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In this paper, we analyse the characteristics of the elliptic instability in a finite cylinder
in the presence of both background rotation and axial stratification. A general formula
for the linear growth rate of the stationary sinuous modes is derived including viscous
and detuning e ects in the limit of small eccentricity. This formula is discussed and
compared to experimental results which are obtained in a cylinder filled with salted
water for two di erent eccentricities by varying the stratification, the background
rotation and the cylinder rotation. A good agreement with the theory concerning the
domain of instability of the sinuous modes is demonstrated. Other elliptic instability
modes, oscillating at the cylinder angular frequency are also evidenced together with
a new type of instability mode, which could be connected to a centrifugal instability
occurring during the experimental phase of spin-up. The nonlinear regime of the
elliptic instability is also documented. In contrast with the homogeneous case, no
cycle involving growth, breakdown and re-laminarization is observed in the presence
of strong stratification. The elliptic instability in a stratified fluid seems to yield either
a persistent turbulent state or a weakly nonlinear regime.
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1. Introduction

Vortices in the atmosphere and in the ocean are subjected to both Coriolis and
buoyancy forces. The goal of the present paper is to analyse the e ect of these forces
on the so-called elliptic instability of the vortices. Both theoretical and experimental
results are obtained by considering the simple geometry of the flow in a rotating
cylinder.

The elliptic instability is a three-dimensional generic instability which occurs when
a vortex is subjected to a strain field (see Kerswell 2002, for a review). It appears
as a secondary instability in shear flows (Bayly, Orszag & Herbert 1988) and wakes
(Leweke & Williamson 1998) and is often associated with their three-dimensional
transition to turbulence.

It is also expected to be present in geophysical flows. In the atmosphere, vortex
streets can be observed behind isolated islands (Etling 1989) and small-scale vortices
are also often created during the baroclinic instability (Polavarapu & Peltier 1993;

+ Email address for correspondence: ledizes @irphe.univ-mrs.fr



Elliptic instability of a stratified fluid in a rotating cylinder 241

Lesieur, Métais & Garnier 2000). In the presence of stratification and rotation,
these coherent structures can be unstable by di erent types of instabilities. However,
Stegner, Pichon & Beunier (2005) have argued that the cyclone—anticyclone asymmetry
of wakes could be associated with an e ect of the background rotation on the elliptic
instability. The mechanism of the elliptic instability has been discussed in numerous
papers (see Kerswell 2002). It is now well established that it is associated with a
resonance of vortex modes with a background strain field. Malkus (1989) was the first
to recognize that the main ingredients of the instability (rotation + strain) could be
reproduced in a controlled way in a laboratory experiment by considering a rotating
flow in an elliptically deformed cylinder. This flow configuration has been the subject
of numerous experimental works which have been compared to the theory (Malkus
1989; Wale e 1989; Eloy, Le Gal & Le Dizes 2000, 2003). In contrast with the local
approach (Bayly 1986; Lifschitz & Hameiri 1991), the theory in the cylinder takes into
account the structure and the dispersion relation of the modes. Explicit formulae can
still be obtained for the dominant unstable modes as shown by Wale e (1989) for the
unstratified case. Here, we shall extend these formulae in the presence of stratification
and background rotation. Note that Eloy & Le Dizes (2001) and Fukumoto (2003)
have demonstrated that theoretical predictions obtained for the cylinder geometry are
qualitatively similar for a Rankine vortex. We therefore expect the results obtained
in the present paper to apply to vortices with a steep vorticity profile. We shall come
back on this point in the final section of the paper.

The analysis of background rotation alone has been previously considered in
Le Bars, Le Dizes & Le Gal (2007) for the same geometry. Experiments and theory
were compared and a good agreement was demonstrated. Miyazaki & Fukumoto
(1992) analysed the e ect of axial stratification using a local approach, while
Miyazaki (1993) also included Coriolis e ects. Kerswell (1993) considered the cylinder
geometry without Coriolis e ects but also analysed the additional e ects of radial
stratification and magnetic fields in the perspective of modelling the Earth’s outer
core. Experimental results have been obtained for vortex pairs in a stratified fluid
(Billant, Colette & Chomaz 2004; Cariteau & Flor 2006). However, in this case, the
elliptic instability is in competition with the zigzag instability (Billant & Chomaz
2000a, b) which renders the analysis more intricate. No experimental results of the
elliptic instability in a cylinder are available in the presence of stratification.

This paper is based on the PhD thesis of Guimbard (2008). It mainly follows
the study already performed in Le Bars et al. (2007) without stratification. In §2,
the theory of the elliptic instability in the presence of stratification and background
rotation in a cylinder is presented. The mechanism of instability is shortly reviewed
and a general explicit formula for the growth rate of the helical instability modes
is provided including viscous and detuning e ects. In §3, experimental results are
obtained and compared to the theory. A good agreement for the instability threshold
is demonstrated. The main results are discussed and summarized in the last section.

2. Theory
2.1. Base flow

We consider an incompressible viscous fluid of kinematic viscosity v in a rotating
cylinder of radius R* and height H*. The fluid is stably stratified along the cylinder axis
with a constant Brunt-Vdisild frequency N*. The vertical boundary of the cylinder is
elliptically deformed with small and large diameters 2R, and 2R},, respectively, and
the ellipse is assumed to be stationary in a frame rotating at the angular velocity £2,.
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In this rotating frame, the fluid in the cylinder is assumed to rotate at the angular
velocity £2.. The base flow is thus characterized by five parameters: the aspect ratio H,
the eccentricity ¢ of the ellipse, the normalized absolute vorticity W,, the normalized
Brunt—Vaisala frequency N and the Reynolds number Re which are, respectively,
defined by

H=H"/R", (2.1a)
_ Ry’ — (R,

= R+ (R (2.1b)
W, = 2(82. + §2,)/ 52, (2.1¢)
N=N/2., 2.1d)

Re = 2.R™/v. (2.1e)

Note that W, is related to the Rossby number Ro=£2./$2,=1/(W, — 2), and that N
can be considered as the inverse of a horizontal Froude number.

If R* and §2! are used as characteristic scales to non-dimensionalize all variables,
the base-flow stream function can be written in the frame rotating with the strain

field as
2

v = —%(1 — £5in20), 2.2)

where r and 6 are the polar coordinates. If we neglect the di usion of the density
and assume that R*(£2. + £2,)*> < g, the above expression defines a two-dimensional
velocity field which is a solution of the Navier—Stokes equations under the Boussinesq
approximation for all ¢ and Re. The condition R*(£2. + £2,)*> < g, which is satisfied in
the experiments carried out below guarantees that the deformation of the isopycnals
remains negligible.

In the following, we shall consider small ¢ and large Re. In these limits, the weak
boundary-layer e ects on the boundaries at z=0, H and r =1 can be neglected, and
this base flow can, in principle, be approximately reproduced with the apparatus
described in §3. The weak di usion of the density is neglected throughout the paper.

2.2. Kelvin modes

Following the theory already described in Wale e (1990) and Eloy et al. (2003), we
first search global-mode perturbations (Kelvin modes) of the undeformed cylinder
(¢ =0) in the form

(i, p, b) = (u,(r)coskz, ug(r)sinkz, u,(r)sinkz, p(r)coskz, p(r)sinkz)e™’ =, (2.3)

where u = (u,, ug, u;), p and p stand for the velocity, pressure and density perturbation
fields, respectively. The slip boundary conditions at z=0, H impose that k= pn/H
with p an integer; the radial boundary condition writes u,(r =1)=0. The linearized
Euler equations under the Boussinesq approximation for the velocity, pressure and
density of the global mode can be reduced to a single equation for the pressure
amplitude:

d’p 1dp , m?
T’ o - =0, 24
a? i T \X 2 )P 24
with a radial wavenumber « given by
W2 _ 2
a=k\/="—— (2.5)
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FIGURE 1. Frequency w versus k of the first four Kelvin modes for m =1 (solid lines) and for
m =—1 (dashed lines) and W, =—0.2 and N = 1.4. The principal modes (m, m,,i)=(—1, 1, i),
i=1,2,3,4 are indicated by circles. The first branch stops at a finite wavenumber which is
indicated by an asterisk.

where W, and N have been defined in (2.1¢, d), and =w —m is the inertial frequency
of the mode. The solution of (2.4) which is finite on the cylinder axis r =0 is J,, («r),
i.e. the Bessel function of first kind of order m. Applying the boundary condition at
r=1 to the radial velocity u,, we can easily deduce the dispersion relation of the
mode

( + Wa)Jm—l(a) = ( - Wa)Jm+l(a)- (26)

With o prescribed by (2.5) for each discrete value of k, this equation admits an
infinity of solutions for  which all satisfy min(W?, N*)< %< max(W?, N?). This
property results from (2.5) which is equivalent to the classical local dispersion
relation 2= N2sin*¢ + W2cos’¢ of inertia-gravity waves, where ¢ is the angle
of the wavevector kj,.,; = (o, k) with respect to the vertical axis. A typical illustration
of the dispersion relation is shown in figure 1 for m =+1. It is worth mentioning
that stratification implies a peculiar behaviour of the dispersion relation: as soon
as N? > W2, the first upper branch when W, >0 (respectively, the first lower branch
when W, <0) stops at a finite wavenumber

o A/l il (w2 — w2)
e Wl ’

2.7

for which ?>=W? and o =0. As we shall see below, this particular branch is

responsible for the discrepancy we shall observe between local and global estimates
for the inviscid instability growth rate close to W, =—1 for N > 1.

Viscous e ects are expected to damp the neutral inviscid modes. Both boundary-
layer and volumic e ects are present. The complex viscous correction to the frequency
associated with the viscous boundary layers has been calculated by Kudlick (1966) for
an unstratified configuration (see also Greenspan 1968; Kerswell & Barenghi 1995).
Upon neglecting the di usion of the density, his calculation can be reproduced in the
presence of stratification. For a given mode of axial and azimuthal wavenumbers k
and m, the viscous boundary correction to its inviscid frequency w is found to be



244 D. Guimbard, S. Le Dizés, M. Le Bars, P. Le Gal and S. Leblanc
dws//Re, where
k2 2

Sws = —G [mzma —sgn( )+ (i - Sgn(ﬁ))}

G| . . W, _ZL . wr _2m
_Hl(w -1 W (B Wa_>+(ze + 1) Wl (B W;)]’ 2.8)

a

with
2_N2
Wr=W,+ , W;,=W,— ,e=sgn(W)), B= (2.9)
W2_2 2_N2 k22
G= (e = )¢ )2 N BEmtr o5 (210)
W,(2—N —
V2 2(W2—N?) B_u
(W2 —N?)

and sgn(x) is equal to 1 for x >0 and equal to —1 for x <0. The details of the
derivation of this formula can be found in Guimbard (2008). The first term in (2.8)
is the contribution from the boundary at r =1, while the second term is from the
boundaries at z =0, H. The expression of Kudlick (1966) (see Kerswell & Barenghi
1995) is recovered without background rotation nor stratification (W, =2; N =0).

The volumic damping associated with viscous di usion (density di usion is
neglected) can be computed by a simple asymptotic procedure which has been
described in Eloy et al. (2003) for instance. We obtain a frequency correction for a
mode (k, m, w) which can be written as dwy/Re with

N* (W2 — 2 B
Swy = —i(@®>+k>) | 1— (W ) — (2.11)
22(W2=N?) p  mWa( 2= N?)
(W2 —N?)
where B has been defined in (2.10). Note that without stratification this expression is
particularly simple, i.e. Sy = —i(a?+k?) and corresponds to the local estimate —ik3,.,;
(Landman & Sa man 1987). For W, =0, the viscous volumic damping also takes a
simple expression which does not depend on the stratification: dwy = —i(a? + k2)/2.

2.3. Elliptic instability

The elliptic instability appears when the rotating flow is subject to a strain field. As
reviewed by Kerswell (2002), the mechanism of instability can be understood as a
triadic resonance of two Kelvin modes with the strain field. If the characteristic of
these waves are (k;, m, w;) and (k,, m;, @) in the frame rotating with the strain field,
the condition of resonance reads

k1 =k2, ny —m =2 and W] = wy. (212)

In particular, the two modes must satisfy , = ;+2. In view of the frequency interval
of , this is possible only if N > 1 and |W,|<1 or N <1 and |W,|> 1.

As explained by Fukumoto (2003), there is also a necessary condition on the wave
energy of the modes which must be of opposite sign at resonance for instability.
Without viscous e ects, if this last condition is satisfied, all the resonant modes are
unstable. However, Eloy & Le Dizes (2001) have also demonstrated that the most
unstable configurations correspond to modes with similar radial structures. These
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configurations have been called ‘principal’ and are denoted by (m, m,, i), where m
and m, are the azimuthal wavenumbers of the modes and i is the common index of
the branch, that is the ranking number of the zero of (2.6). Among these principal
modes, the configurations (—1, 1, i) play a particular role because due to the symmetry
of the dispersion relation, their resonant frequency is null and the resonant modes
are perfectly in phase. This property explains why they generally possess the largest
growth rates.

The inviscid growth rate associated with each resonance can be computed by an
asymptotic analysis in the limit of small elliptic deformation ¢ < 1. The detail of this
procedure has been provided elsewhere (see Wale e 1989; Eloy & Le Dizes 2001).
Here, we only provide the final results for the principal modes (—1, 1, i) because it
takes a particularly simple form which has not been given in the literature. We have
obtained for the non-viscous growth rate of the resonant configuration (—1,1,i) a
leading-order expression of the form o,,¢& with

(N? — 1) (W, + l)z(ozi2 + (W, — 1)2) (2.13)
Opy = , .
4W, — 1D2(1 + W)(N2+ W,) + 4(Wa2 — Nz)ozi2
where «; is the ith solution of (2.6) with | | =1 and @ =0. The above formula extends
the local estimate given in Kerswell (2002) and Leblanc (2003)
N2 — D1+ W,)?
Urllgcal — ( )( + ) ’ (214)
A —wy)

which is recovered when «; — oo, i.e. in the short wavelength limit relevant to the
local approach. It also generalizes the formula obtained by Wale e (1989) without
stratification (N =0) nor background rotation (W, =2):

9
8

At perfect resonance, the resonant configuration (—1,1,i) has both its radial
wavenumber «; and its frequency w=0 prescribed. For a given cylinder of aspect
ratio H, since the axial wavenumber is also prescribed, perfect resonance is thus
obtained for particular values of W,=W, (N) for which both (2.5) and (2.6) are
satisfied simultaneously. When we depart from the perfect-resonance condition, a
frequency detuning between the modes is observed which tends to stabilize the
resonant configuration when it becomes too important. A leading-order estimate of
this frequency detuning of the form dw;8W, can be obtained for the configuration
(—1,1,i) when W, is at §W, from the resonant absolute vorticity W, :

5, — K Wa (1= N)(Wy, — 1)
wyg = .
T 2R WE N2 W,

ow(N=0,W,=2)=
16 +

(2.15)

(2.16)

If this detuning e ect is taken into account together with the viscous e ects
discussed above, a general explicit formula for the growth rate of the principal mode
(—1,1,7) in a cylinder of aspect ratio H is obtained:

Re(8 > Im(s 8
a=\/an%,52— (‘3(“’5)+5wdawa> 4 Ims) _ 00y 2.17)

JRe JRe Re

where Re(dws) and Im(Sws) denote the real and imaginary parts of Sws.
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FIGURE 2. Contours of the maximum normalized growth rate o/e of modes (m;,my,i)=
(—1,1,1) for Re=1000, e =0.179 and H =6.91. For these parameters, the flow is stable for
W, <—1 and N > 1 (see also figure 3). This is no longer the case for larger Reynolds numbers
(see figure 4).

The contour levels of this expression normalized by ¢ for the first modes (—1, 1, 1)
are plotted in figure 2 for parameters relevant for the experiments discussed in the
next section. Note, however, that in the experiments, the parameter N cannot be
varied independently of the Reynolds number. Sections of the plot of figure 2 for a
weakly stratified case (N =1/2) and a strongly stratified case (N =3/2) are also shown
in figures 3(a) and 3(b), respectively. These figures first show that the inviscid domain
of instability does correspond to the domain of resonance of the mode: the flow is
unstable for |W,|>1 when N < 1 and for —1 <W, <1 when N > 1, in agreement
with the local theory (Leblanc 2003). However, the instability domain slightly extends
below W, =1 for N <1 (see figure 3a) and above W, =1 for N > 1 (see figure 3b) due
to the finite value of ¢. The domain of instability has also a limited extent in both N
and W, directions due to viscous and finite-size e ects. For N < 1, there is a finite W,
above which the flow becomes stable because as W, increases the smallest resonant
axial wavenumber decreases and the mode no longer fits in the cylinder above a
critical W,. For |W,| <1, there is a finite N above which the flow becomes stable,
because mode (—1, 1, 1), which radially fits in the cylinder, has an axial wavenumber
which increases with N: it is therefore more and more a ected by viscosity as N
increases. This stabilizing e ect becomes dominant above a critical N. The ‘peaky’
structure visible in figure 2 close to W, =0 is not a numerical artifact. It corresponds
to jumps from an axial wavenumber to another. The axial wavenumber of the most
unstable mode progressively increases as N increases, until viscous e ects become too
important for instability. For the parameters of figure 2, the upper critical N is N, ~6
for the wavenumber k. =24m/H.

In figure 3 is also plotted the normalized growth rate of the second mode (—1, 1, 2).
For this Reynolds number Re =1000, only the first two principal modes (—1, 1, i)
with i =1, 2 are unstable and no unstable modes exist for negative W, when N =1/2.
We have to consider much larger values of Reynolds number to be able to obtain
unstable modes for W, < —1. These unstable modes are visible in figure 4 where we
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FIGURE 3. Normalized growth rate of the resonant configurations (—1, 1, 1) (thick lines) and
(—1, 1, 2) (thin lines) for (a) N=1/2 and (b) N =3/2 and for Re=1000 and ¢ =0.179. Viscous
formula (see (2.17)) for H =6.91 (solid line) and H = o (dotted line) and non-viscous formula
(see (2.13)) for H =0 (dashed line). One can notice that the viscous corrections significantly
decrease the growth rate of the instability, whereas the finite value of H induces a discretization
of the resonance bands, each band corresponding to a given axial wavenumber.

have plotted the same growth-rate curves, as shown in figure 3(a), but for Re =10 000.
We have not been able to consider such high Reynolds numbers with W, < —1 in the
experiments.

It is interesting to point out the important di erence between the inviscid estimates
for the first two modes in figure 3(b) for N =3/2 close to W, =—1. The first mode is
expected to be inviscidly unstable close to W, =—1, while the second mode, and all the
higher order modes are neutrally stable, in agreement with the local estimate (2.14).
This di erence is linked to the peculiar property of the first branch which has been
mentioned above. As W, — —1, the characteristics of the principal (—1, 1, i) are such
that «; goes to zero, while all the other «;, i > 1 go to infinity as in the local approach.
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FIGURE 4. Same as figure 3(a) for Re =10000. Zoom on the W, < —1 region.

3. Experiments

The purpose of our experimental study is twofold: first, we want to test the various
conclusions of the theoretical study, in particular the threshold of instability in the
case of small and large stratifications as well as the characteristics of the excited mode
(growth rate and wavelength); and second, we want to complete this theoretical study
by observing the nonlinear evolution of the instability.

3.1. Experimental set-up

Our experimental set-up is similar to the one presented in Le Bars et al. (2007): a
deformable and transparent plastic cylinder of radius 2.75 cm and height 19.0 cm
(which gives H =6.91) is set in motion about its axis (Oz) with an angular velocity
Q. up to 7.3 rad s!, and is simultaneously deformed elliptically by two fixed rollers
parallel to (Oz). Deformations of eccentricity ¢ =0.085 and £=0.179 have been
considered. The container is filled with a solution of salted water with a linear
stratification along the rotation axis (Oz), realized with the classical two-tank method
(e.g. see Hill 2002). Constant Brunt-Vaisila frequencies N* are obtained in the range
2.7-3.4 rad s~! with a precision of about 5 %. For visualization, the salted water is
seeded with anisotropic particles (Kalliroscope) and a vertical light sheet is formed in a
plane containing the rotation axis and the principal axis of the straining field, allowing
the measurement of wavelengths and frequencies of excited modes. The whole set-up
is finally placed on a 0.5 m diameter rotating table, with angular velocity £2, up
to 42 rad s™'. Our protocol is the same all along the experiments presented here.
Once the stratification is established, the table rotation and the cylinder rotation are
simultaneously set to their initial assigned value: a spin-up phase first takes place,
before the possible development of an instability. Once either stability or instability
is clearly observed (i.e. typically after several minutes), the table angular velocity
and/or the cylinder angular velocity are changed in order to explore a large range
in N and W,. The duration of an experiment is limited by the resistance of the
plastic cylinder, which is submitted to a strong deformation and typically breaks
after 30 min. Note that since N* does not significantly change in our experiments,
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W,=0.7 (see figure 7)
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FIGURE 5. Regime diagram for all performed experiments with H=6.91 and N*¢€
[2.7;3.4] rad s7!. (a) e=0.085 and (b) ¢ =0.179. Each symbol represents an experiment with
the following characteristics. Black circles: stable; open squares: mode (—1, 1); open triangles:
mode (0, 2); asterisks: centrifugal mode. The solid line indicates the theoretical instabilit
diagram for modes (—1, 1, 1) with Re=2100/N, corresponding to a constant N* =3 rad s™'.
The horizontal and vertical arrows indicate the location of series of experiments performed at
a constant N and a constant W,, which are shown in figures 6 and 7, respectively.

variations in N are mostly related to changes in the cylinder angular velocity $2.. This
also implies that the Reynolds number is approximately inversely proportional to N,
ie. Re=(N"R*?/v)/N.

3.2. Determination of the threshold of instability

All performed experiments are presented in figure 5, where the observed regime is
plotted as a function of the absolute vorticity W, and the dimensionless Brunt—
Vaisdld frequency N. The Reynolds number is not constant in these plots. The
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FIGURE 6. Series of experiments performed at constant values of £ =0.179, Re=1.5 x 103,
N =1.367 and for various values of the absolute vorticity, illustrating the hysteresis of the
instability threshold. The thick arrows indicate the experimental protocol, first starting from
the stable domain at large W, and decreasing it until the appearance of the instability, then
increasing W, until the disappearance of the instability, and finally decreasing W, again.
Images illustrate the excited mode, with a shorter wavelength close to thresholds in agreement
with the theoretical predictions.

theoretical instability domain for modes (—1, 1, 1) has been indicated in solid line
for a Reynolds number given by Re =2100/N which corresponds to a Brunt-—Vaisala
frequency N*=3 rad s~!. A first look at this figure shows a general agreement with
the analytical conclusions: instability is mainly observed either for large absolute
vorticity and small stratification (i.e. W, > 1 and N < 1) or for small absolute vorticity
and large stratification (i.e. |W,| <1 and N > 1). The experiments are in very good
agreement with the theory for modes (—1, 1, 1): all the observations of the modes
(—1, 1, 1) fell within (or are very close to) the theoretical instability domain of these
modes. Note, in particular, that the small instability band obtained close to W, =2
and N =0.8 is captured by the experiments for ¢ =0.085 (see figure 5a).

Unfortunately, our set-up does not allow to explore the W, < —1 parameter space,
where instability is also expected for weak stratification and large Reynolds numbers
(see figure 4).

A closer look at figure 5, however, exhibits some overlapping between stable
and unstable experiments around the lines W,=1 and N =1. This is due to the
experimental procedure, and more precisely to the way that the assigned values of W,
and N are reached, as illustrated in figure 6. When starting from a stable situation and
progressively decreasing W, (for instance) to reach the unstable regime, an excellent
agreement is found between the theory and the experiment. However, once the flow is
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FIGURE 7. Series of experiments performed at constant values of ¢=0.085, W,=0.70 and
N*=2.68 rad s~!, systematically changing £2. and £, to illustrate the influence of N on the
wavelength selection. () N =1.08, (b) N =1.35, (¢) N=1.53, (d) N=1.77 and (¢) N =1.98.

destabilized, re-increasing W, does not lead immediately to re-stabilization, suggesting
a subcritical instability.

3.3. Mode selection

As predicted by the theory, the most unstable mode over almost all the domain
corresponds to the stationary mode (—1, 1, 1), experimentally characterized by a
sinusoidal rotation axis. The axial wavenumber of the most unstable mode, however,
depends on N and W,. Figure 7 illustrates the variation of the axial wavenumber with
respect to N for a fixed W, < 1. One observes the general trend already mentioned
above that the axial wavenumber increases as N increases. The measured axial
wavenumber is compared to the theory in figure 8. We can see that, for this value
of W,, there is a very good agreement between the theory and the experiments.
Discrepancies between the theoretical and the experimental wavelengths may appear
either for very large wavelengths, where finite-size e ects of our experimental cylinder
are especially important and may lead to the selection of a smaller wavelength as
expected, or for very small wavelengths, where various resonances are close and
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FIGURE 8. Most unstable wavenumber predicted by the theory for the parameters of figure 7,
together with the experimental measurements indicated by asterisks.

di usive e ects are especially important, which may lead to the selection of a larger
wavelength as expected.

Mode (—1, 1, 1) is interesting from an experimental point of view, because its growth
rate can be easily determined from our Kalliroscope visualization: from sequences of
images, we measure the maximum amplitude of the sinusoidally deformed rotation
axis; its temporal evolution is then fitted with an exponential growth, which can be
compared to the exponential growth rate determined analytically. Typical space—time
diagrams are shown in figure 9. For the two cases considered in this figure, the
exponential growth rates o /e ~0.43 and o/e =~ (.28 are fairly in good agreement with
the theoretical predictions o /¢ ~0.65 and /e =~ 0.28, respectively.

Finally, note that a mode (0, 2, 1) characterized by a pulsating behaviour with a
period 2m/$2. is observed in certain regions of the parameter space where a mode
(—=1,1,1) could a priori also exist (see figure 5b for W,>1 and N < 1). In these
regions, we suspect that the growth rate of modes (0,2, 1) is larger than that of
modes (—1, 1, 1). Mode (0, 2, 1) can also be present in regions where modes (—1, 1, 1)
are all stable (see figure 5a for W, >2.5). This is a finite-size e ect which was
also observed in the absence of stratification (Le Bars et al. 2007): the theoretical
wavelength of the first mode (—1, 1, 1) is too large to fit within the container.

3.4. Nonlinear behaviour

As demonstrated in the previous section, experiments in the unstable regime first
exhibit an exponential growth of the perturbations in agreement with the linear theory.
Then, the instability mode either saturates when the Reynolds number is very close to
threshold, or evolves towards a turbulent state at slightly larger Reynolds numbers,
as illustrated in the space—time diagram of figure 9(a). For the strongly stratified cases
(N > 1), this turbulent state persists in contrast with experiments without stratification
where a cyclic behaviour with growth, breakdown and re-laminarization takes place
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FIGURE 9. Spatio-temporal diagrams obtained by extracting the same line perpendicular (upper
images) or parallel (lower images) to the rotation axis in each image of a given video sequence.
(a) €=0.179, Re=1.5 x 10>, N=1.367 and W,=0.946 and (b) £¢=0.085, Re=1.1 x 10%,
N=1.775 and W, =0.680. Lines on the upper images indicate the exponential growth of

the excited mode with an experimentally determined growth rate o/¢ =0.43 and o/e =0.28,
respectively, in good agreement with theoretical predictions, i.e. /¢ =0.65 and o/¢ =0.28.

FIGURE 10. Centrifugal instability observed during the spin-up phase for ¢ = 0.179, W, =2.0,
N=1.2 and Re=1.9 x 10%. In this figure, the direction of gravity and the axis of rotation are
horizontal.

(e.g. see Eloy et al. 2003). We think that the absence of re-laminarization is due to the
strong stratification which prevents the development of an e cient Ekman pumping.
Note, however, that in some cases, an intermediate scenario between saturation and
turbulence with a wavenumber doubling is observed, as illustrated in figure 9(b).
Another nonlinear e ect is the presence of a new type of instability, as illustrated
in figure 10 and labelled with asterisks in figure 5. This instability appears during the
spin-up phase, and is stationary and symmetric about the axis of rotation. We do
not expect it to be related to the elliptic instability, whose unique stationary modes
are the modes (—1, 1), which are antisymmetric about the axis of rotation. Moreover,
we have not observed this instability in the regime where the modes (—1, 1) were
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unstable. The present instability clearly looks like a centrifugal mode. We suspect that
it appears because the base-flow corrections generated by the elliptic deformation of
the boundary make the flow centrifugally unstable during the spin-up phase. This
point is clearly not taken into account in our theory, where we start from an already
established base flow with constant eccentricity and constant vorticity. It will be the
subject of a forthcoming experimental and theoretical study. Note, however, that this
centrifugal instability is not expected to be associated with the stratification. Such
an instability was indeed already observed by Eloy (2000) without stratification in
large Reynolds numbers experiments when a spin-up phase was present. In these
cases, the centrifugal mode was typically observed to grow, breakdown and totally
disappear after the first re-laminarization, thus demonstrating its relation with the
spin-up phase. In the present case, however, stratification considerably reduces any
large-scale recirculation along the axis of stratification, hence the re-laminarization:
once excited, the centrifugal mode persists over the duration of the experiment.

To finish with, note that this last point clearly illustrates the main di culty in
comparing theoretical and experimental results: starting from a fluid at rest, we have
no insurance to converge towards the base flow expected theoretically, i.e. a uniform
elliptical flow. This is especially true for experiments with zero absolute vorticity, for
which the theoretical spin-up time goes towards infinity. This could perhaps explain
why we have not succeeded in observing the elliptic instability close to W, =0 for
a configuration starting from rest. In fact, we only observed the instability for zero
absolute vorticity with the relevant wavelength when first generating a turbulent
motion before suddenly adjusting simultaneously the table and cylinder rotations to
opposite values. This again demonstrates the influence of the experimental protocol.
We think that a more detailed analysis of the transient in the presence of elliptic
deformation is crucially needed to clarify this point.

4. Conclusion

In this paper, we have analysed the e ects of background rotation and stratification
on the elliptic instability in a cylinder. A general formula for the growth rate of the
principal modes (—1, 1,i) has been obtained which extends the previous formulae
given in the literature. This formula, which has been obtained by performing an
asymptotic analysis for small eccentricity and large Reynolds numbers, includes the
e ect of the finite size of the cylinder and the boundary and volumic viscous e ects.
We have shown that these finite-size and viscous e ects are responsible for the
existence of a critical Brunt-Vaisila frequency and a critical absolute vorticity |W,|
above which the flow becomes stable.

Experimental results have been obtained by using a stratified fluid (salted water)
in an elliptically deformed rotating cylinder placed on a rotating table. A large
range of parameters has been explored by varying the angular velocity of both the
cylinder and the table. The principal modes (—1, 1, 1) have been visualized in large
regions of the parameter space where the mode was expected to be unstable from
the theory. A di cult measure of the growth rate of these modes has been performed
for two di erent cases and found to be in reasonable agreement with the theoretical
prediction. Other regimes have also been observed. Mode (0, 2, 1), which oscillates
at the rotation frequency of the cylinder has been obtained for certain parameters
for which modes (—1, 1, 1) were stable or less unstable. A new instability, which
resembles a centrifugal instability has also been evidenced in regimes where the flow
was expected to be stable with respect to the elliptic instability. This instability, which
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deserves a complete study, seems to be associated with the spin-up phase which is
present in the experiment.

Some informations on the nonlinear evolution of the elliptic instability have also
been provided. We have seen that the elliptic instability, in general, leads to a turbulent
regime which persists. No re-laminarization process has been observed contrarily to
what was observed in an homogeneous fluid (Eloy et al. 2003).

As mentioned in § 1, the results obtained here are expected to apply qualitatively to
vortices with steep vorticity profiles. For these vortices, critical-point singularities are
not expected to damp the Kelvin modes (Schecter & Montgomery 2004) and therefore
the conditions of resonance of the Kelvin modes are expected to remain similar.
However, for a vortex, like the Lamb—Oseen vortex which has a Gaussian vorticity
profile, critical-point singularities are known strongly to a ect the characteristics
of the Kelvin modes (Le Dizes & Lacaze 2005; Fabre, Sipp & Jacquin 2006). As
a consequence, the condition of resonance could be modified and instability could
disappear. Le Dizes (2008) has analysed how the domain of the elliptic instability is
expected to be modified by this e ect for strongly and weakly stratified fluids for a
Lamb—Oseen vortex. The presence of a critical point could also have a destabilizing
e ect. Le Dizeés & Billant (2009) have shown that this peculiar behaviour is associated
with internal wave emission. It could explain the spontaneous destabilization of a
single Lamb—Oseen vortex without the need of strain fields (Riedinger, Le Dizes &
Meunier 2010). The coupling between Kelvin modes and internal waves is also at the
origin of the so-called strato-rotational instability which occurs in the finite geometry
of a Taylor—Couette system (Molemaker, McWilliams & Yavneh 2001; Le Bars &
Le Gal 2007).
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