the layer has to be large enough
to allow the destabilization of internal shear layers for the transition to happen, via
the formation of small scales compared to the width of the layer. The separation
of scales is indeed a crucial ingredient which distinguishes laminar (i.e. with a single
scale) from turbulent mixing. The initial size s0 ∼ eRe−1/2 of the structures which will
be further stretched and mixed is smaller, decreasing with Re, than the scale over
which extends the support of the elongation γ, namely e. This is the condition for the
mixing time ts ∼ (1/γ)(γs20/D)1/5 to be Reynolds number invariant, as suggested by
the experiments. The destabilization of the initial shear layer leading to the formation
of the structures of size s0 ∼ λ ∼ δ must, therefore, be possible. For this, the Reynolds
number Reδ based on the initial profile thickness δ must be large enough, otherwise
the shear instability is smoothed out by viscous spreading (see also the discussion in
Villermaux 1998b).

The above form of ts, involving an elongation of material lines linear in time
because of the persistence of a mean shear, is peculiar to the situation studied here.
An exponential growth of material lines and surfaces would be characterized, following
the procedure described in § 4.3, by a mixing time given by ts ∼ (1/γ) ln (γs20/D) but
the conclusions would remain the same.

The persistence of the large-scale straining motions and the omnipresence of the
factor γt before and after the onset of molecular mixing has led us to define a scalar
dissipation scale s(ts) which results from a stretching assisted diffusion problem with
a single scale elongation rate γ. The scale for which molecular diffusion opposes the
stretching induced substrate compression is only a function, again, of the initial profile
thickness δ via s0, and of the Schmidt number Sc. The dissipation scale inferred from
this balance s(ts) ∼ eRe−1/2Sc−2/5 is, de facto, different from the Batchelor scale, itself
linked to the Kolmogorov scale. Although the spectra reported here were not capable
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of assessing the existence of this dissipation scale, because they are not resolved enough
in scale, there is some evidence to suggest it: nowhere in the course of this study, in
which mixing has been contemplated according to its different facets, have we found
the manifestation of a sequential cascade process, nor even of a multiplicative process,
e.g. contour lengths grow linearly in time, the composition of the medium at a given
location is fairly insensitive to the Reynolds number, concentration spectra decay as
k−1. Our findings offer a different perspective for scalars advected in a turbulent flow.
Large-scale motions produce internal shear layers which destabilize to form structures
whose size decrease with the Reynolds number as Re−1/2. These structures are further
stretched at the rate prescribed by the large-scale motions before they are dissipated.
A direct connection is thus permanently established between injection scales and
dissipative scales, the broad distribution of the quantities which characterize the
mixture (composition, spectrum) being the reflection of distributed histories among
the population of structures.
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is gratefully acknowledged. This work was supported by a grant from the Société
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Turbulence (ed. H. Chaté, E. Villermaux & J. M. Chomaz). Kluwer/Plenum.

Durbin, P. A. 1980 A stochastic model for two particle dispersion and concentration fluctuations
in homogeneous turbulence. J. Fluid Mech. 100, 279–302.

Esch, R. E. 1957 The instability of a shear layer between two parallel streams. J. Fluid Mech. 3,
279–302.

Freymuth, P. 1966 On transition in a separated laminar boundary layer. J. Fluid Mech. 25, 683–704.

Fung, J. C. H. & Vassilicos, J. C. 1991 Fractal dimension of lines in chaotic advection. Phys. Fluids
A 3, 2725–2733.

Huang, L.-S. & Ho, C.-M. 1990 Small-scale transition in a plane mixing layer. J. Fluid Mech. 210,
475–500.

Jayesh & Warhaft, Z. 1992 Probability distributions, conditional dissipation, and transport of
passive temperature fluctuations in grid-generated turbulence. Phys. Fluids A 4, 2292–2307.

Karasso, P. S. & Mungal, M. G. 1996 Scalar mixing and reaction in plane liquid shear layers.
J. Fluid Mech. 323, 23–63.

Koochesfahani, M. M. & Dimotakis, P. E. 1986 Mixing and chemical reaction in a turbulent liquid
mixing layers. J. Fluid Mech. 170, 83–112.

Lefebvre, A. H. 1989 Atomization and Sprays. Hemisphere, Taylor and Francis.

Marble, F. E. 1988 Mixing, diffusion and chemical reaction of liquids in a vortex field. Chemical
Reactivity in Liquids: Fundamental Aspects (ed. M. Moreau & P. Turq). Plenum.

Marble, F. E. & Broadwell, J. E. 1977 The coherent flame model for turbulent chemical reactions.
Project SQUID, Tech. Rep. TRW-9-PU.

Miller, P. L. & Dimotakis, P. E. 1996 Measurements of scalar power spectra in high Schmidt
number turbulent jets. J. Fluid Mech. 308, 129–146.

Monkewitz, P. & Huerre, P. 1982 Influence of the velocity ratio on the spatial instability of mixing
layers. Phys. Fluids 25, 1137–1143.

Mydlarski, L. & Warhaft, Z. 1998 Passive scalar statistics in high-Péclet-number grid turbulence.
J. Fluid Mech. 358, 135–175.

Oboukhov, A. M. 1949 Structure of the temperature field in a turbulent flow. Izv. Acad. Nauk SSSR,
Geogr. i Geofiz. 13, 58–69.

Ottino, J. M. 1989 The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge Uni-
versity Press.

Pocheau, A. & Queiros-Conde, D. 1996 Transition from Euclidean to fractal forms within a
scale-covariant process: a turbulent combustion study. Europhys. Lett. 35, 439–444.

Pumir, A., Shraiman, B. I. & Siggia, E. D. 1991 Exponential tails and random advection. Phys.
Rev. Lett. 66, 2984–2987.

Ranz, W. E. 1979 Application of a stretch model to mixing, diffusion and reaction in laminar and
turbulent flows. AIChE J. 25, 41–47.

Rayleigh, Lord 1880 On the stability, or instability of certain fluid motions. Proc. Lond. Math.
Soc. 11, 57–70.

Rehab, H., Villermaux, E. & Hopfinger, E. J. 1997 Flow regimes of large velocity ratio coaxial
jets. J. Fluid Mech. 345, 357–381.

Roshko, A. 1991 The mixing transition in free shear flows. In The Global Geometry of Turbulence,
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