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We study transverse impacts of rigid objects on a free elastic membrane, using thin
circular sheets of natural rubber as experimental models. After impact, two distinct
axisymmetric waves propagate in and on the sheet. First, a tensile wave travels at sound
speed leaving behind the wavefront a stretched domain and then a transverse wave
propagates on the stretched area at a lower speed. In the stretched area, geometrical
confinement induces compressive circumferential stresses leading to a buckling
instability, giving rise to radial wrinkles. We report on a set of experiments and
theoretical remarks on the conditions of occurrence of these wrinkles, their dynamics
and wavelength.
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1. Introduction

When a thin elastic sheet is impacted transversely by a rigid body, it deforms
locally out of its plane. Depending on the nature of the material and the strength
of the impact, the sheet may be perforated, it may deform permanently or it may
present radial or circumferential cracks (Backman & Goldsmith 1978). An
understanding of these phenomena requires knowledge of the global response of a
sheet to localized impacts.

Sheets with small thickness have a weak intrinsic bending rigidity. Very thin
sheets such as clothes or biological membranes can thus freely bend and they
often exhibit wrinkles (Cerda et al. 2004). If the sheet is stretched, this is no
longer the case since any transverse motion is accompanied by a restoring force
proportional to the tension. On the other hand, if the sheet is compressed, a
buckling instability develops and the membrane wrinkles.

We consider the problem of a free-standing axisymmetric membrane impacted
transversely at its centre. A static version of this problem, namely a membrane
clamped at its boundaries deformed by a punctual force, has been considered by
Begley & Mackin (2004). In this static configuration, the membrane remains
axisymmetric for any force, with no wrinkling. When a free-standing membrane
(i.e. a membrane with no initial stress) is impacted, tensile stresses develop as a
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Figure 1. Experimental set-up: (a) a two-stage gas gun is used to launch impactors. When the
cylinder 1 hits the pallet, the adhesive tape is torn off, the pallet is accelerated and the slightly
glued impactor is released; (b) the impacted sheet stands on a netting stretched on a frame, and
(c) when the gas gun is triggered, the electromagnets are switched off and the frame is pulled by
two rubber bands. The impactor hits a free sheet.
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result of the impact. This problem is more complicated than the classical drum
problem (Graff 1975), in which the variation of in-plane stresses due to the
impact itself are neglected. Phoenix & Porwal (2003) have reviewed previous
results on the impacts on free-standing membranes in the context of fibrous
system (e.g. textile, etc.). They also developed a model for the ballistic response
of an axisymmetric free-standing membrane neglecting compressive circumfer-
ential stresses. However, as seen in figures 2 and 3, when a free-standing
membrane is impacted, it buckles and radial wrinkles appear. The aim of this
present work is to describe the sequence of events inducing this instability. We
first describe the axisymmetric stress field resulting from the impact and we show
that a region of the membrane experiences circumferential compression. We then
study the development of the buckling instability leading to the formation of
radial wrinkles, and we propose a model predicting their wavelength.
2. Experimental set-up

We use a vertical gas gun to launch steel cylinders and spheres of radius
riZ2.25 mm (figure 1). Unless otherwise noted, steel cylinders of length 27 mm
and mass 3.3!10K3 kg are used for the measurements. A cylinder is accelerated
Proc. R. Soc. A (2009)
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Figure 2. (a) Impact of a steel cylinder on a thin rubber sheet of radius r0Z60 mm and thickness
hZ0.10 mm. The time step between two frames is 1.33 ms. ((i)–(iii)) The cylinder of radius
riZ2.25 mm impacts the free levitating sheet at velocity VZ5.8 m sK1. (iv) After impact a cone
expands. ((v)–(vi)) The propagation of both tensile and transverse waves yield an in-plane stress
field that will eventually induce a buckling instability. A movie showing the dynamics is included
in the electronic supplementary materials. (b) Impact of a free -falling rod on a thin rubber strip of
thickness 0.10 mm, length 100 mm and width 4 mm. The time step between two frames is 0.50 ms.
(i) The rod impacts the free levitating strip with velocity VZ3.7 m sK1. ((ii)–(vi)) After impact a
V-shaped area expands.
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by pressurized air inside a 40-cm-long tube. Beneath this tube stands a pallet to
which we lightly glue the impactor (cylinder or sphere). As the cylinder hits the
pallet the impactor is released. The impactor is guided in a second tube of length
10 cm. At the end of this tube two laser beams are used to measure the speed of
the impactor. This two-stage design ensures that the latex sheet is not perturbed
by the gas ejected from the gun. The speed of the impactor can be adjusted with
a pressure regulator.

The latex sheet stands horizontally on a net stretched on an open frame. The
open frame is maintained approximately 10 cm below the end of the second tube
by two electromagnets that are synchronized with the gas gun. When the
electromagnets are switched off, two rubber bands violently pull the frame down
and free the latex sheet. The latex sheet falls down under the action of gravity
but the characteristic time scale of its fall is much longer than any other time
scale in the problem. Thus, the impactor hits a perfectly free ‘levitating’ latex
sheet. As discussed in §6c, the boundary conditions at the outer radius of
the membrane do not play a crucial role in the study, and the main purpose of our
set-up is to ensure that the latex sheet is stress-free when it is hit by the impactor.

The sheets are cut from natural latex rubber sheets of different thicknesses
from 0.10 mm up to 0.30 mm. The radius of the sheets is typically r0Z60 mm.
Static stretching tests reveal that in the range of stretching between 0 and 100
per cent, the elastic behaviour of the rubber remains linear (within 3%) with
Proc. R. Soc. A (2009)
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Figure 3. Bottom view of the impact of a steel ball of radius 2.25 mm on a thin rubber sheet of radius
55 mm and thickness 0.10 mm. The time step between two frames is 0.50 ms. ((a)–(c)) As the ball
impacts the sheet at speed VZ5.2 m sK1, the transverse wavefront propagates radially,
((c) –(e)) material points are pulled towards the centre of the sheet and a circumferential compressive
stress triggers a buckling instability selecting a well-defined wavelength, (f ) zoomed out view of (e).
A movie showing the dynamics is included in the electronic supplementary material.
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a Young’s modulus EZ1.5 MPa and no significant hysteretic behaviour, i.e. stress
softening of the rubber (Bouasse & Carrière 1903; Mullins 1947), is observed. In all
our experiments the strain does not exceed 60 per cent. The density of the rubber
is rZ990 kg mK3. The Poisson modulus is nZ0.5 and thus the nominal wave speed
for in plane disturbances is cZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=rð1Kn2Þ

p
Z45 m sK1.

Our diagnostics are based on quantitative image analysis, resolved in time.
The typical time scale is r0/cz1.3 ms. We use a Photron high-speed video
camera to record movies at typical frame rates of 7000 up to 90 000 frames sK1.
For side views, we use direct lighting with a black background. For movies
showing a view from bottom a mirror is placed underneath the supporting device
and the sheet is illuminated from above. When needed, regularly spaced marks
are drawn on the sheet to follow the motion of the material points.

As a complement to document the impact phenomenology, we also conduct
experiments using narrow latex strips instead of the circular latex sheets. The
thickness of the strips is 0.10 mm, their length is 100 mm and their width is 4 mm.
3. Phenomenology

When a rigid body impacts the centre of the thin elastic disc at velocity V
(figure 2a), a tensile front sets out from the impact point and propagates radially
towards the edge of the sheet at speed of sound c. In the stretched area, material
points move towards the centre of the sheet. As the impactor pulls the
Proc. R. Soc. A (2009)
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Figure 4. ((a)–( j )) Close bottom view of the transverse wavefront after impact of a steel ball at
VZ5.2 m sK1 on a thin rubber sheet. Time goes by steps of 0.70 ms. Wrinkles appear at different
stages so that the wavelength of the wrinkling pattern is constant.
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membrane, with no observed sliding of the rubber against the impactor, a cone
expands towards the edge of the sheet at velocity �U (with �U!c) in the
laboratory frame. In the stretched area, tensile stress in the radial direction is
accompanied by contraction in the direction normal to it. Thus compressive
circumferential stresses develop in the stretched area and the sheet buckles,
giving rise to wrinkles (figure 3).

Experiments show that the buckling instability selects a wavelength rather
than a number of folds. Indeed, as the transverse wavefront propagates the
perimeter and width of the compressed area increase with time and so does
the number of folds and thus the buckling wavelength does not change. As can be
seen in figure 4, new folds are generated during the propagation of the transverse
wavefront, so that the wavelength does not change with time.
Proc. R. Soc. A (2009)
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We also study the one-dimensional version of the problem, the impact on a
thin elastic strip (figure 2b). The phenomenology is similar except, de facto, for
the formation of wrinkles: first a tensile front propagates away from the impact
point and then, as the impacting body drags the strip out of its plane, a
transverse ‘V-shape’ expands in the stretched material.
4. Wave propagation after impact

(a ) Wavefronts resulting from an impact on a one-dimensional elastic string

An elastic string has a density r and Young’s modulus E. The string length l is
such that l[ct, in which cZ

ffiffiffiffiffiffiffiffiffi
E=r

p
is the nominal wave speed for longitudinal

disturbances (Love 1944) and t the typical time of observation after impact. The
free string is impacted transversely at the point xZ0. The mass of the impacting
body is very large compared to the mass of the string, and the impacting velocity
V is such that V/c/1. In that limit, the projectile is not decelerated.

When the string is impacted, a longitudinal wave propagates at speed c.
Behind the wavefront, the stretching e (to be determined) is taken as constant
and uniform. Material points are thus moving towards the impact point at speed
WZKce. In the stretched area, a transverse wave travels and a ‘V-shaped’ area
expands (figure 2b). The base of this area travels at the speed of propagation of
transverse disturbances. We assume that the stretching is e also in the V-shaped
area. In the frame of material points, the equation for the transverse
displacement x(x, t) is

rA
v2x

vt2
Z

vðT sin fÞ
vx

; ð4:1Þ

where A is the cross section area and TZEAe is the tension in the string. f(x, t)
is the angle between the local tangent and the x -axis and (1Ce)sin fZvx/vx.
Thus the speed of transverse disturbances in the frame of material points is

U Z c

ffiffiffiffiffiffiffiffiffiffiffi
e

1Ce

r
: ð4:2Þ

At time t, the transverse wavefront reaches the material point xFZUt. This
point has travelled a distance W [tKtl(xF)] where tl(xF)ZxF/c and thus its
position in the laboratory frame is

�x F Z x FKce½tK t lðx FÞ�Z x Fð1CeÞKcet: ð4:3Þ
To relate the impactor speed with other quantities, we use Pythagoras’ theorem

�x 2
F CðVtÞ2 Z ð1CeÞ2x2F: ð4:4Þ

Substituting �x F, xF and U, we obtain an equation for effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð1CeÞKe

ph i2
ðctÞ2 CðVtÞ2 Z eð1CeÞðctÞ2: ð4:5Þ

Interestingly, the leading contribution to the motion of the transverse wavefront is
the motion of the material points towards the impact point at speedKce. We obtain
e and the speed of the transverse wavefront in the laboratory frame �UZ �xF=t
Proc. R. Soc. A (2009)
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Figure 5. Transverse wavefront velocity in the laboratory frame versus impacting velocity,
measured for a thin strip. The solid lines stand for the theoretical predictions with no adjustable
parameter while the dotted lines stand for the fit with an adjusted prefactor. (a) First order in e

prediction, and (b) second order in e prediction.
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eZ
Vffiffiffi
2

p
c

� �4=3
C

Vffiffiffi
6

p
c

� �2
CO ðV=cÞ2

� �
; ð4:6Þ
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c
Z

Vffiffiffi
2

p
c

� �2=3
K

5

6

Vffiffiffi
2

p
c

� �4=3
CO ðV=cÞ2

� �
: ð4:7Þ

Figure 5 shows the measured dependence of the transverse wavefront velocity on
the impacting velocity. Equation (4.7) agrees well with the measurements, but the
theory overestimates the transverse-front velocity. This may come from the two-
dimensional geometry of the latex rubber strips while we used a one-dimensional
model for strings. Indeed, a careful examination of the images shows that the base of
the cone connects smoothly rather than angularly with the straight section. This
connection occurs over a length of a fewmillimetres (the width of the strip is 4 mm).
Nevertheless, results clearly show that the mechanism we propose for the wavefront
propagation after impact is the good scenario.
(b ) Waves resulting from an impact on a two-dimensional elastic membrane

The problem of the impact on a circular membrane is more complicated
because the circular waveforms do not maintain their shape as they propagate.
The propagation mechanism is, however, the same as for the strings. As seen in
figure 6, a tensile front propagates at the speed of sound in the material. Then a
cone grows in a stretched area and thus it must obey the equation of propagation
for transverse perturbations. Our objective here is to provide an approximate
form for the stress field in the area of the tensile wave. This stress field will later
be used to study the development of the wrinkling instability.

A circular elastic membrane has density r, Young’s modulus E and Poisson
ratio n. The radius of the membrane is such that r0[ct, in which c given by
c2ZE/[(1Kn2)r] is the nominal wave-speed for in plane disturbances and t is the
Proc. R. Soc. A (2009)
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Figure 6. Space–time reconstruction of the motion of the material points on an impacted
membrane taken from a high-speed movie. The longitudinal wavefront propagates at the speed of
sound c. The transverse wavefront propagates at a constant speed �U with �U!c.
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typical time of observation after impact. The initially stress and strain-free
membrane is transversely impacted at the point rZ0. We consider that the mass
of the impactor is much larger than the mass of the membrane, a limit for which
the projectile deceleration can be neglected. The impacting velocity V is such
that V/c/1.

The radial displacement z(r, t) is given by the wave equation

1

c2
v2z

vt2
Z

1

r

v

vr
r
vz

vr

� �
K

z

r2
: ð4:8Þ

This equation has no simple solution and we use a quasistatic approximation

zðr; tÞZaðri CctÞ r

ri Cct
K

ri Cct

r

� �
; ð4:9Þ

where a is a dimensionless constant to be determined. The form for the
displacement corresponds to the solution of the static problem with the boundary
condition zZ0 at the tensile wavefront in rZriCct. This solution cancels the
right-hand side of equation (4.8). The radial strain is

erðr ; tÞZ
vz

vr
Za 1C

ri Cct

r

� �2� �
; ð4:10Þ

and thus at the tensile wavefront erZ2a. We measure the radial displacement by
recording the motion of the regularly spaced marks drawn on the latex sheet.
Figure 7 shows that the form of equation (4.9) fits the measurements.

The base of the cone propagates in a stretched area and we find experimentally
that the propagation speed does not vary in time. Transverse displacements
x(r, t) for a membrane are ruled by

r
v2x

vt2
Z

1

r

v

vr
ðrsr sin fÞ; ð4:11Þ

where f is the angle between a meridian line and the local tangent to the
membrane in the radial direction and we have sin fzvx/vr. The stresses are

sr Z
E

1Kn2
ðer CneqÞ and sq Z

E

1Kn2
ðeq CnerÞ; ð4:12Þ

where erZvz/vr is the radial strain and eqZz/r the circumferential strain. The
radial strain is positive while the circumferential strain is negative.
Proc. R. Soc. A (2009)
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Figure 7. Radial displacement versus radial coordinate. We note z�ðr ; tÞZzðr ; tÞ=½aðriCctÞ�. The
solid line stand for the form given by (4.9) where the parameter a has been fitted.
(a) Measurements performed for the impacting velocity VZ12.8 m sK1 at different times after
impact. Cross, 167 ms; plus, 222 ms; up-triangle, 278 ms; circle, 333 ms; square, 389 ms; down-
triangle, 444 ms; and (b) measurements performed for the impacting velocity VZ20.8 m sK1. Cross,
222 ms; plus, 278 ms; up-triangle, 333 ms; circle, 389 ms; square, 444 ms; down-triangle, 500 ms.
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To relate the strain in the stretched domain with the speed of the impactor, we
use the same geometrical argument as for the impacted string. The radial strain in
the cone is taken as uniform and equal to ecZer(rc, t). The geometrical relation is

ð1CecÞ2r 2cðtÞZ ðVtÞ2 Cð �UtÞ2; ð4:13Þ

where rc(t)ZriCUt is the (Lagrangian) coordinates of the transverse wavefront and
�UtZrcðtÞCzðrc; tÞ is the position of the wavefront in the laboratory frame. The
right-hand side in equation (4.13) is based on the assumption that the membrane
shape is conical, a good approximation as seen from figure 2a.

Assuming that the transverse wavefront is far from the impactor, i.e. Ut[ri ,
we have

zðrc; tÞZaðri CctÞ ri CUt

ri Cct
K

ri Cct

ri CUt

� �
zact

U

c
K

c

U

� �
: ð4:14Þ

In this expression a and U are unknown. At the base of the cone, for large t, the
radial strain deduced from the approximation for z is

ec Za 1C
ri Cct

ri CUt

� �2� �
za 1C

c

U

� 	2
� �

: ð4:15Þ

When sr is constant in equation (4.11), transverse displacement waves propagate
at speed ctZc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
erCneq

p
(e.g. Graff 1975). Thus we have

U Z c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a 1CnCð1KnÞ c

U

� 	2
� �s

; ð4:16Þ
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Figure 8. Transverse front velocity versus impact velocity. Velocity U in the lagrangian frame were
deduced from the measurements of the transverse front velocity in the laboratory frame �U .
(a) Measurements for a latex sheet of thickness hZ0.10 mm. The solid line stands for the
theoretical prediction with no adjustable parameter, the dashed line stands for the fit by the
theoretical curve with an adjustable prefactor, we observe a 30% error on the prefactor. Thickness,
hZ0.10, and (b) measurements for latex sheet of different thicknesses. Circle, 0.10 mm; square,
0.15 mm; cross, 0.2 mm; up-triangle, 0.3 mm.
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which gives

aZ
U
c

� �4
1KnCð1CnÞ U

c

� �2 : ð4:17Þ

In equation (4.13), we have at leading order

1C
2

1Kn

U

c

� �2� �
ðUtÞ2 Z ðUtÞ2K 2

1Kn

U

c

� �2

ðUtÞ2 CðVtÞ2; ð4:18Þ

and thus

U

c
Z

1Kn

4

� �1=4 V

c

� �1=2

: ð4:19Þ

Figure 8 shows experimental measurements of the transverse wavefront versus
impactor speed. The model that assumes V/c/1, overestimates the propagation
speed but its dependence on the impacting speed is in good agreement with the
experimental data. The model also assumes that Ut[ri , but experiments show
that the final speed of the transverse wavefront is reached for r very close to ri
(figure 6). The measurements conducted for different sheet thicknesses h show
that the transverse front velocity does not depend on h for 0.10!h!0.30 mm,
as expected. For larger thicknesses, experiments reveal that the bending rigidity
of the latex rubber sheet cannot be neglected, and discrepancies with the elastic
membrane model are observed.
Proc. R. Soc. A (2009)
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(c ) Stress field resulting from an impact on a two-dimensional elastic membrane

We use the approximation of equation (4.9) for the radial displacement to
compute the stress field in the stretched area. With aZ(1/4)(V/c)2, we have

srðr; tÞZ
E

1Kn2
V

2c

� �2

1CnCð1KnÞ ri Cct

r

� �2� �
; ð4:20Þ

sqðr; tÞZ
E

1Kn2
V

2c

� �2

1CnKð1KnÞ ri Cct

r

� �2� �
: ð4:21Þ

These expressions are valid in the domain between rc(t)ZriCUt and rt(t)Z
riCct. The circumferential stress becomes negative at rZrz(t)Z[(1Kn)/
(1Cn)]1/2(riCct). Then the area of the plate delimited by the transverse
wavefront rZrc(t) and rZrz(t) is compressed along the circumferential direction
(figure 9). This compression results from a geometrical constrain: consider two
points initially at radius r and at angles q1 and q2. Initially, the arc length
between these two points is r(q2Kq1). After deformation this distance is reduced
to [rCz(r,t)](q2Kq1) where z(r, t) is negative.
5. Dynamic wrinkling

In thin sheets, in-plane compressive stresses lead to the formation of wrinkles. In
this section, we study the appearance of wrinkles and we compute their size. As
usual for buckling instabilities, this size results from a balance between
destabilization induced by the circumferential compression, and restoring forces
Proc. R. Soc. A (2009)
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due to the sheet bending rigidity. To model the behaviour of the compressed
area, we investigate the analogue problem of the stability of an annular plate, of
inner radius rc(t) and outer radius rz(t), to which is applied the in-plane stress
field (both radial and circumferential) found in §4c. The problem is similar to the
static problem studied by Géminard et al. (2004). Coman & Haughton (2006)
also proposed a theoretical analysis of the problem. These authors studied the
stability of the plan solution and computed the shape of the unstable mode as a
function of r and q. We adopt a global method imposing the shape of the pattern,
providing the instability threshold and azimuthal wavelength. Later on, we also
discuss a simplified model, approximating the annulus with a beam, resembling
the method used by Senior (1956) in the context of wrinkling in metal punching
but with added inertia.
(a ) Instability of the stretched membrane

The Rayleigh method (Rayleigh 1894) is an application of the least-action
principle to vibrating systems whose dynamics is on purpose restricted to one
degree of freedom. The method consists in making the inventory of the elastic
energies involved, namely the bending energy Ub, the circumferential
compressive energy Uc, the radial tensile energy Ut, construct a potential
UZUbCUcCUt and then write

d

ð
dtðTKUÞZ 0; ð5:1Þ

where T is the sheet kinetic energy, and d stands for a variation in the
displacements xn that make the integral minimum. The optimum provides the
dispersion relation of the problem for given in-plane stresses sr and sq. We
consider a single radial bent, imposing xZ0 at the inner radius rZrc(t) and outer
radius rZrz(t) and account for n folds in the circumferential direction as

xðr ; q; tÞZ ðrK rcÞðrK rzÞ
ðrzK rcÞ2

xn sinðnqÞ egnt; ð5:2Þ

where xn and gn are, respectively, the amplitude and the growth rate. This form
assumes that the out of plane displacement for rOrz is zero.

—The expression for the bending energy is

Ub Z
D

2

ð2p
0

ðrz
rc

v2x

vr2
C

1

r

vx

vr
C

1

r2
v2x

vq2

� �2

K2ð1KvÞ v2x

vr2

� �
1

r

vx

vr
C

1

r2
v2x

vq2

� �(

C2ð1KnÞ v

vr

1

r

vx

vq

� �� �2

r dr dq; ð5:3Þ

where DZEh3/[12(1Kv2)] is the bending rigidity (Timoshenko & Woinowsky-
Krieger 1959). With x given by equation (5.2), the bending energy writes

Ub Z
pDx2n e

2gnt

2ðrzK rcÞ4
K3ðr 2zKr 2cÞCðr 2c C4rcrz Cr 2zÞln

rz
rc

� �
n4

�

C2 4ðr 2zKr 2cÞKðr 2c C6rcrz Cr 2zÞln
rz
rc

� �
n2 C ðrcCrzÞ2 ln

rz
rc

� �

: ð5:4Þ
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—In-plane stresses also contribute to the elastic energy of the system. The
compressive circumferential stress sq yields a compressive energy Uc while the
radial stress sr yields a tension energy Ut. They are given by

Uc Z
h

2

ð2p
0

ðrz
rc

sq
1

r

vx

vq

� �2� 

r dr dq; ð5:5Þ

Ut Z
h

2

ð2p
0

ðrz
rc

sr
vx

vr

� �2� 

r dr dq: ð5:6Þ

The compressive and tensile energies thus write

Uc Z
pDx2n e

2gntn2

2h2ðrcK rzÞ4
V

2c

� �2

Ic; ð5:7Þ

Ut Z
pDx2n e

2gnt

h2ðrcK rzÞ4
V

2c

� �2

It; ð5:8Þ

with

Ic Z
1

2
ð1KnÞðri CctÞ2 36ðr 2zKr 2cÞK12ðr 2z C4rcrz Cr 2cÞln

rz
rc

� ��

Cð1CnÞ 12r 2cr
2
z ln

rz
rc
Cðr 2zKr 2cÞðr 2cK8rcrz Cr 2zÞ

� �

; ð5:9Þ

and

It Z ð1KnÞðri CctÞ2 6ðrcCrzÞ2 ln
rz
rc
K12ðr 2zKr 2cÞ

� �
Cð1CnÞ r 2zKr 2c

� �2
:

ð5:10Þ

—Finally, the kinetic energy is given by

T Z
rh

2

ð2p
0

ðrz
rc

vx

vt

� �2� 

r dr dq: ð5:11Þ

Using rZ12D/(c2h3), we have

T Z
pDx2ng

2
n e2gnt

10c2h2
r 2zKr 2c
� �

: ð5:12Þ

Then, using (5.1), we find the dispersion equation for the circumferential
wavenumber n. In terms of the dimensional circumferential wavenumber calculated
at the inner radius knZn/rc, the dispersion relation reads

ðrzK rcÞ4ðr 2zKr 2cÞ
10c2h2

g2
n C
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2
k4nr

4
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Figure 10. (a) Variation of the instability growth rate with the wavenumber. The dispersion
relation was calculated numerically for a projectile of radius riZ2.25 mm impacting a plate of
thickness hZ0.15 mm at impacting velocity VZ10 m sK1. The dispersion relation is calculated for
several times after impact: 300 ms, 365 ms and 700 ms. We observe a finite wavenumber at the
instability threshold. (b) Time evolution of the maximal growth rate g as a function of time. Times
are normalized by t�Zh/v; hZ0.15 mm. Solid line, VZ5 m sK1; dashed line, VZ10 m sK1; dotted
line, VZ15 m sK1.
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The second term (proportional to k4n) is always positive and thus at short
wavelength, g2

n is negative and the solution is stable. The source of the instability is
the term proportional to Ic. Substituting time dependence for the radius rz and rc, we
obtain a dispersion equation dependent on time (figure 10). At a critical time t inst,
the sign of g2

n changes and the axisymmetric solution becomes unstable.
A wavelength is selected by the instability.

The critical time at which the axisymmetric solution becomes unstable can be
computed by looking for a double root of the equation in kn obtained by looking
at solutions gnZ0. A wavelength is associated with this critical time.
Comparison between the wavelength computed from equation (5.13) and the
experimental wavelength shows a good agreement (figure 11). However, for very
thin sheets and high-impacting speeds (figure 11a), the instability develops at
early times and the approximation r[ri used to obtain equation (4.19) is no
longer valid.

We also measured the time at which we started to observe wrinkling
(figure 12). This time is not stricto sensu equal to t inst because the wrinkles need
time to grow, whereas at the instability threshold (i.e. at time t inst), the growth
rate is zero. Above t inst, the maximal growth rate g increases itself in time
(figure 10b) and saturates over a time period of approximately 10 h/V. Figure 12
shows that the typical wrinkling time is indeed t instC10 h/V.
(b ) Approximation of the instability wavelength

An explicit form for the critical time tinst and the instability wavelength l
cannot be easily computed from equation (5.13). In the limit ri/0 and assuming
that V/c is small, the instability occurs at large times. The compressed area
Proc. R. Soc. A (2009)
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shown in figure 9 has a large radius and its curvature can be neglected, hence, we
propose the following toy model to understand the instability mechanism:
consider an elastic beam of length p[rz(t)Crc(t)] and width bZrz(t)Krc(t) with
a compression

sc ZsqðrcÞZ
E

1Kn2
V

2c

� �2

ð1CnÞK2
ffiffiffiffiffiffiffiffiffiffi
1Kn

p c

V

h i
zK

E

1Kn2

ffiffiffiffiffiffiffiffiffiffi
1Kn

p V

2c
: ð5:14Þ

The dispersion equation (Lindberg 1965; Vermorel et al. 2007) is

u2 Z
EI

rbh
k2 k2 Csc

bh

EI

� 

; ð5:15Þ

where IZbh2/12 is the area moment of inertia. The straight configuration of the
beam is unstable and a dynamic buckling instability develops. This instability
selects a most amplified wavelength

lmax Zph

ffiffiffi
2

3

r ffiffiffiffiffiffiffiffi
E
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s
z

2
ffiffiffi
3

p

3
pð1CnÞ1=2ð1KnÞ1=4h V
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� �K1=2

: ð5:16Þ
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The scaling above lfh(V/c)K1/2 is precisely the one observed experimentally for
moderately thin sheets (figure 11). The instability time of growth is

tgrowth Z

ffiffiffi
3

p

3
h
1

c

E

jscj
z2

ffiffiffi
3

p

3
ð1Kn2Þ h

V
; ð5:17Þ

whose scaling again recovers that of tinst.
6. Conclusion and discussion

(a ) Summary

We have shown that a transversely impacted thin sheet experiences a buckling
instability leading to the growth of radial wrinkles. The instability results from a
‘geometrical confinement’ of the material points that are pulled by the impactor
towards the impact point. The wavelength is correctly predicted by a quasistatic
analysis of a time-varying substrate. Interestingly, this instability is not observed
in clamped circular sheets with a central transverse force. On the other hand, this
instability occurs in membranes that are geometrically constrained at one or two
different radii as in Géminard et al. (2004), Huang et al. (2007) or Chopin et al.
(2008). The necessary confinement occurs in the present case because the tensile
wavefront propagates faster than the transverse wavefront. The main difference
with the static case concerns the wrinkle pattern: in the static case, a number of
wrinkles are selected and the wavelength changes with the distance from the
centre while here the wavelength is conserved.

We also note the similarity between the patterns resulting from this wrinkling
instability and the cracks that are observed on impacted plates of brittle
materials, whose analysis is left for future work.

Modification of geometry, boundary conditions, impact parameters or material
properties may only modify the critical radius (and critical time) at which
the instability develops. Thus, our model does not predict a threshold for the
Proc. R. Soc. A (2009)
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buckling instability. In the following, we discuss different limitations of our
model. In particular, we discuss the effects of the inertia of the impactor and of
the size and thickness of the latex sheet.

(b ) Deceleration of the impacting body

We assumed that the velocity of the impactor V does not change during
impact. If the mass of the impactor is finite, however, it decelerates. Using the
results of §4b, the rate of decrease of the impactor’s velocity can be estimated
from momentum conservation of the system composed of the impactor and the
mass of the membrane displaced vertically.

Consider a rigid impactor of mass Mp, impacting an elastic sheet at initial
impacting velocity V. The part of the sheet whose motion is vertical is the
area delimited by the transverse wavefront resulting from impact. The vertical
velocity of the membrane at the impact point is the same as the impactor
current velocity v(t). As an approximation, we consider that the transverse
wavefront velocity depends only on the initial impacting velocity V as if the
impactor had an infinite mass and we use the result from (4.19). Then, the mass
of the membrane moving vertically is

Mm Z rhpðUtÞ2 Zprh
1Kn

4

� �1=2 V

c

� �
c2t2: ð6:1Þ

Conservation of momentum in the vertical direction writes as

d

dt
fðMp CMmÞvgZ ðMp CMmÞ

dv

dt
Cv

dMm

dt
Z 0: ð6:2Þ

Hence the differential equation satisfied by v(t)

dv

dt
ZK

2t

t2Ct2

� �
v; with t2 Z

Mp

prh 1Kn
4

� �1=2 V
c

� �
c2

; ð6:3Þ

which integrates into

vðtÞZ V

1Cðt=tÞ2
: ð6:4Þ

Measurements of the impactor velocity v(t) and of the characteristic
deceleration time t shown in figure 13 are in a good agreement with equation
(6.4). The typical observation time in the present experiments does not exceed
2 ms after the time of impact. The mass of the impactor associated to tZ2 ms for
a membrane thickness hZ0.30 mm and for an impacting velocity VZ30 m sK1 is
MpZ2.4!10K3 kg. The experiments presented in this work were all conducted
with MpZ3.3!10K3 kg or larger, masses for which deceleration does not alter
our conclusions.

(c ) Finite size effects

According to the dispersion equation (5.13), the instability develops for
any impacting speed. However, finite size limitations can modify the dynamics.
The tension front reaches the extremity of the sheet in rZr0 at time t0Zr0/c.
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This front rebounds and if it reaches the position rZrz before the development of
the instability, the stress field changes, and we expect a modified dynamics. Thus
the critical size for the membrane is given by the criterion

riK r0
c

C
r0K rzðt instÞ

c
! t inst: ð6:5Þ

The measurements in the present experiments (wave speed, radial displacements,
wavelengths) were performed before perturbation by the rebounding front. We
also note that the shape of the rebounding front depends on the boundary
conditions (free, clamped). However, as long as there is no interaction with the
rebounding wavefronts, the boundary conditions do not influence the dynamics
and the development of the instability. This is a difference with the static
situation where the boundary conditions are fundamental in predicting the onset
of wrinkling.
(d ) Pure bending waves

Finally, our model for transverse wave propagation disregards the dynamics of
pure bending waves, decoupled from tension in the sheet. We briefly discuss the
validity of this model in the one-dimensional case. If flexural stiffness is taken
into account equation (4.1) now reads

EAr2
v4x

vx4
C

v

vx
T

vx

vx

� �
CrA

v2x

vt2
Z 0; ð6:6Þ

where r is the radius of gyration of the beam (r 2Zh2/12 for a rectangular cross
section of thickness h) and TZEAe. We note that this equation is valid at times
larger than h/c. When the beam is impacted, transverse waves propagate as
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841Impacts on thin elastic sheets
bending waves and tension increases gradually as a consequence of transverse
motion. Consequently, any localized disturbance, say x(r,tZ0)Zf(r), will
propagate according to (6.6) as a wave packet xðr; tÞZFðr=

ffiffiffiffiffi
kt

p
Þ, where kZcr

and F($) is an eigenfunction of (6.6) (e.g. Graff 1975). The wave packet thus
expands over a typical width increasing as

ffiffiffiffiffi
kt

p
. Now, the tension front sustained by

the continuing traction of the impactor has propagated radially over a distance ct at
time t. Thus assuming that the tensile strain is uniform over the stretched domain,
we estimate the strain in the beam as follows: the segment of initial length ct now
has a length of ctK

ffiffiffiffiffi
kt

p
C ½ktCðVtÞ2�1=2 and thus the strain is

eZ
ctK

ffiffiffiffiffi
kt

p
C ½ktCðVtÞ2�1=2Kct

ct
z

1

2

V

c

� �2 ctffiffiffiffiffi
kt

p : ð6:7Þ

Using this estimate, we compare the two first terms in equation (6.6): the bending
term writes EAr2(Vt)/(kt)2 and the tension term writes EAðV=cÞðct=

ffiffiffiffiffi
kt

p
ÞVt=kt.

Thus the bending term dominates until a critical time

t b Z
r

V

c

V

� 	1=3
f

h

V

c

V

� 	1=3
; ð6:8Þ

above which the restoring force due to tension overcomes the intrinsic bending
rigidity. This time is greater than h/V and thus the impactor must have travelled a
distance greater than h for the tension to be large enough. In two dimensions, we
expect the same limitation but in our experiments h/V (typically 10K5 s) is very
short compared to observation times; our model neglecting bending rigidity is valid.
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