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ABSTRACT

Context. Large-scale persistent vortices could play a key role in the evolution of protoplanetary disks, particularly in the
dead zone where no turbulence associated with a magnetic field is expected. These vortices are known to form easily in
2D disks via the Rossby wave or the baroclinic instability. In three dimensions, however, their formation and stability
is a complex problem and still a matter of debate.

Aims. We study the formation of vortices by the Rossby wave instability in a stratified inviscid disk and describe their
3D structure, stability, and long-term evolution.

Methods. Numerical simulations were performed using a fully compressible hydrodynamical code based on a second-
order finite volume method. We assumed a perfect-gas law and a non-homentropic adiabatic flow.

Results. The Rossby wave instability is found to proceed in 3D in a similar way as in 2D. Vortices produced by the
instability look like columns of vorticity in the whole disk thickness; the weak vertical motions are related to the weak
inclination of the vortex axis that appear during the development of the RWI. Vortices with aspect ratios higher than
6 are unaffected by the elliptical instability. They relax into a quasi-steady columnar structure that survives hundreds
of rotations while slowly migrating inward toward the star at a rate that reduces with the vortex aspect ratio. Vortices
with a lower aspect ratio are by contrast affected by the elliptic instability. Short aspect ratio vortices (x < 4) are
completely destroyed in a few orbital periods. Vortices with an intermediate aspect ratio (4 < x < 6) are partially
destroyed by the elliptical instability in a region away from the midplane where the disk stratification is sufficiently
strong.

Conclusions. Elongated Rossby vortices can survive many orbital periods in protoplanetary disks in the form of vorticity
columns. They could play a significant role in the evolution of the gas and the gathering of solid particles to form
planetesimals or planetary cores, a possibility that receives a renewed interest with the recent discovery of a particle
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trap in the disk of Oph IRS 48.
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1. Introduction

The potential role of vortices in protoplanetary disks has
been pointed out by Barge & Sommeria (1995) pointed out
the potential role of vortices in protoplanetary disks : they
can capture large amounts of solid particles and can thus
participate in the process of planet formation by speeding
up the formation of planetesimals and the rapid growth of
planetary cores. The formation, stability, and evolution of
these vortices in protoplanetary disks have since raised a
number of challenging questions.

Most numerical studies of protoplanetary disks have
been performed in 2D using quantities averaged over the
disk thickness. For Keplerian disks, numerical simulations
have shown that vortices can be created if the disk pos-
sesses some heterogeneities (Bracco et al. 1999). These are
created at the border of the dead zone of protoplanetary
disks (Varniere & Tagger 2006), for instance, or at the edge
of a gap opened by a sufficiently massive planet (de Val-
Borro et al. 2007). They can make the disk unstable with
respect to the Rossby wave instability (thereafter RWI).

This instability was first studied by Lovelace et al. (1999)
and Li et al. (2000, 2001) in the context of the protoplane-
tary disks and was proposed as a way to produce large-scale
vortices. The RWI is a global, linear, and non-axisymmetric
instability that occurs when an extremum of potential vor-
ticity exists in the disk. 2D vortices can also be produced by
a non-linear baroclinic instability, as explored by Klahr &
Bodenheimer (2003); Johnson & Gammie (2005); Petersen
et al. (2007a,b) and Lesur & Papaloizou (2010). These vor-
tices are known to migrate inward toward the star (Li et al.
2000; Paardekooper et al. 2010; Surville & Barge 2012,
2013).

The dynamics of the disk in three dimensions is a much
more complex problem that has been addressed by a few
authors only. The creation of vortices in 3D by itself is a
problem. In homentropic disks, Méheut et al. (2010, 2012a)
showed that the RWI could lead to the formation of com-
plex 3D vortical structures with strong vertical motions.
The RWI was studied in more detail both theoretically
and numerically for locally isothermal (Lin 2012) and non-
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barotropic disks (Lin 2013). Lin provided explanations for
the different observations by Méheut et al. (2010, 2012a).
He also showed that the most unstable mode of the RWI
can remain quasi-2D in a non-homentropic disk. Our simu-
lations for a non-homentropic disk show that stable quasi-
2D vortices can indeed be created by the RWI.

The vortices may exhibit a complex dynamics. Barranco
& Marcus (2005) were the first to show that the dynamics of
2D vortices can be completely different in 3D, using anelas-
tic numerical simulations in vertically stratified disks. Due
to the strong shear they support, 2D vortices in a disk could
a priori be unstable with respect to the 3D elliptical insta-
bility (Kerswell 2002). This instability generically affects
strained vortices (Pierrehumbert 1986; Bayly 1986) and is
modified by the stratification and the background rotation
of the disk (Miyazaki 1993; Guimbard et al. 2010). Lesur
& Papaloizou (2009, thereafter LP09) have considered the
specific case of the vortices in a Keplerian disk. Using simple
vortex models in a shearing box, they analyzed the stability
of the vortices according to their aspect ratio in a weak and
moderately stratified case. Interestingly, they showed that
a moderate stratification tends to destabilize vortices that
were stable without stratification.

3D studies are also important to better understand
the concentration of the solid particles in the vortices.
Indeed, the preliminary two-phase simulations we per-
formed showed that the dust-to-gas ratio depends strongly
on height in the disk due to the vertical component of the
Sun’s gravity. A comprehensive study of the evolution of
protoplanetary disks will be investigated with 3D two-phase
simulations in a future work, in continuation of a prelimi-
nary 2D approach (Inaba & Barge 2006).

In this paper, we are interested in the formation of 3D
vortices by the RWI and in their long-term evolution. The
basic equations, the disk model, and the numerical method
are presented in Sect. 2. Sect. 3 is devoted to the description
of the linear growth and non-linear evolution of the RWI.
The characteristics of the final vortex, that are obtained
after a succession of merging processes, are also provided
in this section. The stability properties of the vortex with
respect to the elliptical instability are examined in Sect. 4,
together with its property of migrating toward the star. A
brief conclusion is provided in Sect. 5.

2. Fluid equations and numerical method
2.1. Standard disk assumptions

The gas of the nebula was assumed to be a mixture of
molecular hydrogen (75%) and helium (25%) with a mean
molecular weight 4 = 2.34g/mol. The low-pressure condi-
tions inside the disk justify using perfect-gas law as the
appropriate equation of state. At steady-state the gas is
stratified with an hydrostatic equilibrium in the vertical
direction and a pressure-modified centrifugal equilibrium
in the radial direction.

As commonly done in the modeling of circumstellar disk
observations, the surface density and temperature of the
gas were assumed to decrease as simple power-laws of the
distance to the star as =P and r~?. The disk self-gravity
was neglected and we focused on optically thick regions
of the nebula where the coupling of the gas with the mag-
netic field is negligible due to weak ionization. The problem
was addressed by numerically solving the full set of the 3D

compressible hydrodynamical equations in cylindrical coor-
dinates.

2.2. Governing equations

The standard equations for an inviscid gas flowing around
a central gravitational potential reads

dp _
o5 TV (V) =0 (1)
opV
%+v.(pvw+vp=pv¢ (2)
d
£+V-(V(pe+P))=PV'V¢ (3)
_i 1 2
pe—/y_1—|-2pva (4)

where p and P are the density and pressure of the gas,
and u, v and w are the radial, azimuthal, and vertical
components of the gas velocity ; pe denotes the total
specific energy of the gas with adiabatic index v = 1.4
and ¢ = GM,/(r? + 2?)'/? is the gravitational potential.
Because no heat transfer was assumed in the disk, the en-
ergy equation is equivalent to the isentropic relation

d

where S = In(P/p7) is the entropy and d/dt = 0/9t+V -V
is the Lagrangian derivative.

The equations were used in non-dimensional form
thanks to the following normalization:

r=r,r Z2=TyZ V=0,V (6a)
~ 2 ~
p=pop  P=puiP  T= %T (6b)

where the , index refers to their values at r, from the
star in the midplane: v, = \/GM, /1o, po = p(ro,2z = 0).
In the following, the tilde over the dimensionless variables
is dropped. With these new variables, equations (1) - (4)
are unchanged except for the gravitational potential, which
reads ¢ = 1/(r? + 22)'/2. The important parameter is then
the Mach number M4, = v,/+/vRT,, where T, is the tem-
perature computed at r, from the star.

2.3. Stable equilibrium of the disk

In the absence of perturbation, the gas is in a steady-state
equilibrium, flowing at nearly the Keplerian velocity around
the star. The vertical and centrifugal equilibrium equations
for the axisymmetric steady-state are

oP pz
e (72)
orP or pv?
[ CET A ()

If we assume that the temperature does not depend on
the height z, we can write Tp as

r—4

Tp(r) = ST
A,

(8)
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From Eq. (7a) and
Pp(r,z) = pp(r,z) Tp(r), 9)

we then easily find the density

Integrated over the disk thickness, (10) gives the surface
density

2 —-p
T T : (11)
'VMAO

provided that o = p + (3 — ¢)/2. The pressure height is
given by

ED(T') ~

H(3-a)/2
My

The azimuthal velocity deduced from the radial cen-

trifugal equilibrium is
1 3+2p+¢q 1 1
=, 2P Tdp E—
up(r,2) V P00+ (g 1)
(13)

This equilibrium solution only depends on three param-
eters: the indices p and ¢, and the Mach number M 4,. Note
in particular that the disk structure does not depend on its
mass. Except for the comparison with Lin’s results, we took
g =0.5, p=1.5, and M4, = 25 throughout. This value of
the Mach number is obtained for r, = 1AU, T, = 280K,
and M, = 1Mg.

Hp(r) = (12)

o

2.4. Unstable equilibrium state

The above solution is linearly stable. To render the solution
unstable with respect to the Rossby wave instability, we
chose to add an annular bump in the density and pressure
fields while keeping the temperature profile unchanged,

p(r,2) = p(r,2) (1 + £(r)) (14a)
P(r,z) = Pp(r,2)(1 + f(r)), (14b)
with )
f(r) = Aexp (—(r;;ﬂb)) . (15)

The velocity field is then obtained from Eq. (7b). In a pro-
toplanetary disk, this density bump may be caused, for ex-
ample, by an axisymmetrical accumulation of gas at the
edge of the dead zone. The Rossby wave instability is char-
acterized in 2D by the function £ defined by

HQ/’Yz

= (16)
where 7, is the adiabatic index, and II and ¢ are the verti-
cally integrated pressure and total axial vorticity. Following
Lin (2013), we assumed the relation v2 = (3y—1)/(y+1) ~
1.33 obtained by Goldreich et al. (1986).

As shown by Lovelace et al (1999), the function £ must
exhibit a local maximum for instability. The centrifugal in-
stability is characterized by the function x? = 224,20
which becomes negative in the presence of centrifugal in-
stability. The function x? weakly depends on z. In the fol-
lowing, we consider the value in the midplane (z = 0),
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Fig. 1. Radial dependance of the function £ (top) and the func-
tion k3 (bottom) that characterize the Rossby wave instability
and the centrifugal instability. Disk parameters are ¢ = 0.5,
p=15 Ma, =25,06=0.3,r, =75 and A =0.2.

where the absolute value of x? is maximum, and denote
this value by k2 = k%(z = 0). For A = 0.2, r, = 7.5 and
o = 0.3, we obtain the typical plots shown in Fig. 1 for
the functions £ and £Z. The function £ does exhibit a local
maximum, while x2 remains positive. For higher values of
A, k% can become negative, which implies centrifugal insta-
bility. For ¢ = 0.3, r, = 7.5, the threshold for centrifugal
instability is A. = 0.334. Except in Sect. 4, A was chosen
to be sufficiently small to remain in the centrifugally stable
regime.

The disk is stably stratified. The stratification is char-
acterized by the Brunt-Vaiisala frequency,

1 8PD 1 8[)[))

N ==
(r2 + 22)3/2 (’yPD 0z

In our case, both the stable and unstable equilibrium states
have a Brunt-Vaiséla frequency given by

pp 0z a7)

2
z v—1
N2=_~—- T - | 18
(r2 +22)3 4Tp (18)
This function vanishes in the equatorial plane, and increases
with height until it reaches a maximum at z = v/2r.

2.5. Numerical method and validation

The system of non-linear equations was solved using
the finite-volume method. We used a second-order finite-
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volume scheme, the MUSCL Hancock scheme, and an ex-
act Riemann solver. The present 3D version of the code
was issued from a 2D version described in a previous pa-
per (Inaba et al. 2005), which was recently improved with
a well-balanced numerical scheme that enables one to pre-
serve the stationary solution over very many rotation peri-
ods. This scheme was developed in 2D by C. Surville (un-
published report) and is implemented in the 3D version of
the code used here.

The computational domain for our simulations was de-
finedas 5 <r <10,0< 6 <27 and 0 < z < 1 (equivalent
to 2.4 scale heights for a ring centered at r = 7.5). The mesh
was a regular one with 200 cells in the radial direction, 300
in the azimuthal direction and 100 in the vertical direction
which, per scale height, corresponds to 20 cells in the ra-
dial direction, 3 cells in the azimuthal direction and 50 in
the vertical direction (priority was given to the z direction
for studying the vertical effects). The boundary conditions
were imposed using two ghost cells at each boundary. In
the azimuthal direction periodic conditions were used to be
consistent with a global disk geometry. In the radial direc-
tion steady-state values were imposed on the ghost cells to
connect the computational domain with the rest of the disk;
these conditions are relatively permeable to perturbations
of the steady-state and avoid spurious wave reflexions. In
the vertical direction, boundary conditions were symmet-
ric at level z = 0 and extrapolated at z = 1, imposing
zero vertical derivatives for the relative velocity and for the
density and pressure ratios:

0 o p
5’2<V Vp)=0 =0 =0, (19)

Other boundary condition were also tested, but turned
out to be less efficient because of stronger residual pertur-
bations.

To test the stability of the code we first performed a
number of long-term simulations starting from the stable
stationary solution presented above. We found that after
a hundred rotations, deviations from the initial solution
are very weak and have no systematic trends: the radial
and vertical velocities are lower than 10712, the relative
error on the density is smaller than 10~°. Therefore we
are confident that our code can conserve the unperturbed
steady-state solution even on the long runs made here.

We also tried to reproduce one of the linear stability re-
sults obtained by Lin (2013). The parameters used by Lin
(2013), §6.3 give in our notation ¢ = 0, p = 1.5, a = 3,
My, = 23.15, and a Gaussian bump with A = 0.25 and
o = 0.53. Analyzing the time evolution of very weak per-
turbations, we were able to compute the linear growth rate
of each azimuthal mode. We found that the most amplified
mode is for m = 4 with a growth rate w; ~ 0.190, which is
close to the value w; ~ 0.1937 obtained by Lin. In Fig. 2, we
displaye the density field (colors) and the velocity field in
the midplane (arrows) of the m = 4 mode during the linear
phase. When we compare this figure with the Fig. 18 (top)
of Lin (2013), we see that the perturbation fields are very
similar. This confirms the good agreement between the two
results and also validates our numerical code.

3. Formation and structure of Rossby vortices

In this section, we compute the non-linear evolution of the
disk that results from introducing a small-amplitude white

Fig. 2. Density contour and velocity field in the midplane (r, 9)
for the most unstable mode m = 4 and for the parameters of Lin
(2013) ¢ =0, p = 1.5, Ma, = 23.15, A = 0.25, and o = 0.53.

noise on the first five modes for the parameters given in
§2.4. We monitored density, pressure, and velocity fields of
the disk by considering relative quantities with respect to
the stable equilibrium state. The 3D evolution of the den-
sity (p — pp) is presented in Fig. 3. First, the instability
grows linearly way and the annular overdensity fragments
in a chain of vortices coupled to spiral waves that propa-
gate on each side of the initial ring. After the instability
saturates, vortices tend to catch one another and succes-
sively merge into increasingly larger structures. After a few
hundred rotations, a single vortex remains in the computa-
tional domain. This vortex persists for a long time (more
than 600 rotations), slowly drifting toward the star. A slight
decay is observed that corresponds to the unavoidable nu-
merical diffusion. We now detail the different steps of this
evolution.

3.1. Growth and merging

The first step in the development of the Rossby wave insta-
bility is a linear growth phase. The growth rate of the differ-
ent instability modes is plotted in Fig. 4. From this figure,
we expect all the modes with 2 < m < 12 to possibly grow
during the linear phase. Mode m = 6 is expected to be the
most unstable mode. In the simulation, where white noise
was added to the first five modes, the growth of the modes
m = 2, 3,4, and 5 follows the linear prediction (see Fig. 5).
Mode m = 1, which is linearly stable, starts to grow when
the amplitude of the other modes has reached a sufficiently
large amplitude. During the linear growth phase, the axial
vorticity exhibits the form of a tilted structure, as observed
in Fig. 6 (top). This agrees with the structure of the most
unstable linear mode described by Lin (2013).

We point out that the vertical shear of the background
flow cannot be the cause of the observed tilt. Indeed, tilted
vorticity columns are also found in simulations with ¢ = 0,
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Fig. 3. Evolution of the density (p — pp) in a Rossby-unstable inviscid disk. Top: evolution in the r — 6 plane (z = 0); bottom:
evolution in a 3D perspective (visualisations performed with ginemo2). From left to right, density values are plotted at initial time

and after 20, 40, and 530 rotations.
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Fig. 4. Growth rate of the most unstable mode versus the az-
imuthal wavenumber m.

that is, without any vertical shear, and in the linear calcu-
lations performed by Lin (2013). No significant differences
have been observed between simulations with vertical shear
(¢ # 0) and simulations without vertical shear (¢ = 0).

Finally, after 22 rotations when the instability has sat-
urated, the tilt has almost completely disappeared (Fig. 6
bottom). This non-linear phenomenon is not observed in
the linear framework of Lin (2013). Then the vortices evolve
in the form of straight columns.

The vortices are strongly deformed by the background
shear. In the (0, 7) plane, the axial vorticity contours take
the form of elongated ellipses with an aspect of order 7.
As soon as the vortices are formed, they start to interact
with each other. A first merging of two pairs of vortices
is observed at 45 rotations, then a second merging process
occurs at 65 rotations, before the last merging of the two
remaining vortices after 500 rotations.

The Rossby number and the aspect ratio of the largest
observed vortex were monitored during this evolution and

6

1
0 2 4 6 8 10 12 14 16 18 20
Time

Fig. 5. Time evolution of the amplitude of modes 1 to 5 during
the first 20 rotations.

are reported in Fig. 7. The Rossby number is defined by

Wz

R =
° = 20,

(20)

where w,, = w,(0) is the relative axial vorticity of the vor-
tex in the midplane (i.e., the total vorticity in the midplane
after removing of the background vorticity), and §2p, the
background angular velocity in the midplane at the vortex
center.

Despite the difficulty fo defining an aspect ratio dur-
ing the merging processes, we observe that the aspect ratio
tends to increase. After the last merging process, the final
vortex has an aspect ratio of close to 10. This evolution
of the aspect ratio agrees with the evolution of the norm
of the axial vorticity maximum, which tends to decrease.
For a vortex with uniform vorticity (Kida 1981; Chavanis
2000), aspect ratio and vorticity are linked by the relation

1 1
— _,& (21)

s xx—1~

Wz
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Fig. 6. Vertical component of the vorticity in the (0, z) plane
after 11 rotations (top) and 22 rotations (bottom).

where s = —r,0,Q(rp) is the local shear rate in the mid-
plane at the position of the vortex. We observe that this
formula provides a good estimate of the aspect ratio of our
non-uniform vortices if we take the maximum vorticity for
w,, in Eq. (21). Note that the resulting vortices always have
an aspect ratio higher than or equal to 7. This property can
explain their 3D stability, as shown below.

Barranco & Marcus (2005) found that synthetic vortices
are unstable under anti-symmetric perturbations. To exam-
ine this point a global simulation was performed without
imposing the symmetry in the midplane. We obtained sim-
ilar results. In particular, we did not observe the growth of
any anti-symmetric perturbation.

3.2. Structure of the vortices

After the last merging process a single vortex remains in
the simulated region of the disk. This vortex is isolated,
with no observed residual of the initial density bump, and
can be characterized by a Rossby number Ro ~ —0.12 . It
is advected by the background flow and is found to form
a quasi-steady solution of equations (1)-(4) in the rotat-
ing frame. The characteristics of this final vortex are given
in Fig. 8 after 530 rotations. The first five plots in the left
column provide the relative fields (where the stable equilib-
rium state has been removed) of density, pressure, axial vor-
ticity, and the radial and azimuthal velocity of the vortex
in the equatorial plane. They are typical of an anti-cyclonic
motion around a pressure and density bump. These plots
are very similar to that obtained with 2D simulations start-
ing from identical initial conditions. The axial dependence
is shown in the right column of Fig. 8. We observe that

-0.1
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Third merging

014 F <——Second merging

Rossby number

-0.15 -
-—First merging
-0.16 - . B
<«——\Vortex formation
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Time
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15 H
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400 500 600

Fig. 7. Time evolution of the main characteristics of the largest
observed vortex. Top: Rossby number of the vortex as defined
in (20); bottom: aspect ratio measured from the axial vorticity
contours (solid line) and obtained from formula (21) (dashed
line).

axial vorticity, and the radial and azimuthal velocity have
a columnar structure in the whole thickness of the disk.
The vorticity defects observed at the disk edge (z = 1) are
weak imperfections due to the use of not purely transpar-
ent boundary conditions. Inside the vortex, the pressure
and density fields are found to have a Gaussian profile like
the background-disk state.

In the equatorial plane, the axial velocity is null by sym-
metry. It is non-zero outside this plane but, takes values
one order of magnitude lower than the other velocity com-
ponents. In particular, the highest Mach number of the ver-
tical motions is lower than 0.02. This field is characterized
in two perpendicular planes in the last row of Fig. 8. We
observe higher values close to the vortex center, but the
field is not as well localized. The highest axial velocity is so
weak that we can even observe the trace of gravity waves in
the axial flow contours. These waves result from the strat-
ification of the disk. Note, however, that the axial velocity
field has a structure that resembles the radial velocity field.
Therefore, the axial flow structure is most likely caused by
a slight tilt of the vortex axis.

In conclusion, this 3D evolution of the Rossby wave in-
stability is very similar to the 2D evolution. The 3D ef-
fects are weak perturbations that mostly result from the
initial 3D structure of the background disk. A slight vor-
tex tilting, which is characteristic of the linear RWI in a
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Fig. 8. Structure of a 3D Rossby vortex. From top to bottom the various rows show the fields (where the stable equilibrium state
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non-homentropic disk (Lin 2013), seems to survive in the
non-linear regime.

Méheut et al. (2010, 2012a) have also performed 3D
simulations of the Rossby wave instability, but they have
obtained a different evolution. They observed a strong ax-
ial recirculation inside the vortices. Although Méheut et al.
(2010, 2012a) considered a different framework (homen-
tropic flow, whereas we consider adiabatic flow), we assume
that the different evolution mainly comes from the different
nature of the instability. In their case, the density bump is
so large that it induces a change of sign of k2. Then, the
disk also becomes unstable with respect to the centrifugal
instability. This instability induces strong axial recircula-
tion. The formation of the Rossby vortices has probably
been modified by this instability, and the axial flow ob-
served in their simulation is the trace of the centrifugal
instability. Méheut et al. (2012b) have also considered a
case where 2 remains positive, so that the centrifugal in-
stability is absent. In that case, they observed that the RWI
remains mainly 2D and that the axial flow in the vortices is
low. However, they obtained a different axial flow structure,
which is probably related to their isothermal hypothesis.

4. Stability and long-term evolution

In the above section we have found that the RWI produces
columnar vortices that can persist over many rotation pe-
riods. This implicitly means that the vortices are stable.

This evolution is different from the evolution described
by Barranco & Marcus (2005). In the local shearing box
approximation, they observed that columnar vortices are
rapidly destroyed and tend to reorganize in a layer of off-
midplane vortices. It is not clear what causes this insta-
bility. We assume that it might be caused by elliptical in-
stability that affects strained vortices in the stratified and
unstratified medium (Lesur & Papaloizou 2009). In the fol-
lowing section, we show that this instability can indeed de-
stroy vortices within our framework.

4.1. Elliptical instability

The elliptical instability has been studied in the context of
vortices in accretion disks by Lesur & Papaloizou (2009).
They obtained with a local stability approach a condition
for the instability of Kida-like vortices that depends on the
horizontal aspect ratio of the vortices x and on the strati-
fication strength N/s of the flow.

In this section, we analyze the conditions under which
the instability develops and discuss why the elliptical insta-
bility was not observed in the simulation presented in the
previous section.

The high resolution required for the simulations was
achieved by reducing the computational domain to a peri-
odic box in the azimuthal direction; this is a simple way to
avoid prohibitive increases of the CPU time. The box size
was (6<r<9,0<60<27/10,0< z< 1), and we used
a resolution of 200 x 100 x 100 in the r, 8, and z directions
(that is 33 x 10 x 50 in number of cells per scale height).

We considered two different cases: (i) disks without ver-
tical stratification, and (ii) disks with the same stratifica-
tion as in Sect. §3. For each case, different values of the
aspect ratio were tested. The aspect ratio was varied by
changing the amplitude A of the annular density bump
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Fig. 9. Theoretical prediction of the aspect ratio of the formed
vortex as a function of the initial amplitude of the bump (o =
0.3, 7, = 7.5,p = 1.5, ¢ = 0.5, M4, = 25). For these parameters,
the basic flow is centrifugally unstable for A > 0.334.

used to trigger the RWI. From the expression of the ve-
locity field given in §2.4, we can obtain an estimate of the
maximum vorticity in the annular bump, and thus of the
resulting vortex formed by the RWI,

Ty TD(T‘I,) A
0’2’UD(7"b, 0) 14+ A°

(22)

~_
Wy

The aspect ratio x obtained from this formula and equa-
tion (21) is plotted in Fig. 9. As observed in Fig. 7, this
theoretical prediction provides a good approximation of the
measured aspect ratio in the centrifugally stable regime.

Strong bump amplitudes A are expected to produce vor-
tices with a low aspect ratio, but they also imply negative
values of x2. For this reason, low aspect ratio vortices are
difficult to create. As soon as A > A., where A, ~ 0.334
for the parameters of the simulation, the centrifugal insta-
bility is active during the primary evolution of the bump.
The Rossby wave instability is modified in such a way that
no columnar vortices are formed if the dynamics is not re-
stricted to 2D. Three values of A were considered in our
study: 1.5, 0.3, and 0.2, corresponding to the aspect ratios
2.5, 5, and 7. For A = 1.5 we obtained k2 < 0 near the cen-
ter of the bump. The stratification effect of the low aspect
ratio vortex that correspond to this value of A is analyzed
by a specific procedure.

4.1.1. Unstratified disks

A disk without vertical stratification is obtained by replac-
ing the gravitational potential ¢ = 1/4/r? + 22 in equations
(1)-(4) by ¢ = 1/r. With this potential, the characteristics
of the steady disk become independent of z. In two dimen-
sions, the Rossby wave instability is also active and gives
rise to the formation of quasi-steady 2D Rossby vortices.
In the simulated azimuthal sector, a single 2D vortex is
formed. Its 3D evolution is analyzed by considering this vor-
tex in a 3D environment, with periodic boundary conditions
in the vertical direction. Because the vortices are formed in
2D, the centrifugal instability is filtered out. The centrifugal
instability, which is characterized by the formation of ax-
isymmetric rolls, is indeed inhibited when no axial displace-
ment is allowed (see for instance Drazin & Reid 1981). Even
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Fig. 11. Evolution of a vortex of aspect ratio x = 2.5 in an unstratified disk; from left to right: at initial time and after 2, 2.5, and
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disk as a function of its aspect ratio.

for A = 1.5, for which x2 < 0, a nice 2D vortex is obtained
with an aspect ratio of 2.5, as predicted from the theory.
As shown by LP09, the vortex aspect ratio is an important
parameter for the stability. Figure 10 shows that different
evolutions are observed for low and high aspect ratios. For
low x, we observed the rapid growth of a 3D instability
and the destruction of the vortex in a few orbital periods.
A typical evolution for xy = 2.5 is illustrated in Fig. 11.
This evolution is very similar to the 3D evolution shown in
LP09. For x > 4, no instability growth was observed: the
vortex retains its columnar structure throughout the sim-
ulation. For example, for x = 7, we found that the vortex
persists for at least 200 rotations without being affected by
any instability. These stable evolutions are consistent with
LPO09 for 4 < x < 6, but not for higher y. LP09 predicted
a destabilization of the vortex for x > 6 with a low growth
rate around 1072 the shear rate s. We have not seen such
an instability. But one has to keep in mind that the the-
oretical predictions by LP09 are local and inviscid. Both
the non-uniform character of the vortex and the numerical
diffusion are expected to affect the instability growth rate.
We verified that our results remained unchanged when the
resolution was increased by a factor 2 in each direction.

4.1.2. Stratified disks

Lesur & Papaloizou (2009) have shown that vertical strati-
fication affects the development of the elliptical instability.
They have considered a uniformly stratified environment
with a constant Brunt-Vaisila frequency N for two values
of the parameter N/s (N/s = 0.1 and N/s = 1). They have
shown that in the regime of a low aspect ratio y < 4, the
local growth rate of the elliptical instability is not modi-
fied by the stratification. For xy > 6, the instability is still
present, but with a smaller growth rate. For intermediate
aspect ratios 4 < x < 6, they interestingly found a desta-
bilization for N/s = 1.

Here, the background disk is non-uniformly stratified
with a parameter N/s given by

N 2

s 3

vy—1 =z
v Hp(r)’

(23)

where the pressure scale height Hp(r) has been defined
in Eq. (12). The parameter N/s therefore depends on the
position. Figure 12 shows the contours of N/s in the pres-
ence of the vortices (along a cut crossing the vortex). The
lines are the contours obtained from Eq. (23). This figure
demonstrates that the vortices do not significantly mod-
ify the stratification and that N/s is thus well predicted
by Eq. (23). This formula shows that N/s vanishes in the
midplane, but increases linearly with the vertical position
in the disk. It is important to note that N/s varies from 0
to 0.8 between the midplane and the disk edge at the loca-
tion of the vortex. We can therefore expect the top of the
vortex to be affected by the stratification.

As above, we considered the evolution of bumps of three
different amplitudes A = 1.5, A = 0.3, and A = 0.2. For the
weak-amplitude cases (A = 0.3 and A = 0.2), we observed
the rapid formation of a columnar vortex by the RWI in a
few rotations.

The amplitude A = 0.3 gives rise to a vortex of aspect
ratio x = 5, as expected. In this case, eventually, the higher
part of the vortex (z > 0.7) is destabilized and progressively
disappears (see Fig. 13). This occurs on a longer timescale
than the rapid evolution observed in the unstratified case
for x = 2.5. After 60 rotations, a stable but shorter vortex
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Fig. 12. Stratification in the disk. The color map represents
the iso-contours of N/s in an angular sector going through the
center of a vortex. The lines are the values obtained from Eq.
(23) without vortices.

is obtained. This evolution is consistent with the theoret-
ical prediction of LPQ9 for the elliptical instability. In the
weakly stratified region close to the midplane, the elliptical
instability is not active for x = 5. By contrast, at the top,
where N/s exceeds 0.5, the instability is probably present
and responsible for the destruction of the higher part of the
vortex. Interestingly, we observe that the vortex apparently
retains its shape in the region where the elliptical instability
is not active.

For the vortex of aspect ratio x = 7 obtained with
A = 0.2, we observed no destabilization. This is consistent
with the results obtained in the unstratified case. High as-
pect ratio vortices are indeed expected to be more stable
in the presence of stratification. As they were found stable
in the unstratified case, the observed stable behavior in the
stratified disk is not surprising. This stable behavior also
explains why the elliptical instability was not observed in
the simulation of the full disk. During the disk evolution, we
notice indeed that the aspect ratio of the vortices remains
higher than or equal to 7. The vortices are therefore always
stable with respect to the elliptical instability and retain
their essentially 2D structure throughout the simulation.

For A = 1.5, the bump evolves in such a way that the
vortices are destroyed during their formation. The vortex
of aspect ratio 2.5 that was obtained in the unstratified
2D environment is not created in a stratified 3D disk. We
assume that the reason is the presence of the centrifugal
instability, which affects the vortex formation. Note also
that the elliptic instability mechanism in low aspect ratio
vortices is related to the centrifugal instability mechanism

0.9 | - l—ﬂ"'*.‘.l—.—\,_,__i m
__1;'-"—1;:-_-‘._
08 | \\'\"'\-—q
2
T 07} g
=
H
S 06 g
& |
0.5 | ;'! g
0.4 | i
. N/S=0 .
N/S=05 ---e
0.3 L L L ! L L ‘ !
0 5 10 15 20 25 30 35 40 45

Fig. 14. Growth rate normalized by the local background an-
gular velocity of 3D perturbations in a vortex with an aspect
ratio of 2.5 in an isothermal stratified disk for N/s = 0 and
N/s=0.5.

(LP09, Lyra 2013). Consequently, it is very difficult to de-
termine whether the elliptic instability becomes active in
this case.

To study the effect of the stratification on the dynamics
of low aspect ratio vortices, we therefore used a different
approach and considered isothermal disks with a uniform
stratification along the height. For such a disk, a 2D sim-
ulation of a bump of amplitude A = 1.5 is always possible
and leads to the formation of vortices of aspect ratio 2.5,
as before. These vortices can then be analyzed in a 3D
environment with or without stratification. We considered
two cases, N/s = 0 and N/s = 0.5. Figure 14 shows the
growth rate of 3D perturbations during the first instants
as a function of the vertical wavelength k. in both cases.
The growth rate here is normalized by the background an-
gular velocity Qp(rp) at the position of the vortex. We see
that the growth rate curves are almost the same in both
cases, which demonstrates that the stratification effect on
the stability characteristics of these vortices is very weak.
This observation agrees with the results of LP09 who pre-
dicted no stratification effect when x < 4. The maximum
growth rate also agrees with the value of 0.89 derived by
LP09 for a Kida vortex of aspect ratio 2.5. We also ex-
amined the non-linear evolution of the perturbation and
observed that the vortex is rapidly destroyed in a way very
similar to the case documented above in Fig. 11.

We have mentioned the different evolution of the colum-
nar vortices described in Barranco & Marcus (2005). In
their simulation, the columnar vortex has a low aspect ra-
tio x = 4. In light of the above results, it is not surprising to
observe the destabilization of the vortex because the ellipti-
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cal instability is indeed active probably up to the midplane
for such a low aspect ratio.

4.2. Migration of 3D vortices

2D simulations show that vortices tend to migrate in
Keplerian flows Li et al. (2000). This migration process is
due to the compression of the flow around the vortex and
to the asymmetries in the position of the sonic lines and
the associated density waves (Paardekooper et al. 2010). It
also depends on the size of the vortex, on its aspect ratio
and on the radial stratification of the disk (e.g., Surville &
Barge 2012, 2013). Basically, it is observed that the higher
the aspect ratio, the weaker the migration. In this section,
we present the first numerical study of the migration of 3D
vortices. Our study focuses on vortices with high aspect ra-
tios, first because we know from the previous section that
vortices with x > 6 are stable against the elliptical insta-
bility, but also because these vortices should migrate slowly
due to their strong similarities with 2D vortices.

Studying the migration of 3D vortices requires time-
consuming long-term simulations. accordingly, as for the
elliptical instability simulations, we simulated an azimuthal
sector of the disk only. A single vortex was formed from the
RWI in a few rotations in the computational domain. The
dimension of the box was set up by the size and the aspect
ratio of the vortex to be simulated. In practice we used a
box size of (b <7 < 10,0 < 0 < 7/2,0 < z < 1) with
a numerical resolution of 200 x 100 x 100 (or 33 x 4 x 50
in number of cells per scale height). As for the elliptical
instability, we changed the aspect ratio of the vortex by
changing the amplitude of the initial density bump. We
fixed o0 = 0.3 and took the values A = 0.2, A = 0.15, and
A = 0.1 to obtain vortices with an aspect ratio x = 7,
x = 8.5, and x = 14.

The first steps of the evolutions are similar to what
we described above. The RWI developed and after around
35 rotations, we obtained a single vortex in the compu-
tational domain that started to migrate toward the star.
Paardekooper et al. (2010) have noted that migration can
stop close to a bump of the surface density, which has been
interpreted by Méheut et al. (2012a) as the reason why
they did not observe migration. In our simulations, the ini-
tial density bump completely disappeared, when the vor-
tices were formed. It therefore cannot disturb the vortex
migration.

The vortex survived more than 150 rotations and
its structures were quasi-steady with only a weak time-
evolution associated with the numerical diffusion. Figure
15 shows the radial position of each vortex as a function of
time and for different aspect ratios. The migration rate over
one rotation period was 1.5 103 AU for y = 7, 9.3 10* AU
for y = 8.5, and 1.3 10* AU for x = 14. In non-dimensional
values, the migration speed is v,,=3.1 107 749, vy, =2 107
7’090, and v,,=3 106 70820

These values for the migration rate are of the same order
of magnitude as in the 2D case (Paardekooper et al. 2010;
Surville & Barge 2012, 2013). This result is consistent with
the structure of the vortices, which remained columnar and
quasi-2D. In particular, migration seems to be independent
of the disk thickness and no systematic deformation of the
vertical vortex structure was observed in the radial direc-
tion. Of course we do not exclude that vortices with a dif-
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Fig. 15. Radial position of the vortex as a function of time

ferent structure than ours may migrate in a different way.

5. Conclusion

Using fully compressible non-linear simulations in non-
homentropic disks, we have found that the RWI can grow
in 3D in nearly the same way as in 2D. Columnar vortices
can be formed in a few rotations and merge until a single
vortex remains in the disk. This vortex survives many ro-
tation periods and slightly drifts toward the star. Both the
structure and the dynamics of the vortices were found to be
mainly 2D. A small tilt of the vortex axis has nevertheless
been observed.

We showed that the linear phase of the RWI agrees
with the results by Lin (2013) both for the growth rate
and the structure of the unstable mode. This result con-
trasts with the simulations by Méheut et al. (2010, 2012a),
which showed the formation of vortices with a strongly z-
dependent structure. This difference is probably mainly as-
sociated with the simultaneous presence of the centrifugal
instability in their simulations. In the centrifugally unsta-
ble case we simulated (for A = 1.5), the vortices were found
to be destroyed during their formation.

The stability of the quasi-2D vortices with respect to the
elliptical instability was explained by the high aspect ratio
x of the vortices. Using specific simulations, we showed that
vortices with x > 6 are stable with respect to the elliptic
instability in both a stratified disk and an unstratified disk.
For intermediate values of x (4 < x < 6), we observed that
the vortices survive close to the midplane, but are destroyed
farther away, at altitudes where the stratification is signif-
icant. We showed that this evolution is consistent with the
theoretical results by Lesur & Papaloizou (2009) on the
stratification effect on the elliptical instability. For a low
aspect ratio xy < 4, the vortices were shown to be strongly
unstable. They are rapidly destroyed in unstratified disks
and isothermal stratified disks. These results can perhaps
explain the rapid destruction of the columnar vortex of as-
pect ratio 4 simulated by Barranco & Marcus (2005). Here,
we argued that the destruction of 2D vortices cannot be
systematic and that the vortices probably remain colum-
nar for a long time when their aspect ratio is sufficiently
high, that is, when they are sufficiently weak.
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The migration process of these quasi-2D vortices was
studied as well. We showed that the drift velocity decreases
with the aspect ratio, as previously observed in 2D.

In actual protoplanetary disks, the initial overdensities
necessary to trigger the RWI may be caused by an axisym-
metrical accumulation of gas at the edge of the dead zone.
As the density would increase gradually under the turbu-
lent transport outside of the dead zone, we would expect the
RWI to occur close to its critical stability condition, that
is, for a low density bump amplitude. The vortices formed
by the instability would therefore be weak and have a high
aspect ratio. They would then be stable with respect to the
elliptic instability and have a low migration speed. This
means that these vortices would survive a sufficiently long
time far away from the star to be able to capture and con-
fine large amounts of solid particles. These weak vortices
would therefore be good sites for the formation of planetes-
imals or planetary cores.

The recent discovery of an asymmetry in the dust dis-
tribution in the disk of Oph IRS 48 by ALMA reported
by van der Marel et al. (2013) and Armitage (2013) has
been interpretred as an assembly of particles captured by
a large-scale Rossby vortex. According to the authors, this
vortex has formed by an RWI occurring at the edge of the
gap opened by a massive planet orbiting in the inner part
of the disk. These observations indeed seem to confirm the
efficiency of the capture in vortex mechanism pointed out
by Barge & Sommeria (1995) and open up the possibility
to derive other observational constraints.
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