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IRPHE, Aix Marseille Université–CNRS, 13384 Marseille Cedex 13, France
(Received 24 January 2010; published 30 April 2010)

When a rigid cone is slowly pushed through a thin elastic sheet, the material breaks, exhibiting a

network of cracks expanding in the radial direction. Experiments conducted with aluminum sheets show

that the number of cracks is selected at the beginning of the perforation process and then remains stable. A

simple model predicts the number of cracks as the result of a competition between the elastic energy

stored in the sheet, and the energy dissipated during crack extension. We also evidence the subtle

rearrangements of randomly distributed cracks into uniform radial patterns with fewer cracks. In that

respect, this study exemplifies how relaxation mechanisms in fragmenting solids can attenuate the

influence of defects in the material.
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Broken windows [1,2], ice layers [3], and impacted
metal plates [4] often exhibit radial cracks after perfora-
tion, patterns which are also observed on coated elastic
materials [5] or in drying suspension [6]. Most of the work
dealing with the occurrence of cracks under localized
transverse load have emphasized the threshold at which
the material breaks. However, in a number of applications
related to fragmentation, the size of the fragments and thus
the pattern of cracks that develops after the onset of break-
ing is of prime interest [7]. The present Letter investigates
the radial crack patterns observed in thin sheets perforated
quasistatically by a rigid cone. Our analysis emphasizes the
geometry of the rupture patterns as well as the underlying
mechanisms of their selection and rearrangements. We do
not discuss the detailed and complex conditions under
which cracks initiate and propagate but rather develop a
simple approach based on the competition between surface
creation and elastic energy stored in the material to explain
how the pattern is selected.

We use annular thin sheets cut out of aluminum foil
(Young’s modulus E ¼ 70 GPa, Poisson ratio ! ¼ 0:3,
thickness h ¼ 18 "m). The foil is clamped at its outer
radius (Rs ¼ 60 mm) with no pretension. A rigid cone,
whose axis is perpendicular to the sheet and intersects it at
its center is mounted on a translation stage (Fig. 1). The
direction of translation coincides with the axis of the cone,
which is incrementally (increment size #z ¼ 0:1 mm)
pushed to enlarge the initial hole in the sheet. It does so
by opening radial cracks. Two cones, with different angles
(20" and 45") were used leading to the same results. The
penetration radius R is measured at the intersection of the
cone and the plane of the sheet. The circular inner edge, of
radius R0 ¼ 1:5 mm, prevents the sheet from breaking
dynamically at the early stage of the process, as would
an intact sheet punctured by the sharp tip of the cone. Thus,
the perforation can be considered to be quasistatic. We
have also performed experiments with an imposed initial
uniform pattern of n0 cracks, each of initial length 1.5 mm,

to study the rearrangements of the radial crack network
with increasing penetration depth.
Figure 2(a) shows the number of cracks obtained with a

different initial number of cracks n0. The number of cracks
is measured at R ¼ 25 mm and does not change for larger
R. For n0 # 4, the number of radial cracks increases
through the initiation of new cracks or branching of the
previous ones as shown on Fig. 2(b). The pattern system-
atically evolves toward a uniform radial crack network.
However, for a few experiments with n0 ¼ 4, the pattern
does not expand radially but spontaneously starts to rotate
to form spiraling cracks [8]. This behavior is not observed
for other values of n. For 5 # n0 # 12, the initial number
of cracks is conserved and we observe uniform patterns of
n ¼ n0 cracks expanding in the radial direction. For larger
values of n0 (n0 $ 13), the number of cracks decreases so
that n # n0. In that regime n does not depend on n0 and the

FIG. 1. (a) Picture of the cone perforating the aluminum sheet.
(b) Clamped sheet. (c) Sketch of the experimental setup used for
perforation.
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final number systematically decreases to n ¼ 10 or n ¼
11. Figure 2(c) shows how the pattern rearranges from
n0 ¼ 20 to n ¼ 10 over a few increments #z. With no
initial cracks [inset in Fig. 2(a)], the most probable number
of cracks is n ¼ 5, with some dispersion. Fig-
ure 2(d) illustrates an experiment starting from n0 ¼ 0
and leading to a final number n ¼ 5. Interestingly, we
observe the rearrangement of the pattern switching from
n ¼ 6 to n ¼ 5 cracks between pictures (ii) and (iii): the
dashed line arrow points to a crack for which the local
configuration was similar to the case of large n0 and, as a
result, this crack did not further expand.

To compute the strain and stress fields in the sheet as the
cone penetrates, we consider that the problem is planar. We
neglect bending energy because the thickness of the sheet
is small (h=R% 10&3), so that the energy required to fold a
petal between two adjacent cracks is negligible [9].
Figure 3(a) shows a schematic of the inner boundary of
the sheet, for a uniform pattern of n radial cracks. The
initially straight segment ½CC0( joining two crack tips, is
stretched to a length equal to 2ðABþ BCÞ as the cone is
forced through the sheet. We express the corresponding
extensional strain $n in terms of n and %n the angle
between the tangent to the cone and ½CC0(

$n ¼ %n cosð&=n&%nÞ þ sinð&=n&%nÞ
sinð&=nÞ & 1: (1)

The angle %n, which determines the position of the crack
tips is bounded by two limits: if %n ¼ 0, the crack tips are
localized at maximum distance of the cone and the sheet is
stress free ($n ¼ 0); if %n ¼ &=n, the crack tips are in
contact with the cone and then, the strain is maximum
[~$n ¼ ð&=nÞ= sinð&=nÞ & 1].

We assume that the sheet is made of a perfect elastic
material; i.e., we neglect plastic deformation that we con-
sider to be confined to a small area of the membrane with a
limited effect on the total energy. To compute the stored
elastic energy, we replace the complex inner shape of the
membrane by a circular edge at radius R with azimuthal
strain $n yielding the radial displacement field 'ðrÞ ¼
RsR

2ðR2
s & R2Þ&1ðRs=r& r=RsÞ$n [10]. The strains are

$r ¼ @'=@r and $( ¼ '=r and the stresses are given by
Hooke’s law. The stress )( is positive in the vicinity of the
cone, and this tension leads to further extension of the
cracks. The stretching energy Ue ¼ &h

Rð)r$r þ
)($(Þrdr of the annular membrane clamped at Rs with
imposed azimuthal strain $n at R writes

Ue ¼
&$2n

1& !2
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"

EhR4

R2
s & R2 : (2)

To predict the crack length, we resort to the celebrated
Griffith’s criterion [11]. The energy needed to create new
surface #Uc must be balanced by the change of bulk elastic
energy stored in the material #Ue. The irreversibility at the
microscopic level during crack growth may be taken into
account by introducing a fracture energy ! which embra-
ces the energy required to break material bonds as well as
other dissipative processes localized near the crack tip.
Increasing crack length by #L thus requires an energy
#Uc ¼ 2!h#L. For #L ¼ n#l, in which #l is the incre-
mental length of a single crack, Griffith’s criterion takes
the form

#U

#L
¼ #ðUe þUcÞ

#L
¼ 0 ) #Ue

#l
¼ &2n!h: (3)

Noticing that #Ue=#l ¼ ð#Ue=#%nÞð#%n=#lÞ, further
geometric considerations provide

FIG. 2. (a) Number of cracks n obtained for different initial numbers n0. At a given n0, the solid lines emphasize the dispersion of the
results. The inserted figure shows the distribution of crack numbers for n0 ¼ 0. (b)–(d) Evolution of the pattern for (b) n0 ¼ 3;
(c) n0 ¼ 20; (d) n0 ¼ 0. The penetration depth increases from left to right by steps of 1.5 mm, 2.4 mm, and 1 mm for (b), (c), and (d),
respectively. In (d), the arrows point to the cracks and the dashed line arrow shows a crack which does not further expand with
increasing penetration depth.
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the condition on n and %n being
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in which the function gn writes as

gnð%nÞ ¼
%n sinð&=n&%nÞ cosð&=n&%nÞ

n sinð&=nÞ tanð&=n&%nÞ
$n: (6)

This relation, linking the couples (n, %n) to the material
properties, provides the admissible radial crack morphol-
ogies. A simpler form of condition (5) may be obtained in
the limit of R , Rs and %n , &=n. In such conditions,
the asymptotic angle %n writes

%n ’ fðnÞ
!
!

ER

"
1=3

; (7)

in which

fðnÞ ¼
#
2
!
1þ !

&

"!
n tanð&=nÞ
cosð&=nÞ

"$
1=3

: (8)

Experimental measurements of %n are shown on Fig. 3(b)
for several values of n. The adjusted parameter of the
theoretical curves is the fracture energy !, and the value
! ¼ 110 kJ -m&2 matching well the experimental data is
also consistent with the order of magnitude observed in
other studies of the petaling of thick aluminum plates [12].
Figure 3(b) shows that the prediction of the angle %n is in
very good agreement with measurements. In addition, the
approximated formula (7) (dashed line) works well for
small penetration radii R, as expected. We emphasize
that the value of the fracture energy ! obtained above
embraces both kind of irreversibilities, namely, surface
creation by crack propagation (the surface energy), and
plastic strain work at the crack tips.
Thus, Griffith’s criterion allows the determination of %n

if n is known. To compute the most probable number of
cracks n., we minimize the global energy of the system
throughout the perforation process, an approach sometimes
used to predict crack path in fracture mechanics [13].
Hence, n. satisfies

@

@n

!
1

R& Rc

Z R

Rc

UdR
"
¼ @U.

@n

%%%%%%%%n¼n.
¼ 0; (9)

where Rc is the penetration radius at which cracks appear.
The evolution of U. with n is reported in Fig. 3(a). Theory
predicts an optimal number of cracks between n ¼ 4 and
n ¼ 5, consistently with the experimental observations
reported in Fig. 2.
To understand the dispersion in the final number of

cracks, we consider the discrete nature of the problem.
When n > n., the radial crack pattern should rearrange
to reduce the number of cracks from n to n& 1 by crossing
an energy barrier. When a crack stops, in the area of the
sheet comprised between the two other adjacent cracks, the
strain increases locally to its maximal value as the crack
approaches the edge of the cone. Hence the expression of
the normalized energy barrier is

"Ue

Ue
¼ ~$2n & $2n

n$2n
: (10)

Since the only energy stored in the system is the elastic
energy, the relative energy barrier must satisfy "Ue=Ue <
1 in order to allow for crack number decrease. Figure 4(b)
shows the energy barrier predicted by the model. In the
range of parameters of our experiments, the system is able
to spontaneously decrease the number of cracks for n > 10
only, since "Ue=Ue > 1 for smaller n. Moreover, the
energy barriers tend to be higher for larger R, thus prevent-
ing any rearrangement with increasing penetration depth,
as experiments show.
Therefore, both the prediction of the optimal number of

cracks n. and the energy gaps criterion offer a good under-
standing of the experimental results reported in Fig. 2. In
particular, the dispersion of the initial number of cracks
n0 < 5 can be interpreted as the signature of initial defects.
Indeed, if local imperfections initiate the creation of addi-
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FIG. 3 (color online). (a) Schematic of the deformation of the
inner boundary of the sheet in contact with the cone between
crack tips located in C and C0. The folded petal is not shown.
(b) Evolution of the angle %n=fðnÞ with the perforation radius
R=Rs. The solid line stands for the full theoretical prediction and
the dotted line represents the approximation of Eq. (7). The dots
stand for the measurements. Each experimental point represents
the mean value of the 2n angles measured in a n crack pattern.
The inserted figure shows the evolution of the global energy U.

with crack number n, computed for penetration radii 2, 4, and
6 mm.
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tional cracks such that n > n., although the energy state of
the system is not minimized, high energy gaps prevent the
crack pattern from reaching the optimal number of cracks
n.. Nevertheless, for a large number of initial cracks, the
system relaxes to fewer cracks, typically n ¼ 10 in the case
of aluminum sheets, as for the other materials we have
tested, like paper for instance.

Experiments also show that a random crack distribution
systematically evolves toward a regular pattern of cracks
expanding radially (with uniform angles). To describe the
evolution of the pattern, we refer to the principle of local
symmetry which implies the conservation of the local
symmetry around a crack tip during its propagation [14].
The symmetry axis of the stress field around a crack in a
random pattern deviates from the radial direction and so
does the direction of propagation of the crack. We use the
solution to the elastic problem of two punctual forces
acting on a corner [15] to crudely approximate the stress
field around a crack tip, see Fig. 4(a). Then, using the
principle of local symmetry, we compute the fracture
path for a random crack pattern and compare it to the
experiment. Results reported in the inserted graphic of
Fig. 4(b) show good agreement between the prediction
and observed crack trajectories. Thus, since randomly
distributed cracks spontaneously evolve toward uniformity,
the choice of a model focusing on uniform radial crack
patterns is consistent with the observed and predicted
phenomenology.

In conclusion, we have shown that the morphology of
cracks on an indented thin sheet can be described by a
simple argument balancing stretching elastic energy and
fracture energy associated with the crack extension. Global
energy minimization allows us to infer the most favorable
pattern without relying on the precise description of the
local features of the cracks. In particular we do not explic-
itly account for the singular stress field that develops at the
tip of the crack, nor for the transition to a plastic behavior
in the sheet. Instead, we use an ad hoc fracture energy
determined from the pattern shape, whose value is used to
compute its later evolution, and the number of cracks, in
quantitative agreement with many features of the experi-
ment. The pattern shown on Fig. 4(c) epitomizes this
evolution: starting with 4 cracks, the system switches to
5 cracks by crack branching and immediately starts to
globally rearrange to reach the preferred uniform (sym-
metrical) state. An obvious extension of this study is to
investigate whether those principles help understanding the
more complex case of the radial crack patterns in impacted
brittle plates–the common broken window case.
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FIG. 4. (a) Sketch of a crack tip in a random pattern. Two
punctual forces ~P1;2, tangent to the cone, act on the corner
formed by the crack tip. (b) Evolution of the switching energy
with the crack number n, computed for perforation radii ranging
from 10.5 to 12.5 mm. The inserted figure shows the evolution of
the angular position of the cracks ( (in radians) with the
penetration radius R. The dots stand for measurements and the
solid line for theoretical predictions. (c) Post mortem crack path
of a perforated aluminum sheet.
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