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When an initially stretched rubber band is suddenly released at one end, an axial-stress
front propagating at the celerity of sound separates a free and a stretched domain of the
elastic material. As soon as it reaches the clamped end, the front rebounds and a
compression front propagates backward. When the length of the compressed area exceeds
Euler critical length, a dynamic buckling instability develops. The rebound is analysed
using Saint-Venant’s theory of impacts and we use a dynamical extension of the
Euler–Bernoulli beam equation to obtain a relation between the buckled wavelength, the
initial stretching and the rubber band thickness. The influence of an external fluid medium
is also considered: owing to addedmass and viscosity, the instability growth rate decreases.
With a high viscosity, the axial-stress front spreads owing to viscous frictional forces during
the release phase. As a result, the selected wavelength increases significantly.
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1. Introduction

In his classical treatment of the elastica, Euler (1744) proved that for a given
length and for given boundary conditions, there exists a critical load at which a
rod buckles. Among the different possible bent shapes, only the one with the
smallest number of inflections is stable, i.e. the shape corresponding to the
fundamental flexural mode (e.g. Love 1944). Thus, the only characteristic length
associated with the buckling instability is the length of the rod itself.

However, when a compressive load several times higher than the Euler critical
force is suddenly applied to an elastica at rest, the buckling instability develops
dynamically and a characteristic wavelength is selected. Lindberg (1965) studied
the growth of the different flexural modes of an Euler–Bernoulli beam suddenly
compressed. The theory predicts that the most amplified wavelength decreases
like the inverse square root of the compression strain. He also devised an
ingenious way to determine the buckled wavelength from experiments on
metallic elastic beam and on rubber bands. In the case of the metallic beam, he
found a fair agreement with theory, while in the case of the rubber band,
discrepancies were stronger: the measured wavelength was 70% higher than
predicted for reasons that were not elucidated.
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The aim of the present work is to study in detail the dynamic buckling instability
responsible for the recoil of a rubber band. Indeed, the rubber band is an interesting
system for the study of dynamic buckling because the characteristic speed of sound in
rubber is moderate (about 40 m sK1) and strains and displacements can be large. It
also represents a simple case study of more general situations where flexural and
compressionwaves are coupled, as those encountered in the relatedproblemof brittle
rod fragmentation under impact (Gladden et al. 2005). The question is envisaged in
its most general setting, including the influence of a surrounding medium as we
perform experiments in air and in liquids, namelywater andwater–glycerolmixtures
to investigate the effect of added mass and fluid viscosity.
2. Experimental set-up

We first consider the recoil of a cantilever rubber band. One end of the rubber band is
firmly clamped on the experimentation table. The operator holds the free end,
stretches the elastic to the desired length and releases it suddenly. A set-up was also
designed to stretch and release the rubberband fromboth ends simultaneously.A thin
fishing line is glued to both ends of the elastic in such away that the line and the elastic
material form a loop. This loop is placed around two pulleys. Thus, the operator can
stretch and release the rubber band by pulling and dropping the fishing line.

The elastics were cut from natural latex rubber sheets of thicknesses from
0.254 up to 1.270 mm. The length and width of the rubber bands are [ 0Z150 mm
and bZ4 mm. The measurement of the force-extension curve reveals that in the
range of stretching between 0 and 100%, the elastic behaviour of the rubber
remains linear (within 3%) with the Young modulus EZ1.5 MPa and no
significant hysteretic behaviour or stress softening of the rubber (Bouasse &
Carrière 1903; also called the Mullins effect after Mullins 1947) were observed.
For higher stretching, significant deviation from the ideal Hookean behaviour
was observed and in most experiments, the stretching has been limited to the
range 0–100%. The density of the rubber is rZ990 kg mK3 and thus the nominal
wave speed for longitudinal disturbances is cZ(E/r)1/2Z39 m sK1.

We used a Phantom V5 high-speed video camera to record movies at typical
frame rates of 10 000–30 000 frames per second. The rubber band is illuminated
from behind using a white light source and a diffusing screen or by direct lighting
using a black or white background. Regularly spaced marks are drawn on the
elastic to follow the motion of the material points.

To study the influence of the external medium, experiments were also conducted
with the set-up immersed in a tank filled with water or with water–glycerol mixtures
of controlled viscosity. Viscosities were measured using a Couette viscosimeter and
we used viscosities from hZ1.0!10K3 (pure water) up to 6.5!10K1 Pa s.
3. Recoil of a rubber band in air

(a ) Phenomenology

Stretching and releasing a rubber band is a common experience. The typical time-
scale of this phenomenon is [ 0/cz3.8 ms, hence the use of high-speed imaging.
When the tension is suddenly released, a front propagates towards the clamped end
Proc. R. Soc. A (2007)
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Figure 1. (a) Front propagation in a clamped rubber band with initial stretch e0Z1. (i)–(vi) The
front (marked by the arrow) propagates towards the clamped end and drags the free region. (vii)
When the front reaches the clamped end, the strain-free rubber band moves towards the clamped
end. (viii)–(x) After impact, a compressive front propagates backward and triggers a dynamic
buckling instability. Time proceeds in steps of 350 ms. A movie showing the front propagation is
included in the electronic supplementary materials. (b) Fronts propagation in a rubber band
simultaneously released from both ends with e0Z1. The two fronts (marked by the arrows)
propagate towards the middle of the elastic. (vi) When the fronts cross each other, compressive
fronts set out from the middle (vii)–(ix) and trigger buckling. Time proceeds in steps of 320 ms.
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(figure 1a, images (i)–(vi)) at the celerity c in the material. The front separates two
regions: a stress-free area between the free end and the front, and a stretched area
between the front and the clamped end. As the front propagates, it drags the free
region down to the clamped end at velocity V, which is a fraction of c.
Proc. R. Soc. A (2007)
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Figure 2. (a) Early stages of the dynamic buckling of a clamped rubber band with e0Z0.3. Time
proceeds in steps of 117 ms. (b) Early stages of the dynamic buckling of a rubber band
simultaneously released from both ends with e0Z0.2. Time proceeds in steps of 130 ms. A movie
showing the dynamic buckling is included in the electronic supplementary material.
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When the front reaches the clamped end, the whole rubber band is free, moving
towards the table at velocityV (figure 1a (vii)). The configuration is then equivalent
to a free rubber band moving at velocity V impacting a rigid surface (see
Saint-Venant & Flamant (1883) and references therein). A compressive front
propagates towards the free end at speed c in the frame of the rubber band (figure 1a
(viii)–(x)).Between the clamped endand the front, the elastic is compressed.As soon
as the compressive front has travelled a critical distance from the clamped end, the
compressive stress is applied to a region long enough to trigger off a buckling
instability. The elastic starts to bend with a well-defined wavelength (figure 2 (iv)).
The first complete halfwavelengthwill be referred to as the half-buckledwavelength.
Thereafter, the front propagates towards the free end inducing more bending of the
rubber band. Our focus is on the first half wavelength only because the subsequent
dynamics becomes more complicated. In particular, near the clamped end, the
transverse displacement resulting from the buckling is coupled to the propagation of
the longitudinal wave.

To check the influence of theboundary conditions on thedynamics,weperformed
a similar experiment with a rubber band simultaneously released from both ends.
Two fronts propagate towards the middle of the elastic. When the fronts reach the
middle, the rubber band is stress-free but its two halves are moving with opposite
velocitiesV andKV. The configuration is then equivalent to the classical problem
of two rods impacting each other. Compressive fronts propagate away from the
junction (i.e. the middle of the rubber band), triggering the dynamic buckling
instability in both sides of the rubber band. Our measurements show that the
dynamics is strictly identical to the case of the clamped rubber band for low
stretching (less than 50%). For higher stretching, the friction of the fishing line
sliding against the axes results in a slight decrease of the velocity of the free regions
of the rubber band. Therefore, all the measurements reported in this paper were
obtained with the more reliable clamped-free configuration.

(b ) Compression front

The rubber band is modelled as a Hookean elastic rod experiencing small
strain. We neglect the effect of lateral inertia and we use the small strain
Proc. R. Soc. A (2007)
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Figure 3. (a) Schematic of the stress-free front propagation. [ is the length of the stretched rubber
band. f is the position of the front. The stress-free front propagates towards the clamped end at
speed of sound c and it drags the free region with a constant velocity V. (b) The rebounding front
propagating backward. (c) Schematics of the dynamic buckling of a rubber band. b and h are the
width and the thickness of the band, respectively. x is the transverse displacement.
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hypothesis. Thus, longitudinal perturbations are governed by the linear wave
equation with the propagation speed c. A more refined model for the front
propagation can be used, but for the range of stretching e0%1, the simplest model
offers an accurate description of the dynamics (e.g. Mason 1963).

Let [ be the length of the stretched rubber band and [0 its length at rest. The
initial strain e0 is

e0 Z
[K[0
[0

: ð3:1Þ

The front is a discontinuity that separates a strain-free region anda stretched region
in which eZe0 (figure 3a). The front propagates at speed c and it reaches the anchor
point at time tiZ[/c. Then the elastic is strain-free and its length is [0.V being the
speed of the free end, we have [K[0ZKVti and thus we obtain that

V ZK
[K[0
[

� �
cZK

e0

1Ce0

� �
c: ð3:2Þ

This relation holds for all material points in the free region.
When the front reaches the clamped end, thewhole rubber band is strain-free and

translates at speedV. Thus, the problem is equivalent to a rubber band impacting a
rigid surface at speed V. Let z(x, t) be the longitudinal displacement in the rubber
band. x is the coordinate of amaterial point along the rodwith xZ0being the anchor
point. When the front reaches the xZ0 position, all the points of the elastic are
moving at speed V. At time tZ0, the front suddenly encounters a z(0, t)Z0
condition. It rebounds and propagates backward at speed c (in the material frame,
i.e. it is propagating at speed cCV in the laboratory frame with V!0). The front
propagating away from the ‘impact point’ separates a compressed area inwhich the
speed is zero and a stress-free areamoving at speedV (figure 3b). At time t, the front
has reached the point xZfZct and this point has been displaced by a quantity
z(x, t)ZVtZVx/c. Thus, the strain in the compressed area is

eZV=cZKe0=ð1Ce0Þ: ð3:3Þ
Behind the rebounding front, the compressive force is given by Hooke’s law

T Zsbh ZKEbhe0=ð1Ce0Þ; ð3:4Þ
where b and h are the width and thickness of the rubber band.
Proc. R. Soc. A (2007)
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(c ) Mode selection

We introduce an equation for the transverse displacement x(x, t) (figure 3c) by
plugging the above compressive force into the equation describing the dynamics
of the bending waves and using Euler–Bernoulli description

rbh
v2x

vt2
K

v

vx
T

vx

vx

� �
CEI

v4x

vx4
Z 0; ð3:5Þ

where IZbh3/12 is the flexural inertia momentum in the flexion plane.
We look for solutions of the form x(x, t)Zx0exp(ikxKiut). With T constant

along the rod, the dispersion relation reads

u2 Z
EI

rbh
k2 k2 C

T

EI

� �
: ð3:6Þ

For a compressive force, T is negative. Unstable modes have wavenumbers in the
range 0 to kc where kc is the marginal wavenumber,

kc Z

ffiffiffiffiffiffiffi
jT j
EI

r
: ð3:7Þ

The most amplified wavenumber is kmZkc=
ffiffiffi
2

p
, so that, making use of equation

(3.4) for T, the most amplified wavelength writes, mutatis mutandis

lm Zph

ffiffiffi
2

3

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
1Ce0

e0

s
; ð3:8Þ

and its associated growth rate is

sm Z
ffiffiffi
3

p e0

1Ce0

c

h
: ð3:9Þ

The selected mode depends on both the material elastic properties and intensity
of the compression, but since the compression is itself a function of the material
elasticity, a cancellation effect makes lm depend on geometrical parameters only,
namely the thickness of the rubber band and initial stretching.

Of course, this naive expectation assumes that the compression front has
travelled by a distance at least equal to lm during a time lapse given by sK1

m . A
more general mode-selection criterion would thus be that the amplified
wavenumber k is the one for which

tðkÞcxkK1; ð3:10Þ
and kZkm otherwise if t(k)c[kK1. There, t(k) is the instability time-
scale associated with k through the dispersion relation (3.6) such that t(k)K1Z
Re{Kiu}.

The above reasonings are made within the long wave approximation (kh/1)
and disregard three-dimensional effects when the wavelength becomes of the order
of the thickness h, as it is nevertheless the case for the higher initial elongations e0.
We also do not account for any coupling between the instability development and
the compression force, nor any nonlinear elastic response of the material. Finally,
the model based on a constant compression force T gives satisfactory results and it
was not necessary to couple explicitly the axial front propagation with the buckling
dynamics (as in Lepik (2001) and Vaughn & Hutchinson (2006)).
Proc. R. Soc. A (2007)
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(d ) Experimental results

To measure the propagation speeds, we draw regularly spaced marks along the
rubber band (figure 1). The theoretical value of the front velocity for the rubber
bands that we used in the experiments is 39 m sK1, which is in agreement with
the measurements for small initial stretching. However, the speed of the front is
slightly higher, typically 50 m sK1, in particular, for high initial stretching
(e0R0.6). This is probably due to the effect of the strain rate on the elongational
modulus known in rubber (Kolsky 1949), not taken into account here.

The measured value of V typically ranges from 4 to 20 m sK1, depending on
the initial stretch (figure 4b). The evolution of the ratio V/c (c is the measured
front speed) is in fair agreement with the theoretical prediction. Measurements of
the stretching profile show that the front shape is well approximated by a step
function (figure 4a). Actually, the dependency of V on initial stretch e0 found in
§3b is valid even for high initial stretching (e0x1), i.e. beyond the limitations of
the small strain hypothesis.

The first selected wavelength was obtained for rubber bands of thickness from
0.254 up to 1.27 mm, for an initial stretch e0Z0.2 (figure 5a). All properties and
dimensions of the rubber bands are the same but their thickness. We find that
lmwh as expected. Figure 5b shows the experimental wavelengths obtained with
a rubber band of thickness hZ1.27 mm. Experimental results agree with the
prediction from equation (3.8) for small initial stretching (i.e. for high (1Ce0)/e0
ratio). However, for large initial stretch (i.e. for (1Ce0)/e0 smaller than 4), the
measured wavelengths are shorter than predicted from equation (3.8). A better
fit is obtained considering a mode-selection criterion based on the length
travelled by the re-compression front given in equation (3.10). For even higher
initial stretch (i.e. for (1Ce0)/e0!2), the wavelength becomes of the order of the
band thickness and the long wave approximation breaks down.
Proc. R. Soc. A (2007)
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Note that using a dispersion relation that includes both Rayleigh’s correction
(rotational inertia) and Timoshenko’s correction (effect of shear stress) leads to
even higher wavelengths (e.g. Graff 1975). Finally, once the band is wrinkled, the
axial stress relaxes by a simple geometrical effect, as suggested by figure 1 (viii)
and (ix)). This leads to a coarsening of the initial wrinkled pattern, a
phenomenon which is probably at the origin of Lindberg’s strong discrepancy
between the anticipated and measured wavelength.
4. Recoil of a rubber band in fluids

Several new effects are expected in the presence of an external fluid. First, when the
instability develops, fluid must be moved together with the rod and thus we expect
added mass effects. Moreover, if the fluid is viscous, we expect damping. In this
section, we modify the analysis of §3 to account for these ingredients. As we shall
see, in order to accurately describe the dynamic of the rubber band in a fluid, we
must also consider the effect of viscosity on the axial-stress front propagation.
(a ) Modification of the instability

We consider a thin rod under compressive stress surrounded by an external
fluid. We use the same hypotheses and notations as in §3b. The fluid
is Newtonian and incompressible, of density rf and of kinematic viscosity n.
The dispersion equation in non-dimensional form (appendix A) reads

ðk�C4MÞs2� C4ck� k�C
M

c
s� Ck2�

� �1=2
" #

s�C4k3� k2�K1
� �

Z 0; ð4:1Þ
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where k�Zk/kc and s�Zs/sm. M and c are two non-dimensional numbers related
to the added mass term and the viscous term, defined as

M Z
rf

4prkch
; cZ

h2b

rjT jh

� 	1=2
; ð4:2Þ

where TZKEbhe. c depends on the dynamic viscosity hZrfn of the fluid
and on the Young modulus E, density r, thickness h and extensional strain of
the rod (but b cancels out in the expression for c, when T is expressed in terms
of E ).

Figure 6 shows the dispersion relation obtained in different fluids (note that
the glycerol we used was not pure and its dynamic viscosity was hZ0.65 Pa s).
The viscous number c is rather small (cZ0.02 for a dynamic viscosity
hZ0.65 Pa s). Therefore, the main effect of the external fluid is the added
mass effect that results in a significant decrease of the instability growth rate.
Compared with the theoretical value in vacuum, growth rate should decrease by
a factor 1.6 for water and almost a factor 2 for glycerol. On the other hand, the
selected wavelength is not significantly modified by the interaction with the
external fluid. For high c numbers (i.e. for high viscosity), the selected
wavenumber decrease to an asymptotic value, k�mw1=

ffiffiffi
3

p
instead of k�mZ1=

ffiffiffi
2

p

with no external medium. The added mass tends to increase the selected
wavenumber and for high values of M, k�m goes to

ffiffiffiffiffiffiffiffi
3=5

p
.

(b ) Experiments in fluids

We conducted experiments in water, and in water–glycerol mixtures with
viscosity ranging from hZ4!10K2 up to 0.65 Pa s. Figure 6b shows wavelengths
measured in air, water and water–glycerol mixtures. In water, the results are
Proc. R. Soc. A (2007)
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similar to those performed in air. With more viscous fluids, we observe a
significant increase of the selected wavelength. The wavelength is more
than doubled in the glycerol (hZ0.65 Pa s). As discussed above, that effect is
too large to be attributed to the impact of viscosity on mode selection in the
buckling instability.

To clarify the effect of viscosity on the propagation of the compression front,
we visualized the flow field. Particles were added to the fluid (glycerol with
dynamic viscosity hZ0.65 Pa s) and the elastic was illuminated by a laser sheet.
After the release of the rubber band, a boundary layer follows the axial-stress
front. The spatial profile of the boundary layer in the plane of the length and
thickness of the rubber band (which was the plane illuminated by the laser sheet)
is shown in figure 7a. The profile of the boundary layer is well fitted by a square
root function of the axial coordinate. A movie showing the development of the
boundary layer is included in the electronic supplementary material.

Let U(x, y, t) be the velocity profile in the fluid at a given instant of time and
axial location. Direction y is perpendicular to the band surface located in yZ0.
Figure 7b shows such a profile. The viscous frictional force per unit length of the
band is given by

tf ZK2bh
vU

vy

� �
yZ0

; ð4:3Þ

the factor 2 accounting for the two sides of the band. Using the velocity
gradient measured on figure 7b and [0 as an estimate of the length the front
has gone through, an order of magnitude of the frictional force is Ffwtf[0-
x0.5 N. A typical value of the velocity of the free end of the rubber band is
6 m sK1. Thus, the order of magnitude of the drag force FdxbhU at the free
end of the rubber band is Fdx1.5!10K2 N. Obviously, the drag force at the
end is small compared with the frictional force. Moreover, the friction
increases as the stress-free front propagates and as the region dragged by the
front gets wider.
Proc. R. Soc. A (2007)
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An equation for the longitudinal displacement z accounting for frictional forces is

rbh
v2z

vt2
ZEbh

v2z

vx2
Ctf : ð4:4Þ

In this plane boundary layer approximation, we first neglect the contribution of
the small dimension h and disregard the contribution of the corners. Let
U0(x, t)ZU(x, 0, t)Zvz(x, t)/vt be the axial velocity of the band. When U0 is a
function of time, the net force per unit length applied to the band is (see Stokes
(1850) cited in Lamb (1932))

tf ZK
2hbffiffiffiffiffiffi
pn

p
ðN
0

vU0

vt
ðtKt 0Þ dt

0ffiffiffiffi
t 0

p ; ð4:5Þ

so that equation (4.4) becomes

rh
v2z

vt2
ZEh

v2z

vx2
K

2hffiffiffiffiffiffi
pn

p
ðN
0

v2z

vt2
ðtKx=cKt 0Þ dt

0ffiffiffiffi
t 0

p ; ð4:6Þ

where t has been replaced by tKx/c (where c is the velocity of the front) because
the viscous term vanishes for t!x/c, i.e. when the front has not yet reached the
material point x.

Now, this integro-differential equation can be simplified by considering figure 7
suggesting that the transverse velocity profile in the fluid is, in fact, very close to
that developing over a plate initially at rest and moved suddenly at tZx/c at a
constant velocity (Stokes 1850),

Uðx; y; tÞzU0ðx; tÞ 1Kerf
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4nðtKx=cÞ
p

 !( )
: ð4:7Þ

Then, using equation (4.7), we obtain in place of equation (4.4)

rh
v2z

vt2
ZEh

v2z

vx2
K

2hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pnðtKx=cÞ

p vz

vt
: ð4:8Þ

This equation has no analytic solution. However, if we focus on the long time
dynamics for t[x/c (far from the front and close to the released end) and
therefore neglect inertia, an asymptotic solution can be found. Equation (4.8)
being linear, the stretch eZvz/vx obeys the same equation as the longitudinal
displacement z, thus, in the above mentioned limit

ve

vT
ZD

v2e

vx2
; ð4:9Þ

where DZEh
ffiffiffiffiffiffi
pn

p
=ð3hÞ. We use the time-scale TZt 3/2 and consider that

e(0, t)Z0. Then the asymptotic solution is

eðx;TÞ
e0

Z erf
x

2
ffiffiffiffiffiffiffiffi
DT

p
� �

; ð4:10Þ

which implies that the width of the front scales like T1/2Zt 3/4 for large
propagation time. Integrating e(x, T) with respect to x, we find the expression for
the displacement z,

zðx;TÞZ e0x erf
x

2
ffiffiffiffiffiffiffiffi
DT

p
� �

C
2e0

ffiffiffiffiffiffiffiffi
DT

pffiffiffi
p

p exp K
x2

4DT

� �
; ð4:11Þ

which implies that the displacement of the free end of the rubber band goes
like T1/2Zt 3/4 for large propagation time. The consistency of the inertialess
Proc. R. Soc. A (2007)
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approximation is justified a posteriori noticing that both the terms retained in
the balance of equation (4.9) are of order eTK1 while the inertial term is of order
eTK4/3, i.e. subdominant at large time.

The displacement and the strain were measured by tracking the motion of
marks drawn on the rubber band. For different values of time, the strain profile is
fitted by a function erf(x/D) and the values of D are plotted on figure 8a. For
sufficiently large time, we observe the expected behaviour Dwt3/4. The
displacement front is well fitted by expression (4.11) and that of the free end
proceeds like t 3/4 at large times.

However, in all cases, the apparent coefficient in front of
ffiffiffiffiffiffi
Dt

p
was about half

the expected one. This deviation indicates that the experimental friction is larger
than the one anticipated by approximating the total friction as the sum of the
two boundary layers friction on both sides of the band (equations (4.3) and
(4.4)). The reason is the influence of the band section corners, negligible at short
time, but contributing by an amount of the same order than the one from the
boundary layers when their thickness d becomes comparable to the width b. The
total friction per unit length writes in fact (in the limit h/b)

tf Z 2h
U0bffiffiffiffiffiffiffi
pnt

p 1C
2
ffiffiffiffi
nt

pffiffiffi
p

p
b

� �
; ð4:12Þ

and is indeed twice that obtained by simply adding the plane boundary layers
contributions when dx

ffiffiffiffi
nt

p
zb, a condition soon reached in the present case

(figure 7).
(c ) Dynamic buckling with a linear stress profile

Owing to skin friction, in glycerol, when the front reaches the clamped end its
shape is approximately a straight line. Indeed, eZerfðx=2

ffiffiffiffiffiffiffiffi
DT

p
Þwx=2

ffiffiffiffiffiffiffiffi
DT

p
for

x/
ffiffiffiffiffiffiffiffi
DT

p
. Thus, as an approximate model, we consider the rebound of a linear
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front moving at a velocity c towards the clamped end. When the stress-free front
reaches the clamped end at tZ0, the strain profile has the form e(x)Ze0(1Kx/[)
as shown in figure 9a.

At time t, the front rebounds and in the section behind the rebounding front
(0%x%[Kct), the stretching is e(x)ZK2e0x/[. At time t, the mean compressive
force behind the front is TmZK(Ebhct/[)e0. We consider that buckling starts
when the front has reached the length l/2 where lZ(jTmj/2EI)1/2 is the
wavelength selected by dynamic buckling and thus we obtain

lZ 2
p2h2[

12e0

� �1=3

: ð4:13Þ

The samemethodapplied to the case of a discontinuous front results in the following
expression of the buckledwavelength: lZph

ffiffiffiffiffiffiffiffiffiffiffi
2=3e0

p
as it is known and discussed in

§3b, considering e0/1. A satisfactory comparison with the experimental
measurements of the buckled wavelength is shown in figure 10. This approach
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shows that taking into account the spreading of the front is sufficient to explain the
greater observed wavelengths. Therefore, the increase of the buckled wavelength is
not due to viscous effects involved during the dynamic buckling itself.
5. Conclusion

The main phenomena involved in the recoil of an initially stretched rubber band
are the propagation of an axial-stress front, its rebound and the development of a
buckling instability. A simple description of longitudinal and transverse elastic
waves provides a good insight on the dynamics. The main point is that, at early
stage of the recoil, the wavelength is correctly predicted in this framework at
least for moderate initial elongation (i.e. e0!1).

At higher initial strain, the wavelength becomes of the order of the band
thickness and the long wave description is no longer appropriate. Three-
dimensional deformations lead to even smaller wavelength. Once the band is
wrinkled, the axial stress relaxes by a simple geometrical effect leading to a
coarsening of the initial undulations.

When the rubber band is immersed in a fluid, the major effect is the spreading
of the initial front owing to boundary layer friction. The smoother stress profile
leads to longer wavelength, and a simple model based on a linear compressive
strain profile gives a good estimate of the most amplified wavelength. Added
mass effects slow down the instability but do not modify mode selection
appreciably. The impact of both fluid viscosity and density on the instability
development are quantified with appropriate dimensionless numbers.

It was not necessary to account for a possible nonlinear elastic response of
the material.

This work was supported by the Agence Nationale de la Recherche through the grant ANR-
05-BLAN-0222-01. R.V. was supported by the Délégation Générale à l’Armement.
Appendix A. Dispersion relation for the buckling of a rod interacting
with a surrounding fluid.

We derive the dispersion relation (equation (4.1)) for waves propagating along
the rubber band in a viscous fluid, in two dimensions. In the reference state, the
elastic rod is of infinite extent in the x-direction and its thickness is h. The two
fluid domains, denoted by the index 1 for the upper domain (yO0 in the reference
configuration) and 2 for the lower domain separated by the rubber band. The
model is based on the linearized Navier–Stokes equation for the two fluid
domains.

r
vU1;2

vt
ZK

vP1;2

vx
Ch

v2U1;2

vx2
C

v2U1;2

vy2

� �
; ðA 1Þ

r
vV1;2

vt
ZK

vP1;2

vy
Ch

v2V1;2

vx2
C

v2V1;2

vy2

� �
: ðA 2Þ
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The fluid is incompressible. Thus, V2P1,2Z0 and we look for P1 and P2 of the form

P1 Z p
ð0Þ
1 Cp1expðKkyÞexpðstKikxÞ; ðA 3Þ

P2 Z p
ð0Þ
2 Cp1expðkyÞexpðstKikxÞ; ðA 4Þ

where we have used the condition that pressure must remain finite at infinity. We
look for V1,2 of the form

V1;2 Z v1;2ðyÞexpðstKikxÞ: ðA 5Þ

Using these forms for P1,2 and V1,2 in equations (A 1) and (A 2), we have

q2v1K
v2v1
vy2

ZK
k

h
p1expðKkyÞ; ðA 6Þ

q2v2K
v2v2
vy2

Z
k

h
p2expðKkyÞ; ðA 7Þ

where

q2 Z
rs

h
Ck2: ðA 8Þ

Thus, for V1 and V2, we have (using the condition that Vmust remain finite)

V1 Z fA1expðKqyÞCB1expðKkyÞgexpðstKikxÞ; ðA 9Þ

V2 Z fA2expðqyÞCB2expðkyÞgexpðstKikxÞ; ðA 10Þ
with

p1 Z
h

k
ðq2Kk2ÞB1 and p2 Z

h

k
ðq2Kk2ÞB2: ðA 11Þ

We use the continuity equations

vU1;2

vx
C

vV1;2

vy
Z 0; ðA 12Þ

to obtain U1,2

U1;2 ZK
1

ik

vV1;2

vy
: ðA 13Þ

There are four boundary conditions at the interface between the fluid and rod.

† Assuming that the cross-sections of the rod are moving along the y-direction
without being stretched or compressed, the transverse displacement is
homogenous in a section yielding the kinetic conditions at both interfaces
(yZGh/2) in the transverse direction

V1jyZh=2 ZV2jyZKh=2 Z
vx

vt
: ðA 14Þ

† With a fluid initially at rest and in the slender slope limit, the difference of
horizontal velocity across a section is

U1jyZh=2KU2jyZKh=2 ZKh
v2x

vtvx
: ðA 15Þ
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Then, neglecting the thickness of the rod h versus the wavelength lZ2p/k, the
equation (A 15) leads to the kinetic condition in the axial direction

U1jyZh=2 ZU2jyZKh=2: ðA 16Þ

† Moreover, we are looking for modes that are anti-symmetrical across the
medium line, i.e. such that

Gxy;1 ZGxy;2; ðA 17Þ

whereGxy,1,2 is the xy term of the viscous stress tensor in the fluid. This condition
also states that the shear stress at the rod surface is anti-symmetrical.

† For the transverse motion of the rod, we use an Euler–Bernoulli model

r0S
v2x

vt2
CEI

v4x

vx4
CT

v2x

vx2
CbDKP1;2 Cn2$ Ĝ1;2 n1;2

� �
 �
Z 0; ðA 18Þ

where the last term of the left-hand side represents the fluid-stress difference
between both sides of the rod. Ĝ1;2 is the viscous stress tensor in the fluid andn1;2

is the vector normal to the interface. Ĝ1;2 in the fluid takes the form

Ĝ1;2 Z

h
vU1;2

vx

h

2

vU1;2

vy
C

vV1;2

vx

 !

h

2

vU1;2

vy
C

vV1;2

vx

 !
h
vV1;2

vy

0
BBBBB@

1
CCCCCA: ðA 19Þ

At leading order, we have n1ZKn2ZðKvx=vx; 1Þ and thus,

D n2$ðĜ1;2n1;2Þ

 �

Z 2h
vV2

vy
jyZh=2K

vV1

vy
jyZKh=2

� �
ðA 20Þ

Using these four conditions in equations (A 6), (A 7) and (A 14), we obtain a
dispersion equation for the dynamic buckling of the rod in the fluid

A1KA2 Z ðB2KB1Þexp
ðqKkÞh

2

� 	
: ðA 21Þ

Using the form of U1,2 (equation (A 13)) and equation (A 16), we obtain

A1 CA2 ZK
k

q
ðB2 CB1Þexp

ðqKkÞh
2

� 	
: ðA 22Þ

And finally, from the relation between tangential stress (equation (A 17)) and
using the forms of V (equations (A 9) and (A 10)) and U (equation (A 13)), we get

A1KA2 Z
2k2

q2 Ck2
ðB2KB1Þexp

ðqKkÞh
2

� 	
: ðA 23Þ
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Combining equations (A 21) and (A 23) and using equation (A 11), we have

A1 ZA2; ðA 24Þ

B1 ZB2; ðA 25Þ

p1 ZKp2: ðA 26Þ
Using equation (A 22), we find

A1 ZK
k

q
B1exp

ðqKkÞh
2

� 	
: ðA 27Þ

We write DðKP1;2Cn2$Ĝ1;2n1;2ÞÞ in terms of B1,

DðKP1;2Cn2:ðĜ1;2n1;2ÞÞ

Z ðp1Kp2ÞeKkh=2ChqðA1 CA2ÞeKqh=2 ChkðB1CB2ÞeKkh=2
n o

estKikx

Z 2
hðq2Kk2Þ

k
B1e

Kkh=2

� �
estKikx :

ðA 28Þ

The expression of x is obtained from the transversal boundary condition
(equation A 14)

xZ
1

s
fA1e

Kqh=2CB1e
Kkh=2gestKikx : ðA 29Þ

Introducing this expression in (A 18) and using relations (A 21) and (A 28), we
obtain the dispersion equation

r0SC2
rb

k

� �
s2C2bhðkCqÞsCEIk4KTk2 Z 0: ðA 30Þ

In dimensionless form, this relation reads

fk�C4Mgs2� C4ck� k�C
M

c
s�Ck2�

� �1=2
( )

s� C4k3� k2�K1
� �

Z 0; ðA 31Þ

with k�Zk/kc and s�Zs/sm. The two dimensionless coefficients are

cZ
h2b

r0Th

� �1=2

andM Z
rlc

4pr0h
: ðA 32Þ
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