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The linear instability of a vortex ring with swirl with Gaussian distributions of
azimuthal vorticity and velocity in its core is studied by direct numerical simulation.
The numerical study is carried out in two steps: first, an axisymmetric simulation
of the Navier–Stokes equations is performed to obtain the quasi-steady state that
forms a base flow; then, the equations are linearized around this base flow and
integrated for a sufficiently long time to obtain the characteristics of the most
unstable mode. It is shown that the vortex rings are subjected to curvature instability
as predicted analytically by Blanco-Rodríguez & Le Dizès (J. Fluid Mech., vol. 814,
2017, pp. 397–415). Both the structure and the growth rate of the unstable modes
obtained numerically are in good agreement with the analytical results. However,
a small overestimation (e.g. 22 % for a curvature instability mode) by the theory
of the numerical growth rate is found for some instability modes. This is most
likely due to evaluation of the critical layer damping which is performed for the
waves on axisymmetric line vortices in the analysis. The actual position of the
critical layer is affected by deformation of the core due to the curvature effect; as
a result, the damping rate changes since it is sensitive to the position of the critical
layer. Competition between the curvature and elliptic instabilities is also investigated.
Without swirl, only the elliptic instability is observed in agreement with previous
numerical and experimental results. In the presence of swirl, sharp bands of both
curvature and elliptic instabilities are obtained for ε = a/R = 0.1, where a is the
vortex core radius and R the ring radius, while the elliptic instability dominates
for ε = 0.18. New types of instability mode are also obtained: a special curvature
mode composed of three waves is observed and spiral modes that do not seem to be
related to any wave resonance. The curvature instability is also confirmed by direct
numerical simulation of the full Navier–Stokes equations. Weakly nonlinear saturation
and subsequent decay of the curvature instability are also observed.
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6 Y. Hattori, F. J. Blanco-Rodríguez and S. Le Dizès

1. Introduction
Vortex rings are one of the fundamental vortices which appear in various flows.

They are formed when fluid is ejected into a quiescent fluid from a circular hole
whose size ranges from human lips to volcanoes. They also appear as coherent
structures in a circular jet. An important feature of vortex rings is that vortex
tubes have curvature, which distinguishes them from line vortices. Curvature has
significant effects on the dynamics of a vortex ring. A vortex ring propagates owing
to self-induced velocity due to curvature (Saffman 1992; Fukumoto & Moffatt
2000). More importantly, curvature deforms the core of a vortex ring to give rise to
short-wave instabilities (Hattori & Fukumoto 2003; Fukumoto & Hattori 2005).

Currently, two types of short-wave instabilities are known for vortex rings: elliptic
instability and curvature instability. The elliptic instability of a vortex ring was
established about four decades ago; Widnall & Tsai (1977) showed that the strain
induced on the core of a vortex ring by itself resonates with two neutral waves
to give rise to an instability. The essential mechanism had been understood for a
strained line vortex by Moore & Saffman (1975) and Widnall & Tsai (1976). Their
theoretical results were in reasonable agreement with the experimental results of
Widnall & Sullivan (1973), which supports that the observed growth of bending
waves is due to the elliptic instability. On the other hand, the curvature instability
was first found theoretically by Hattori & Fukumoto (2003) and Fukumoto & Hattori
(2005); it is caused by the dipolar field which is self-induced on the core of a vortex
ring and resonates with two neutral waves as in the case of elliptic instability. One
of the important differences between the elliptic and curvature instabilities is the set
of azimuthal wavenumbers of the coupled waves: (m,m+ 2), where m is an integer,
in the elliptic instability and (m, m + 1) in the curvature instability. The curvature
instability has been shown to exist theoretically also for Hill’s spherical vortices
(Hattori & Hijiya 2010) and helical vortices (Hattori & Fukumoto 2009, 2010, 2011,
2012, 2014).

It should be pointed out that the above results for the curvature instability and the
results of Widnall & Tsai (1977) are obtained for Kelvin’s vortex ring for which
vorticity is constant inside the core at the leading order of perturbation expansion
and vanishes outside the core. However, the vortex rings observed in experiments
usually have smooth vorticity distributions which are often approximated by Gaussian
distributions. Recently, Blanco-Rodríguez & Le Dizès (2016) and Blanco-Rodríguez
& Le Dizès (2017) have shown theoretically that vortex rings which have Gaussian
distributions of azimuthal vorticity and velocity at the leading order are also subjected
to elliptic and curvature instabilities. They found that some important features
of the instabilities are quite different from those of Kelvin’s vortex ring. In fact,
characteristics of the waves on the Gaussian vortices change dramatically when there
exists a critical layer whose radius satisfies

ω− ku(0)φ (r)−mΩ (0)(r)= 0, (1.1)

where ω is the oscillation frequency, k and m are the azimuthal and circumferential
wavenumbers, respectively, and u(0)φ (r) and Ω (0)(r) are the azimuthal velocity and
angular velocity distributions of the vortices, respectively; some waves are damped
with non-vanishing decay rate in the inviscid limit and the dispersion curves are
distorted (Le Dizès 2004; Fabre, Sipp & Jacquin 2006). It turns out that the curvature
instability is much more affected by the presence of critical layers than the elliptic
instability. However, there do exist unstable modes of the curvature instability of
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FIGURE 1. (Colour online) Flow model and coordinate system.

which growth rates can be comparable to those of the elliptic instability in the
presence of azimuthal velocity.

Experimental results on the instability of a vortex ring (Maxworthy 1972; Widnall
& Sullivan 1973; Maxworthy 1977; Dazin, Dupont & Stanislas 2006a,b; Thompson,
Leweke & Hourigan 2007; Gan, Nickels & Dawson 2011) have not been fully
understood in spite of many efforts; one of the reasons for this is that it is not
always easy to measure detailed structures of destabilized vortex rings. Numerical
results have revealed some features of the elliptic instability; a map of unstable modes
has been obtained recently by Gargan-Shingles, Rudman & Ryan (2016) for vortex
rings with swirl, where swirl implies the azimuthal or toroidal component of velocity
in the present paper. See also Mao & Hussain (2017) for transient growth and Shariff,
Verzicco & Orlandi (1994) for early pioneering work. However, clear evidence of the
curvature instability has not been observed in experiments or numerical simulations
as far as the authors know.

In the present paper, we study the linear instability of vortex rings by direct
numerical simulation (DNS); Gaussian vortex rings which have swirl in general are
considered as a base flow. Our first aim is to show that curvature instability exists
in reality by DNS. After confirming its existence, the growth rates of the unstable
eigenmodes are evaluated and compared to theoretical results. The structures of the
unstable eigenmodes are also revealed. Nonlinear effects are also investigated to
observe whether weakly nonlinear saturation occurs or not.

The paper is organized as follows. In § 2 we describe the numerical procedure. In
§ 3 some important features of numerically obtained base flow are presented. The
linear stability results are shown in § 4, while nonlinear effects are studied in § 5. We
conclude in § 6.

2. Numerical procedure
2.1. Outline

We consider the instability of a vortex ring in an incompressible viscous fluid
(figure 1); the vortex ring has swirl in general. We take a cylindrical coordinate
system (r, θ, z), where the axis of symmetry of the undisturbed vortex ring coincides
with the z axis. The numerical domain is 0 6 r 6 Lr, 0 6 θ 6 2π and 0 6 z 6 Lz.
Periodic boundary conditions are assumed in the z direction; the spatial period in the
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8 Y. Hattori, F. J. Blanco-Rodríguez and S. Le Dizès

z direction is taken sufficiently long so that the growth rate of an unstable mode is
nearly the same as that for the infinitely long case.

The task consists of two steps: first, a quasi-steady base flow is obtained by
solving the axisymmetric Navier–Stokes equations; next, the linearized Navier–Stokes
equations are integrated for a sufficiently long time to obtain the most unstable mode
when it exists. The details are described below.

2.2. Numerical methods
The incompressible Navier–Stokes equations are written as

∂u
∂t
+ u · ∇u = −∇p+ ν∇2u, (2.1)

∇ · u = 0, (2.2)

where u is the velocity, p is the pressure and ν is the kinematic viscosity; the constant
density is set to ρ0 = 1. To obtain a base flow, we set u= u(t, r, z)er + v(t, r, z)eθ +
w(t, r, z)ez, where er, eθ and ez are the unit vectors in the r, θ and z directions; it
is pointed out that v(r, z) is included since we consider a vortex ring with swirl in
general. The resulting axisymmetric Navier–Stokes equations are solved numerically.
For the spatial discretization, the sixth-order accurate compact scheme (Lele 1992) is
used in the r direction, while the Fourier spectral method is used in the z direction,
in which the periodic boundary conditions are imposed. The singularity at r = 0 is
avoided by expanding the r axis to −Lr 6 r 6 Lr and placing no grid point at r = 0.
The Poisson equation can be decomposed into a set of ordinary differential equations
for a single Fourier mode, which are also solved by the sixth-order accurate compact
scheme. For the temporal discretization, the Crank–Nicolson scheme is used for the
viscous terms, while the second-order Adams–Bashforth method is used for the other
terms. For details, see appendix A.

To obtain the unstable mode, we solve the linearized Navier–Stokes equations

∂u′

∂t
+ ub · ∇u′ + u′ · ∇ub = −∇p′ + ν∇2u′, (2.3)

∇ · u′ = 0, (2.4)

where (u′, p′) is the linear disturbance and ub is the base flow which is obtained
numerically and is frozen in time after the relaxation process; this frozen-in-time
assumption is valid because the time scale of viscous diffusion is much larger than
the characteristic time of instabilities and is justified by DNS in § 5. Since the base
flow is axisymmetric, the above equations are separable for Fourier modes in θ .
Thus we take u′ = û(r, z)eiNθ θ , where Nθ is a positive integer. The same methods of
discretization as those for the base flow are employed. In appendix B, the accuracy
of the numerical method is checked.

2.3. Initial conditions
To obtain a base flow, we start with Gaussian distributions for both vorticity ωθ and
swirl velocity v. After a transient time evolution the distributions converge to quasi-
steady state; the details are shown in § 3.

To obtain an unstable mode, the vorticity distribution of the disturbance is
randomized initially for Re = 104. The disturbance energy decays at the early stage
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Numerical stability analysis of a vortex ring with swirl 9

of time evolution as irrelevant modes decay. However, as unstable modes grow the
energy tends to an exponential growth. The most unstable eigenmode is obtained
approximately after a sufficiently long time t = 100–200(R/uφ,max), where R and
uφ,max are the radius of the vortex ring and the maximum circumferential velocity,
respectively. On the other hand, the initial vorticity distribution for Re= 5× 104 is set
to the unstable mode already obtained for a case close to the case under consideration.
In this case the disturbance energy settles quickly to an exponential growth and the
computational time is reduced.

2.4. Simulation parameters
The parameters which should be specified in the present problem are summarized
here. The base flow is characterized by the circulation Γ and the radius R of
the vortex ring, the radius a of the vortex core and the maximum swirl velocity
vmax. The centre of the vortex core is defined as the position (rc, zc) at which
the Stokes streamfunction is maximum in the frame moving with the vortex
ring; then the ring radius is given by R = rc and the core radius is defined by
a2
=
∫
[(r − rc)

2
+ (z − zc)

2
]ωθ dr dz/

∫
ωθ dr dz. Three non-dimensional parameters

are important: the Reynolds number Re = Γ /(2πν) = Ω (0)
maxa

2
0/ν, the thickness

or ratio of the core to radius of the ring ε = a/R and the swirl parameter
W = 0.638vmax/uφ,max ≈ vmax/(Ω

(0)
maxa0), where the numerical factor 0.638 is peculiar

to the Gaussian distribution of vorticity. Here, a0 is the initial core radius and uφ,max

and Ω (0)
max = Γ /(2πa2

0) are the maximum circumferential velocity and the maximum
angular velocity around the vortex core, respectively; it is pointed out that Ω (0)

max is
defined for the initial Gaussian vorticity distribution as in Blanco-Rodríguez & Le
Dizès (2017).

The parameters listed above change in general as time proceeds and the base flow
settles to a quasi-steady state. The circulation is nearly conserved, which implies the
Reynolds number is nearly constant. The thickness grows in time, while the swirl
parameter decays. How they evolve is shown in § 3 along with how to set parameter
values. In § 4 we choose the core radius a as the length scale and the inverse of the
angular velocity 1/Ω (0)

max as the time scale; all quantities are non-dimensionalized using
these scales unless stated explicitly.

The disturbance is characterized by the wavenumber Nθ in the θ direction. The
wavenumber is scaled as

k=Nθa/R= εNθ , (2.5)

when the length of the circle along the centre of the vortex ring 2πR is non-
dimensionalized by a. The relation (2.5) implies that the wavenumber k is quantized
for fixed ε since Nθ is an integer. On the other hand, we want to change k
continuously in order to explore the curvature and elliptic instability, both of which
are due to parametric resonance of two waves. Thus we allow ε to vary around a
prescribed value. For example, the wavenumber k is 1.144 at one of the crossing
points of the dispersion curves of m = 0 and m = 1 waves giving rise to curvature
instability; we choose Nθ = 11 for a prescribed value of ε0 = 0.1, which gives the
actual value ε = k/Nθ = 0.104. The difference from the prescribed value of the
thickness is bounded as |ε− ε0|/ε0 . 1/(2Nθ)= ε/(2k) (Gargan-Shingles et al. 2016);
this difference is sufficiently small after the growth rate is scaled taking account of
dependence on ε.
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FIGURE 2. (Colour online) Grid spacing in r direction. Grid B.

ε0 Re W

0.1 104 0
0.1 104 0.2
0.1 104 0.4
0.1 5× 104 0.2

0.05 104 0.2
0.18 104 0.2

TABLE 1. Base flow parameters.

The actual values of the base flow parameters are chosen as listed in table 1. In
order to study curvature instability, we consider thin vortex rings at high Reynolds
numbers. We set the Reynolds number to Re= 104, while Re= 5× 104 is also used
for comparison. The prescribed values of the thickness are ε0 = 0.1 and 0.18, while
ε0 = 0.05 is also used for a limited number of cases. The swirl parameter is set to
W = 0, 0.2 and 0.4 as in Blanco-Rodríguez & Le Dizès (2017); in this range of W
the swirl is sufficiently small that the swirling jet instability is not present. The range
of wavenumber is set to 1 6 k 6 4 or 1 6 k 6 4.5 depending on the case.

The radial size of the domain is set to Lr = 100R0, where R0 is the initial radius
of the vortex ring. Slip boundary conditions are imposed at r = Lr. Imposing slip
boundary conditions is equivalent to placing virtual vortices called image vortices
outside the domain (Saffman 1992). The strength and the radial position of the image
vortices become weaker and farther, respectively, as Lr increases. Therefore, the outer
boundary is set sufficiently far to make the effect of the image vortices negligible;
see appendix B for dependence on Lr. This large value of Lr does not lead to a large
number of grid points since non-uniform stretched grids are used in the r direction
(figure 2); the grid size at r= Lr is 1r= 2R0. The axial size of the domain is set to
Lz= 4π/3R0 with periodic boundary conditions. This means that we actually simulate
a row of vortex rings. However, for this value of Lz, the effect of distant rings remains
small compared to the self-induced effect of the ring on itself. The grid parameters
are listed in table 2. The minimum grid size 1rmin in the r direction and the uniform
grid spacing 1z in the z direction should be small enough to resolve waves on the
vortex core; for Re = 104 the minimum numbers of grid points within the diameter
of the vortex core are 83 and 98 in the r and z directions, respectively, while the
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z z
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(a) (b) (c) (d)

FIGURE 3. (Colour online) Time evolution of a vortex ring. Contours of v. Here
Re= 104, ε= 0.1,W = 0.2; t= 0, 1, 3, 12. Contour levels are v/W = 0.0638n

(n= 1, 2, . . .).

Grid type 1rmin/R0 1z/R0 Nr Nz uφ,max1t/R0 (ε0, Re)

Grid A 5× 10−3 4.09× 10−3 694 1024 5× 10−4 (0.18, 104)

Grid B 2.5× 10−3 2.05× 10−3 946 2048 2.5× 10−4 (0.1, 104)

Grid C 1.25× 10−3 1.02× 10−3 1346 4096 1.25× 10−4 (0.05, 104), (0.1, 5× 104)

TABLE 2. Grid parameters.

numbers of points are doubled for Re = 5 × 104 since fine structures may appear
as viscous diffusion becomes weak. We have confirmed that the grid resolution is
sufficient (see appendix B). The time step 1t is set proportional to the minimum grid
size (table 2); for the dependence on the time step, also see appendix B, which shows
that it is sufficiently small to give accurate results. The total time of integrating the
linearized equations is 100–200(R/uφ,max), for which the error of the growth rate of
a curvature instability mode is less than 0.01 %.

3. Base flow

In this section we show how we obtain the quasi-steady state of the vortex ring that
is used as a base flow. Starting from Gaussian distributions of azimuthal vorticity and
swirl velocity (figure 3), the vortex ring reaches a quasi-steady state after a certain
time of evolution. There are subtle issues concerning controlling parameters ε and W
since they both evolve in time; how we control them is also explained.

Figure 3 shows the time evolution of a vortex ring by contours of v for Re=104,
W = 0.2. After transient evolution (figure 3b,c) the vortex ring reaches a quasi-steady
state by t = 12 (figure 3d). For an exact steady state of inviscid axisymmetric flow
ωθ/r becomes a function of the Stokes streamfunction Ψ when W = 0, while rv
becomes a function of Ψ when W 6= 0. This is confirmed in figure 4 which shows
scatter plots of Ψ and rv. The thickness of the scatter plot becomes small as time
proceeds; at t= 12 we obtain a good functional relation between Ψ and rv. We also
confirmed a functional relation between Ψ and ωθ/r for W = 0, but this result is
not shown here since it is well documented in previous works (Shariff et al. 1994).
Quasi-steadiness is also checked by the L2-norm of

1ωθ =ωθ(t+1t, r, z+U1t)−ωθ(t, r, z), (3.1)
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FIGURE 4. (Colour online) Scatter plot of Ψ and rv. Here Re= 104, ε= 0.1,W = 0.2;
t= 1, 3, 12.
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FIGURE 5. (Colour online) The L2-norm of 1ωθ =ωθ (t+1t, r, z+U1t)−ωθ (t, r, z).
Here Re= 104, ε= 0.1,W = 0.2.
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FIGURE 6. (Colour online) Time evolution of (a) squared core radius and (b) translating
velocity. Here Re= 104, ε = 0.1,W = 0, 0.2, 0.4. The slope of the dot-dashed line in (a)
is 4ν.

which is the difference of the azimuthal vorticity between two adjacent time steps
(figure 5); here U is the translating velocity (figure 6b). It is observed that the
difference decreases as time proceeds and becomes close to zero after t≈ 10.
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FIGURE 7. (Colour online) Time evolution of swirl parameter: (a) W and (b) Wa. Here
Re= 104, 5× 104, W ≈ 0.2.

Figure 6 shows the time evolution of squared core radius and translating velocity
of a vortex ring. The vortex core spreads due to viscous diffusion as

a2(t)= a2
0 + 4νt (3.2)

after a transient behaviour which depends on the initial conditions (initial transient).
The increase of the core radius affects resonance condition of curvature and elliptic
instabilities since the wavenumber non-dimensionalized by the core radius determines
the condition. This figure also shows the effects of swirl: both the core radius and
translating velocity decrease slightly for larger swirl. The latter result is in agreement
with analytical results (Widnall, Bliss & Zalay 1971).

Figure 7 shows time evolution of the swirl parameter W = 0.638vmax/uφ,max. The
swirl velocity decreases monotonically after an initial transient. This result is explained
as follows. Since the angular momentum Az≈ vmaxπa2R is approximately constant, we
have

vmax ∝
1
a2

(3.3)

when the ring radius is nearly constant. On the other hand, since the circulation is
also approximately constant, we have

uφ,max ∝
Γ

2πa
. (3.4)

Therefore, the ratio decreases with time as W ∝ a−1, which is confirmed in figure 7(b).
The initial values of the core radius and the swirl parameter are determined taking
account of their time evolutions so that they become prescribed values when the flow
becomes quasi-steady. The results shown below are based on the quasi-steady states
at t= 12 and 18 for Re= 104 and 5× 104, respectively.

4. Results
In this section we show linear stability results. First, the overall features of the

linear instability are shown by growth rate and oscillation frequency plotted against
azimuthal wavenumber; mode structures are identified for some typical unstable
modes. Next, we focus on two curvature instability modes to make comparison
between numerical and theoretical results. Finally, other modes of interest are shown
and discussed.
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FIGURE 8. (Colour online) (a) Growth rate (σ = Im(ω)) and (b) frequency (Re(ω))
plotted against azimuthal wavenumber. Here ε0 = 0.1, Re = 104, W = 0. All modes
are due to elliptic instability marked by open circles. The lines show theoretical values
(Blanco-Rodríguez & Le Dizès 2016).

4.1. Growth rate

The unstable modes obtained at large t are proportional to e(σ+iω)t. The growth rate σ
and oscillation frequency ω are shown as a function of the azimuthal wavenumber k in
figures 8–11. The Reynolds number is fixed at 104. The thickness ε is approximately
0.1 in figures 8–10 and 0.18 in figure 11. The swirl parameter W is 0, 0.2 and 0.4
in figures 8, 9 and 10, respectively, while it is also set to 0.2 in figure 11.

Several peaks of the growth rate are observed in each case; the width of the peaks
is narrow for ε0 = 0.1 as the instability is mostly due to parametric resonance and it
becomes wide for ε0 = 0.18 as the width is essentially proportional to ε0. In these
figures typical modes are identified by their structures. The instability is due to either
the curvature instability (marked by filled circles and crosses) or the elliptic instability
(marked by open circles) except for the spiral modes (marked by diamonds for
W = 0.4). Most of the modes are composed of two inertial waves which are indexed
by the branch of dispersion curves. For example, the most unstable mode for ε0= 0.1
and W = 0 (figure 8) is due to elliptic instability and consists of the m=±1 inertial
waves of the first branches which crosses at (k, ω)= (2.333, 0) so that it is labelled as
(−1, 1; [1, 1]). The mode labelled by (i) for ε0= 0.1 and W = 0.2 (figure 9) is due to
curvature instability and consists of the m=−1 inertial wave of the first branch and
the m= 0 inertial wave of the third branch, which crosses at (k, ω)= (1.14,−0.11),
so that it is denoted as (−1, 0; [1, 3]). It is pointed out that the sign of m and thereby
the order of the indices of the branches are different from Blanco-Rodríguez & Le
Dizès (2017) since we choose k to be positive in the present work: (−1, 0; [1, 3])
with (k, ω) = (1.14, −0.11) in the present work corresponds to (mA, mB) = (0, 1)
and (lA, lB) = (3, 1) with (k, ω) = (−1.14, 0.11) in Blanco-Rodríguez & Le Dizès
(2017). Theoretical values for some typical modes taken from Blanco-Rodríguez &
Le Dizès (2016) and Blanco-Rodríguez & Le Dizès (2017) are also included by lines
in figures 8–11.

For ε0 = 0.1 and W = 0 (figure 8) the instability is due to elliptic instability. The
growth rate of curvature instability for W = 0 is too small to be the most unstable
mode or be captured by numerical simulation. Two modes have large growth rates;
the indices of the branches of the two waves are the same and they are often called
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FIGURE 9. (Colour online) (a) Growth rate and (b) frequency plotted against azimuthal
wavenumber. Here ε0 = 0.1, Re= 104,W = 0.2. Filled circles: curvature instability; open
circles: elliptic instability. The lines show theoretical values (Blanco-Rodríguez & Le
Dizès 2016, 2017). Some typical modes are identified: (i) (−1,0; [1,3]), (ii) (−1,0; [1,4]),
(iii) (−1, 0; [2, 4]), (iv) (−1, 1; [2, 1]), (v) (−2, 0; [2, 2]).
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FIGURE 10. (Colour online) (a) Growth rate and (b) frequency plotted against azimuthal
wavenumber. here ε0 = 0.1, Re= 104,W = 0.4. The symbols and lines are the same as in
figure 9, while the crosses and the diamonds correspond to three-wave modes and spiral
modes, respectively. Modes are (i) (−1, 0; [1, 3]), (ii) three-wave mode, (iii) (−1, 0; [3, 2]),
(iv) (−2, 0; [1, 1]), (v) (−2, 0; [1, 2]), (vi) spiral mode.

principal modes. The frequency is zero for these modes. The values of the growth
rate are in good agreement with theory. There are also modes with small growth rate
and non-zero frequency; the indices of the two inertial waves are different for these
modes.

For ε0 = 0.1 and W = 0.2 (figure 9) three modes of curvature instability are
identified: (i) (−1, 0; [1, 3]), (ii) (−1, 0; [1, 4]) and (iii) (−1, 0; [2, 4]). The other
modes are due to elliptic instability; two modes are identified: (iv) (−1, 1; [2, 1]) and
(v) (−2, 0; [2, 2]). They are also found in previous works for a strained vortex and
a vortex pair (Lacaze, Ryan & Le Dizès 2007; Roy et al. 2008). It is known that
asymmetric modes like (−2, 0; [2, 2]) have large growth rate when the swirl is added.
In the present range of wavenumber 16 k 6 4, the most unstable mode is the elliptic
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FIGURE 11. (Colour online) (a) Growth rate and (b) frequency plotted against azimuthal
wavenumber. Here ε0 = 0.18, Re= 104,W = 0.2. The symbols and lines are the same as
in figure 9.

instability of (−2, 0; [2, 2]), while the second most unstable mode is the curvature
instability of (−1, 0; [2, 4]). All modes are oscillatory having non-zero frequencies.
The values of the growth rate are in good agreement for the curvature instability
of (−1, 0; [2, 4]), while some differences are observed for the elliptic instability
of (−2, 0; [2, 2]) and the curvature instability of (−1, 0; [1, 3]). The growth rate
of the curvature instability modes will be compared carefully to theory in the next
subsection.

For ε0 = 0.1 and W = 0.4 (figure 10) three modes of curvature instability are
identified: (i) (−1, 0; [1, 3]), (ii) three-wave mode and (iii) (−1, 0; [3, 2]). The
structure of the three-wave mode is detailed later in § 4.3.2. Three modes of elliptic
instability are also observed. Two modes having larger growth rate are identified:
(iv) (−2, 0; [1, 1]) and (v) (−2, 0; [2, 1]) (see also figure 22b). Again these modes
are also found in previous works (Lacaze et al. 2007; Roy et al. 2008). The spiral
mode is different from the other modes in that its growth rate does not have a clear
peak; it extends in the wavenumber range 3.2 6 k. The structure of this mode is
discussed in § 4.3.3.

We show the case ε0= 0.18 and W = 0.2 in figure 11 to see the effects of the core
size by comparing to figure 9. Only one mode of curvature instability (−1, 0; [2, 4])
survives as the growth rate of elliptic instability increases as ε2 which is faster than
that of curvature instability ε. The band width of each mode broadens as is observed
for the most unstable mode at k≈ 3.4 due to elliptic instability. As a result the vortex
ring is unstable at any wavenumber k in the present range.

4.2. Typical curvature instability modes and critical layer damping
Next, we focus on the two modes of curvature instability for W = 0.2: (−1, 0; [1, 3])
and (−1, 0; [2, 4]). Figure 12 shows the structure of the curvature instability mode
(−1, 0; [2, 4]). Contours of azimuthal vorticity ωθ are shown in figure 12(a). This
figure is similar to figure 7(e) in Blanco-Rodríguez & Le Dizès (2017). In order to
reveal the mode structure, we decompose the unstable mode as

û(r, z)=
∑

m

u(m)(ρ)eimφ, (4.1)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 B

ib
lio

' I
nt

er
un

iv
er

si
ta

ir
e,

 o
n 

13
 S

ep
 2

01
9 

at
 0

6:
46

:3
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
62

1

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.621


Numerical stability analysis of a vortex ring with swirl 17

2

1

0

-1

-2

-2 -1 0 1

r�

z�
2

1.0

0.8

0.6

0.4

0.2

En
er

gy
 ra

tio

0
-4 -3 -2 -1 0 1 2 3 4

1.2

1.0

0.8

0.6

0.4

0.2

|√
(m

) |

0 1 2 3
m ®

m = -1
m = 0

(b) (c)

(a)

FIGURE 12. (Colour online) Mode structure. The (−1, 0; [2, 4]) mode with (k, ω) =
(1.853,−0.095). Here W = 0.2, Re= 104, ε0 = 0.1. (a) Contours of azimuthal component
of vorticity ωθ : ωθ > 0 (solid), ωθ = 0 (dotted) and ωθ < 0 (dashed). (b) Ratio of energy;
filled circles: DNS; crosses: theory. (c) Radial distribution of v(m); symbols: DNS; lines:
theory.

where (ρ, φ) is the local polar coordinate system of which origin is the centre of the
vortex core of the base flow in the rz-plane (figure 1). In figure 12(b) the ratio of
energy is plotted against m. It shows that this mode consists of m = −1 and m = 0
waves and the values are in good agreement with theory. The structure of each wave
is shown by the radial distribution of the azimuthal component of the velocity field
v in figure 12(c). The number of points where the magnitude of the wave vanishes
(r=0 excluded) coincides with the index of the branch; in the present case the m=−1
wave has two zeros, while the m=0 wave has four zeros. Thus the mode is labelled as
(−1, 0; [2, 4]). Theoretical results are also shown in figure 12(c); they are in excellent
agreement with the numerical results.

Figure 13 compares the growth rate with theory (Blanco-Rodríguez & Le Dizès
2017) for the curvature instability mode (−1, 0; [2, 4]). In this figure the growth rate
is divided by ε: σ (1) = σ/ε. They are also in good agreement having approximately
the same maximum and band width. It is pointed out that the critical layer damping
is small for this mode (Blanco-Rodríguez & Le Dizès 2017).

Figure 14 shows the structure of the curvature instability mode (−1,0; [1,3]). Again
the vorticity distribution is similar to the theoretical results (Blanco-Rodríguez & Le
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FIGURE 13. (Colour online) Growth rates. Here W = 0.2, (−1, 0; [2, 4]) mode, ε0 = 0.1,
Re= 104, 5× 104. Symbols: DNS; lines: theory.
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FIGURE 14. (Colour online) Mode structure. The (−1, 0; [1, 3]) mode with (k, ω) =
(1.144,−0.110). Here W = 0.2, Re= 104, ε0 = 0.1. (a) Contours of azimuthal component
of vorticity ωθ : ωθ > 0 (solid), ωθ = 0 (dotted) and ωθ < 0 (dashed). (b) Ratio of energy;
filled circles: DNS; crosses: theory. (c) Radial distribution of v(m); symbols: DNS; lines:
theory.

Dizès 2017). This mode consists of the m=−1 inertial wave of the first branch and
the m= 0 inertial wave of the third branch (figure 14b,c). The radial distributions are
in good agreement between the theoretical and numerical results (figure 14c).
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FIGURE 15. (Colour online) Growth rates. Here W = 0.2, (−1, 0; [1, 3]) mode.
(a) ε0 = 0.1, Re= 104, 5× 104, (b) ε0 = 0.05, Re= 104. Symbols: DNS; lines: theory.

Figure 15(a) compares the growth rate with theory (Blanco-Rodríguez & Le Dizès
2017) for the curvature instability mode (−1, 0; [1, 3]). In contrast to figure 13 for
the mode (−1, 0; [2, 4]), the numerical results are smaller than the theoretical values
for ε0 = 0.1; the maximum growth rate is σ (1) = 0.0424, which is 22 % smaller than
the theoretical value σ (1) = 0.0541; it is worth noting that the difference between the
numerical and theoretical values does not depend on the Reynolds number very much.
For Re = 5 × 104, the maximum growth rate is σ (1) = 0.0549 and the theoretical
value is σ (1) = 0.0646; the difference 0.0097 for Re= 5× 104 is close to 0.0117 for
Re= 104. This suggests that the difference is not due to viscous diffusion. However,
the difference becomes small for small core ε0 = 0.05 (figure 15b). It is most likely
that the difference for ε0 = 0.1 is due to the change in the critical layer damping as
discussed below.

Theoretically, the critical layer damping is evaluated for the inertial waves on a
straight axisymmetric vortex. However, the core of a vortex ring is deformed because
of the curvature effects (figures 3 and 16a); deformation is significant for larger ε.
We resort to a heuristic argument to estimate the effect of deformation on the critical
layer damping since rigorous analysis is difficult and beyond the scope of the present
paper. It would be reasonable to approximate the critical layer on a deformed core by
a streamline on which the averaged angular velocity Ω of a fluid particle satisfies an
averaged version of equation (1.1)

ω− kuφ −mΩ = 0. (4.2)

Figure 16(b,c) compares the approximated and theoretical critical layers for the
m = −1 inertial wave of (k, ω) = (1.14, −0.11). The approximated critical layers
are subjected to three types of deformation: they change in size (radius), shift
downward and are elliptically deformed. Table 3 quantifies the deformation, where
the elliptical deformation is measured by the aspect ratio which is the ratio of the
short to long axis. On the other hand, the critical layer damping depends crucially
on the position of the critical layer. Figure 17 shows the critical layer damping,
which is the imaginary part of ω, plotted against the wavenumber k for the first
and second branches of the m = −1 inertial wave. The modes corresponding to the
crossing points (−1, 0; [1, 3]) and (−1, 0; [2, 4]) are marked by symbols. A simple
calculation shows that the theoretical growth rate almost agrees with the numerical
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FIGURE 16. (Colour online) (a) Streamlines of the base flow and (b,c) approximated
(solid line) and theoretical (dashed line) positions of the critical layers of the inertial
wave of m = −1 and (k, ω) = (1.14, −0.11), Re = 104, W = 0.2. (a,b) ε0 = 0.1, t = 12,
(c) ε0 = 0.05, t= 16.

Radius Shift Aspect ratio

ε0 = 0.1 2.967 0.688 0.963
ε0 = 0.05 3.005 0.420 0.985
Theory 3.027 0 1

TABLE 3. Deformation of critical layers.

value for (−1, 0; [1, 3]) if we replace the theoretical critical layer damping −0.00075
by −0.003. This corresponds to k = 1.07 in figure 17, which is 6.1 % smaller than
k = 1.14 at the crossing point. The deformation of the critical layer for ε0 = 0.1
is 2.0 %, 23 % and 3.7 % in radius, shift and elliptical deformation, respectively.
Therefore, the deformation of the critical layer can change the critical layer damping
with the same order of magnitude observed in figure 15(a). Moreover, the change
should be small for ε0 = 0.05 since deformation is small and it should be also small
for (−1, 0; [2, 4]) since the critical layer damping for the mode (−1, 0; [2, 4]) is much
smaller than that for (−1, 0; [1, 3]) as shown in figure 17. This heuristic argument
explains why the difference between numerical and theoretical growth rates is large
in figure 15(a), but not in figures 13 and 15(b), although it should be supported by
more rigorous analysis.

4.3. Other modes of interest
Here we focus on some other modes which are typical or interesting by showing the
mode structures. The Reynolds number and the thickness are fixed to 104 and 0.1,
respectively.

4.3.1. Elliptic instability
Figure 18 shows the elliptic instability mode (−1, 1; [1, 1]) for W = 0. It is a

well-known mode showing bending deformation in the direction of stretching due to
the straining component of the base flow. The two inertial waves are symmetric: the
energy ratio of each wave is 0.5 (figure 18b) and the radial distributions of the waves
coincide (figure 18c). The radial distributions are in excellent agreement between the
theoretical and numerical results.
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FIGURE 17. (Colour online) Critical layer damping of the first and second branches.
Here W = 0.2, m=−1. Solid line: first branch; dashed line: second branch. The crosses
correspond to the crossing points (−1, 0; [1, 3]) (k = 1.14 on the first branch) and
(−1, 0; [2, 4]) (k= 1.83 on the second branch).
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FIGURE 18. (Colour online) Mode (−1, 1; [1, 1]), k = 2.333, ω = 0 (elliptic instability).
Here W=0,Re=104, ε0=0.1. (a) Contours of azimuthal component of vorticity ωθ :ωθ > 0
(solid), ωθ = 0 (dotted) and ωθ < 0 (dashed). (b) Ratio of energy. (c) Radial distribution
of v(m); symbols: DNS; lines: theory.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 B

ib
lio

' I
nt

er
un

iv
er

si
ta

ir
e,

 o
n 

13
 S

ep
 2

01
9 

at
 0

6:
46

:3
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
62

1

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.621


22 Y. Hattori, F. J. Blanco-Rodríguez and S. Le Dizès

-4 -3 -2 -1 0 1 2 3 4
m

0 1 2 3
®

1.0

0.8

0.6

0.4

0.2

0

En
er

gy
 ra

tio

(b) 1.2

1.0

0.8

0.6

0.4

0.2

|√
(m

) |

(c)

-2 -1 0 1 2
z�

2

1

0

-1

-2

r�

(a)

m = -2
m = 0

FIGURE 19. (Colour online) Mode (−2, 0; [1, 2]), k = 2.411, ω = −0.119 (elliptic
instability). Here W = 0.4, Re = 104, ε0 = 0.1. (a) Contours of azimuthal component of
vorticity ωθ : ωθ > 0 (solid), ωθ = 0 (dotted) and ωθ < 0 (dashed). (b) Ratio of energy.
(c) Radial distribution of v(m); symbols: DNS; lines: theory.

Figure 19 shows the elliptic instability mode (−2, 0; [1, 2]) for W = 0.4. The
m = −2 wave of this mode has peaks near ρ ≈ a, where the radial distribution of
this wave is disturbed; differences between the numerical and theoretical results are
observed near this point. This may be due to O(ε2) effects although it remains to
be accounted for. Corresponding narrow peaks are observed near ρ = a in the mode
structure (figure 19a).

4.3.2. Curvature instability
Figure 20 shows the curvature instability mode (−1, 0; [3, 2]) for W = 0.4. The

energy ratio of the m = 0 wave is larger than that of the m = −1 wave; this is
contrasted to the two modes of W= 0.2. Theoretical and numerical results are in good
agreement in figure 20(c), confirming that the theory is correct also for W = 0.4.

Figure 21 shows the three-wave mode of (k, ω)= (1.389,−0.106) for W = 0.4. It
consists of the m=−1, 0 and 1 inertial waves. The energy ratios of the three waves
are similar. The displacement mode (Fabre et al. 2006) of the m = 1 wave happens
to come close to the crossing point of the m = −1 and m = 0 waves as shown in
figure 22 so that the three waves interact with each other; thus, it is essentially a
curvature instability mode. The interaction with the displacement mode would affect
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FIGURE 20. (Colour online) Mode (−1, 0; [3, 2]), k = 1.603, ω = −0.112 (curvature
instability). Here W = 0.4, Re = 104, ε0 = 0.1. (a) Contours of azimuthal component of
vorticity ωθ : ωθ > 0 (solid), ωθ = 0 (dotted) and ωθ < 0 (dashed). (b) Ratio of energy.
(c) Radial distribution of v(m); symbols: DNS; lines: theory.

the growth rate; although it is of some interest to evaluate it analytically, it is avoided
in the present paper since it requires elaborate calculations.

4.3.3. Spiral mode
Figure 23 shows the spiral mode with k= 4.231 for W = 0.4. It consists of m=−1

and m= 0 waves; the energy ratio of the m= 0 wave is much larger than that of the
m=−1 wave. This m=−1 wave cannot be identified in the dispersion curves. Ring
structures of strong azimuthal vorticity are observed for 1.4a.ρ.2a; correspondingly
in this region of ρ the radial distribution of the m= 0 wave differs between theoretical
and numerical results. This spiral mode is similar to those observed in Roy et al.
(2008). It seems that this kind of modes appears at large wavenumbers and high
Reynolds numbers.

In order to explore the nature of this instability mode, the case with thinner (ε0 =

0.05) and thicker (ε0= 0.18) core is investigated. For ε0= 0.05, no instability is found.
For ε0 = 0.18, an unstable mode having spiral structures similar to those of ε0 = 0.1
(figure 23a) is found (figure 24). However, the energy ratio is much different; the
m = −1 and m = 0 waves have 24.5 % and 51.2 % of the total energy, respectively,
while they are 13.1 % and 77.6 % for ε0 = 0.1 (figure 23b). Since the amplitude of
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FIGURE 21. (Colour online) Mode (−1, 0, 1; [2, 2,D]), k= 1.389, ω=−0.106 (three-wave
mode). Here W = 0.4,Re= 104, ε0= 0.1. (a) Contours of azimuthal component of vorticity
ωθ : ωθ > 0 (solid), ωθ = 0 (dotted) and ωθ < 0 (dashed). (b) Ratio of energy. (c) Radial
distribution of v(m); symbols: DNS; lines: theory.
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FIGURE 22. (Colour online) Dispersion curves. Here Re = 104, W = 0.4. Filled circles:
m=−1; squares: m= 0; open circles: m= 1 (displacement mode). The large circle marks
the crossing point of the three-wave mode.

the mode is proportional to the square root of the energy, the amplitude ratio of
the m = −1 wave to the m = 0 wave for ε0 = 0.18 is

√
0.245/0.512 = 0.692 and

that for ε0 = 0.1 is
√

0.131/0.776 = 0.411; thus the amplitude ratio for ε0 = 0.18
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FIGURE 23. (Colour online) Spiral mode (−1, 0), k= 4.231, ω=−0.078. Here W = 0.4,
Re= 104, ε0 = 0.1. (a) Contours of azimuthal component of vorticity ωθ : ωθ > 0 (solid),
ωθ = 0 (dotted) and ωθ < 0 (dashed). (b) Ratio of energy. (c) Radial distribution of v(m);
symbols: DNS; lines: theory.

is 0.692/0.411 = 1.68 times larger than that for ε0 = 0.1. This ratio is close to that
of ε0: 1.68≈ 0.18/0.1= 1.8. This suggests that this m=−1 wave is not an inertial
wave since the amplitude ratio should be independent of ε0 at the leading order for
parametric resonance. Instead it can be O(ε) component created by the m= 0 wave
and the O(ε) dipole component of the base flow. The growth rate for ε0 = 0.18 is
σ = 0.0193, which is 3.8 times larger than that for ε0 = 0.1. This suggests that the
growth rate of the spiral mode is essentially proportional to ε2

0 as the value 3.8 is
not far from (0.18/0.1)2 = 3.24. It may be explained as the resonance of the m= 0
wave of O(1) and the m=−1 wave of O(ε) by the O(ε) dipole field, although further
studies are required to understand these spiral modes.

5. Nonlinear effects
Although the main focus of the present paper is the linear instability of a vortex

ring, it is also of interest and importance to investigate nonlinear time evolution of a
disturbed vortex ring. We investigate nonlinear evolution of a vortex ring disturbed by
a curvature instability mode focusing on the weakly nonlinear saturation.

The full nonlinear Navier–Stokes equations are solved; the Fourier spectral method
is also used in the θ direction. The curvature instability mode of (−1, 0; [2, 4]) with
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FIGURE 24. (Colour online) Spiral mode (−1, 0), k= 4.231, ω=−0.078. Here W = 0.4,
Re= 104, ε0 = 0.18. (a) Contours of azimuthal component of vorticity ωθ : ωθ > 0 (solid),
ωθ = 0 (dotted) and ωθ < 0 (dashed). (b) Ratio of energy. (c) Radial distribution of v(m);
symbols: DNS; lines: theory.

ε0 = 0.18 for W = 0.2 is chosen as the initial disturbance. Grid A in table 2 is used
in the r and z directions. We assume Nθ -fold symmetry in θ , where Nθ is set to 10.
This implies that subharmonic waves of the initial disturbance are excluded. The
number of modes in the θ direction is 128. The Reynolds number is set to Re= 5000
and 104, where the former value is used to accommodate the smallest structures that
develop at the nonlinear stage. The initial energy of the disturbance is 0.0076 % and
0.0093 % of the base flow energy for Re = 5000 and 104, respectively, while the
effects of the initial energy are investigated for the latter case. It is pointed out that
as time proceeds the core size of the vortex ring increases and the azimuthal velocity
decreases because of viscous diffusion. This implies that the resonance condition of
the curvature instability initially satisfied may be broken later.

Figure 25 shows the time evolution of the disturbance energy decomposed in θ :
En =

∫
|ũn|

2r dr dz, where the velocity field is decomposed as u=
∑

n ũn(t, r, z)einNθ θ .
At first the curvature instability mode (n = 1) grows exponentially. The growth rate
is σ = 0.00803 at t = 25; it is smaller than the observed value of 0.0113 for Re =
104 (figure 11) since viscous damping is stronger for Re = 5000. The higher-order
modes n > 2 appear and grow faster than the main disturbance n = 1. The growth
stops at t≈50. Then the mode energy decreases exponentially, while the n= 1 mode
approaches the initial value at t≈ 90. This is a typical behaviour predicted by weakly

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 B

ib
lio

' I
nt

er
un

iv
er

si
ta

ir
e,

 o
n 

13
 S

ep
 2

01
9 

at
 0

6:
46

:3
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
62

1

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.621


Numerical stability analysis of a vortex ring with swirl 27

0 20 40 60 80 100 120

10-3

10-4

10-5

10-6

10-7

t

En

n = 1
n = 2
n = 3
n = 4

FIGURE 25. (Colour online) Time evolution of the disturbance energy obtained by
nonlinear simulation. The disturbance energy is decomposed in θ : En =

∫
|ũn|

2r dr dz,
where the velocity field is decomposed as u=

∑
n ũn(t, r, z)einNθ θ .
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FIGURE 26. (Colour online) Ratio of energy of the linear mode ũ1(t, r, z) obtained by
nonlinear simulation. The linear mode is decomposed in the local polar coordinate system
as in (4.1). (a) Time t= 20, 50; (b) t= 120.

nonlinear analysis as explained later in some detail. Thus the peak at t≈ 50 is due to
weakly nonlinear saturation. Figure 26(a) shows the energy ratio of the n= 1 mode
at t= 20 and 50. This confirms that the instability is due to the curvature instability
as the energy ratio is close to that of the (−1, 0; [2, 4]) mode shown in figure 12(b).
The structures of the whole vortex ring are shown in figure 27. Distortion of the ring
is nearly due to the curvature instability mode at t= 25, while small-scale structures
are visible at t= 50.

The mode energy starts growing again at t ≈ 95. The exponential growth rate is
larger than that of the initial growth. This is due to the elliptic instability as shown
below. Figure 26(b) shows the energy ratio of the n= 1 mode at t= 120. It consists
of m=±1 waves. This elliptic instability mode corresponds to (−1, 1; [1, 1]), which
is shown in figure 8 for W = 0. Although the core size and the swirl parameter are
set to ε= 0.18 and W = 0.2, respectively, at t= 0, they become ε≈ 0.3 and W ≈ 0.12,
respectively, at t= 120 (figure 31); as a result the resonance condition for parametric
instability moves from the curvature instability mode (−1, 0; [2, 4]) to the elliptic
instability mode (−1, 1; [1, 1]).

Effects of the initial amplitude of the disturbance are investigated for Re = 104

to clarify how nonlinearity leads to saturation of the curvature instability. Figure 28
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(a) (b)

FIGURE 27. (Colour online) Structure of disturbed vortex ring obtained by nonlinear
simulation. The isosurface of the magnitude of vorticity is shown. (a) Time t = 25;
(b) t=50.
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FIGURE 28. (Colour online) Time evolution of the disturbance energy obtained by
nonlinear simulation. Here Re = 104. (a) The disturbance energy of the linear mode E1
is compared for different values of the initial disturbance energy. (b) Same as (a) but the
values are scaled to collapse at t= 0.

compares time evolution of the energy of the linear mode E1 for different values of
the initial amplitude A/A0= 1, 10−1, . . . , 10−4. Figure 28(a) shows that E1 saturates at
t= 40.9, 121.2 and 189.1 for A/A0= 1, 10−1 and 10−2, respectively. The fact that E1≈

10−4 does not depend on the initial amplitude very much supports that the saturation
is due to weakly nonlinear effects. On the other hand, the elliptic instability takes
over the curvature instability at t ≈ 200 for A/A0 = 10−3 and 10−4 before saturation.
In figure 28(b) the time evolutions of E1 are divided by (A/A0)

2 so that they collapse
at t ≈ 0. The time evolution starts to deviate from those for lower initial amplitudes
when nonlinear effects become important. This shows that nonlinearity starts to affect
the dynamics at t ≈ 20, 90 and 170 for A/A0 = 1, 10−1 and 10−2, which are 20–30
before the saturation.

Figure 29 shows time evolution of the vortex ring by distribution of the θ

component of vorticity on a cross-section (θ = 0). The total vorticity ωθ (a), the
mean vorticity ω̃θ,0 (b) and the disturbance vorticity ωθ − ω̃θ,0 (c) are shown for
t = 0, 16, 32, 48, 64, 80, 96 and 112. It is pointed out that the contour levels are
fixed for the total and mean vorticity, while they depend on the maximum value for
the disturbance vorticity since the magnitude varies significantly with time. The total
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(a)

(b)

(c)

FIGURE 29. Time evolution of disturbed vortex ring. Contours of θ component of vorticity
on θ = 0 are shown. Here Re = 5000. Total vorticity ωθ (a), mean vorticity ω̃θ,0 (b),
disturbance vorticity ωθ − ω̃θ,0 (c). From left to right: t = 0, 16, 32, 48, 64, 80, 96, 112.
Contour levels are n1ω (n=±1,±2, . . .) while 1ω= 1 for the total and mean vorticity
and 1ω = |ωθ − ω̃θ,0|max/8 for the disturbance vorticity. Positive and negative values are
shown by red and blue lines, respectively.
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FIGURE 30. Linear modes on the complex plane. The linear modes are decomposed in
the local coordinate system (ρ, φ), and ũ(−1)

1 (shown by red circles) and ṽ
(0)
1 (shown by

blue crosses) are plotted on the complex plane. Here Re= 5000. (a) Time t= 0, (b) t= 20,
(c) t= 48, (d) t= 60.

vorticity is significantly disturbed at t= 32, 48 and 64 when the disturbance energy is
large, while it goes back to smooth state at t = 96 and 112. The same trend is also
observed for the mean vorticity with lower level of disturbance. The distribution of
the disturbance vorticity does not differ much from the curvature instability mode of
(−1, 0; [2, 4]) up to t= 48. However, the distribution changes after t= 48; at t= 96
and 112 it shows structures of bending wave due to the elliptic instability.

The details of weakly nonlinear saturation can be shown by the phases of the m=
−1 and m= 0 waves which compose the curvature instability mode. Figure 30 shows
those waves on the complex plane for t= 0, 20, 48 and 60. The linear mode ũ1(t, r, z)
is decomposed in the local coordinate system (figure 1) and ũ(−1)

1 and ṽ(0)1 are shown
by red circles and blue crosses, respectively. The curves rotate with time since the two
waves are oscillatory. The curves at t= 0 and t= 20 are similar in shape after rotation,
while they deform gradually as time proceeds (t = 48 and 60). The phase difference
between ũ(−1)

1 and ṽ(0)1 is important here. We take the phase at maximum amplitude for
each mode. Then the phase difference is −177◦,−151◦,−93◦ and −82◦ at t=0,20,48
and 60, respectively. The value of phase difference depends on the section or θ . An
important point is that the phase difference increases with 84◦ ≈π/2 from the initial
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FIGURE 31. (Colour online) Time evolution of characteristic values of the vortex ring. Here
Re = 5000. (a) Core radius, (b) swirl parameter and maximum vorticity, (c) circulation
and square root of energy. Note that the values are normalized by the initial values for
comparison.

state t = 0 to t = 48 at which the curvature instability saturates. This change in the
phase difference is explained in terms of the amplitude equation derived by weakly
nonlinear analysis. In the simplest form, the amplitude equation is

dA−1

dt
= c1A0 + i(s1|A−1|

2
+ s2|A0|

2)A−1, (5.1)

dA0

dt
= c2A−1 + i(s3|A−1|

2
+ s4|A0|

2)A0, (5.2)

where A−1 and A0 are the complex amplitudes of the m=−1 and m= 0 waves and
ci and si are real constants satisfying c1c2 > 0 (Knobloch, Mahalov & Marsden 1994).
At the linear stage |A−1| and |A0| are sufficiently small so that the nonlinear terms are
negligible; then the phase difference between A−1 and A0 is 0 for the exponentially
growing solution to equations (5.1) and (5.2). On the other hand, when the growth
saturates, which implies dA−1/dt = dA0/dt = 0, the phase difference between A−1

and A0 is π/2 according to (5.1) and (5.2); in other words, the detuning effects of
nonlinear terms stop the curvature instability. Thus the phase difference increases
with π/2 when the growth saturates. Therefore, the change in the phase difference
observed in figure 30 is a result of weakly nonlinear saturation described by the
amplitude equation (Sipp 2000; Eloy, Le Gal & Le Dizès 2000, 2003).

Figure 31 shows time evolution of characteristic values of the vortex ring: the
core radius, the swirl parameter W, the maximum vorticity, the circulation and the
energy. Here the values are normalized by the initial values except for the core radius
and the energy is plotted with its square root to be proportional to the velocity for
comparison. The figure shows that the swirl parameter increases gradually before
nonlinear saturation, then it drops at 48 . t . 64. Correspondingly, the maximum
vorticity decreases before nonlinear saturation, then it increases at 48 . t . 70. Thus
there are changes in the mean flow after nonlinear saturation. The viscous spreading
of the core is slightly accelerated after the saturation (figure 31a), although the
circulation is nearly constant up to t≈ 80 and the decay of the energy is unaffected
up to t≈ 120 (figure 31c).

To summarize, the curvature instability grows until weakly nonlinear saturation;
after the saturation nonlinear effects modify the mean flow decreasing the swirl
parameter and the disturbance energy decreases. It is pointed out that the secondary
instability following the curvature instability is not observed.
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6. Concluding remarks

We have studied the linear instability of a vortex ring with swirl with Gaussian
distributions of azimuthal vorticity and velocity in its core at the leading order
of the thickness by DNS: the quasi-steady base flow was obtained by solving
the axisymmetric incompressible Navier–Stokes equations, then the linearized
Navier–Stokes equations were solved by DNS. It was shown that the vortex rings
are subjected to curvature instability as predicted analytically by Blanco-Rodríguez &
Le Dizès (2017). The structures of the unstable modes obtained numerically are in
good agreement with the analytical results. For the growth rates, on the other hand,
some differences between numerical and analytical results were found depending on
the unstable mode. The differences are most likely due to the critical layer damping
which is evaluated for the waves on axisymmetric line vortices in the analysis; the
actual growth rate is affected by the deformation of the core since the damping
is sensitive to the position of the critical layer. Competition between the curvature
and elliptic instabilities was also investigated. When the swirl is absent, only the
elliptic instability is observed since the growth rate of the curvature instability is
small. When the swirl is added, sharp bands of the two instabilities are observed
for small thickness ε ≈ 0.1, while the elliptic instability dominates except for a
small interval of the wavenumber for ε ≈ 0.18. A special mode which consists of
three waves was also found; although it is essentially due to the curvature instability
mode of (−1, 0; [2, 2]), a displacement wave of m = 1 happens to be close to the
corresponding crossing point of the dispersion curves and joins the unstable mode.
Spiral modes which may be due to O(ε2) effects were also found. Weakly nonlinear
saturation has been shown to occur by nonlinear simulation.

It is emphasized that the curvature instability has been shown by DNS for the
first time; although by theoretical analysis it was first shown for Kelvin’s vortex ring
(Hattori & Fukumoto 2003; Fukumoto & Hattori 2005) and then for a Gaussian vortex
ring (Blanco-Rodríguez & Le Dizès 2017), no results from numerical simulation or
experiments have been available before the present work. The present results should
be taken into account carefully in interpreting the experimental results since the
curvature instability can be the dominant instability for large Reynolds numbers
and small thickness. In the numerical work by Gargan-Shingles et al. (2016), the
Reynolds number is smaller than in the the present work: Re = 104/(2π) = 1592.
In addition, the thickness is larger: a/R = 0.234–0.344. These are the reasons why
they did not observe the curvature instability, although the mode shown in figure 9A
of Gargan-Shingles et al. (2016) may be due to curvature instability. Another result
worth emphasizing is that the critical layer damping is sensitive to the deformation
of the vortex core; the growth rate of the curvature instability mode (−1, 0; [1, 3])
at ε0 = 0.1 was found to be 22 % smaller than the theoretical value, while it is in
good agreement for the mode (−1, 0; [2, 4]). This difference is most likely due to
the critical layer damping which is strong for the former but weak for the latter. This
result is important not only for the curvature instability but also for any short-wave
instability due to parametric resonance like elliptic instability and precession instability
which occurs in a precessing cylinder (Kerswell 1993; Mahalov 1993; Lagrange et al.
2008).

Finally, two important future works are mentioned briefly. First, nonlinear evolution
of curvature instability modes should be investigated further to clarify their role in
the dynamics of a vortex ring: it can lead to the breakdown of a vortex ring. Next,
the curvature instability of a helical vortex should be explored; as shown theoretically

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 B

ib
lio

' I
nt

er
un

iv
er

si
ta

ir
e,

 o
n 

13
 S

ep
 2

01
9 

at
 0

6:
46

:3
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
62

1

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.621


32 Y. Hattori, F. J. Blanco-Rodríguez and S. Le Dizès

by Hattori & Fukumoto (2009, 2010, 2012, 2014) and Blanco-Rodríguez & Le Dizès
(2017), helical vortices are subjected to the curvature instability in general. This is of
great importance since the helical vortices are a model of tip vortices generated by
rotating wings like helicopter rotors, wind rotors and ship propellers. The curvature
instability is expected to be important as the conditions for the curvature instability to
be dominant are often satisfied for these rotating wings: the Reynolds number is large,
the thickness is small and the base flow has a non-vanishing swirl. The numerical
methods developed in Delbende, Rossi & Daube (2012) and Selçuk, Delbende &
Rossi (2018) would be useful for this problem.
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Appendix A. Details of numerical methods
In this appendix we describe the details of our numerical method. The incompress-

ible Navier–Stokes equations are written as

∂u
∂t
=−u

∂u
∂r
−
v

r
∂u
∂θ
−w

∂u
∂z
+
v2

r
−
∂p
∂r
+ ν

[(
∇

2
−

1
r2

)
u−

2
r2

∂v

∂θ

]
, (A 1)

∂v

∂t
=−u

∂v

∂r
−
v

r
∂v

∂θ
−w

∂v

∂z
−

uv
r
−

1
r
∂p
∂θ
+ ν

[(
∇

2
−

1
r2

)
v +

2
r2

∂u
∂θ

]
, (A 2)

∂w
∂t
=−u

∂w
∂r
−
v

r
∂w
∂θ
−w

∂w
∂z
−
∂p
∂z
+ ν∇2w, (A 3)

∂u
∂r
+

u
r
+

1
r
∂v

∂θ
+
∂w
∂z
= 0, (A 4)

where u, v and w are the r, θ and z components of the velocity and ∇2
=

∂2/∂r2
+ (1/r)∂/∂r + (1/r2)∂2/∂θ 2

+ ∂2/∂z2. The above equations are discretized
in time with the second-order implicit method for the viscous terms and the
Adams–Bashforth method for the other terms:[

3
2
− ν1t∇2

]
u(n+1)

= 2u(n) −
1
2

u(n−1)
+
1t
2
(3H(n)

u −H(n−1)
u ), (A 5)[

3
2
− ν1t∇2

]
v(n+1)

= 2v(n) −
1
2
v(n−1)

+
1t
2
(3H(n)

v −H(n−1)
v ), (A 6)[

3
2
− ν1t∇2

]
w(n+1)

= 2w(n)
−

1
2

w(n−1)
+
1t
2
(3H(n)

w −H(n−1)
w ), (A 7)

where f (n) denotes f at the nth time step,

Hu = hu −
∂Φ

∂r
, (A 8)
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Hv = hv −
1
r
∂Φ

∂θ
, (A 9)

Hw = hw −
∂Φ

∂z
, (A 10)

and

hu = −u
∂u
∂r
−
v

r
∂u
∂θ
−w

∂u
∂z
+
v2

r
+ ν

(
−

u
r2
−

2
r2

∂v

∂θ

)
, (A 11)

hv = −u
∂v

∂r
−
v

r
∂v

∂θ
−w

∂v

∂z
−

uv
r
+ ν

(
−
v

r2
+

2
r2

∂u
∂θ

)
, (A 12)

hw = −u
∂w
∂r
−
v

r
∂w
∂θ
−w

∂w
∂z
. (A 13)

It should be pointed out that the cross terms in the viscous terms (e.g. ν(2/r2)∂v/∂θ
in (A 11)) are moved to the right-hand side together with the corresponding terms
which cancel their divergent behaviour near r= 0 (e.g. ν(u/r2) in (A 11)) as only the
Laplacian terms are dealt with implicitly; this simplifies the numerical procedure. The
function Φ is obtained by solving the Poisson equation

∇
2Φ =

∂hu

∂r
+

hu

r
+

1
r
∂hv
∂θ
+
∂hw

∂z
. (A 14)

The boundary conditions at r=±Lr are

u= 0,
∂

∂r
(rv)=

∂

∂r
w= 0. (A 15a,b)

The velocity fields are expanded in Fourier series as f =
∑

n f̂m,n(r, t)ei(mθ+nαz), where
m = 0 for the base flow and m = Nθ for the disturbance and α = 2π/Lz. Then the
equations in the Fourier space are[

3
2
− ν1t

{
d2

dr2
+

1
r

d
dr
−

(
(|m| − 1)2

r2
+ α2n2

)}]
û(n+1)

m,n

= 2û(n)m,n −
1
2

û(n−1)
m,n +

1t
2
(3Ĥ(n)

u;m,n − Ĥ(n−1)
u;m,n ), (A 16)[

3
2
− ν1t

{
d2

dr2
+

1
r

d
dr
−

(
(|m| − 1)2

r2
+ α2n2

)}]
v̂(n+1)

m,n

= 2v̂(n)m,n −
1
2
v̂(n−1)

m,n +
1t
2
(3Ĥ(n)

v;m,n − Ĥ(n−1)
v;m,n ), (A 17)[

3
2
− ν1t

{
d2

dr2
+

1
r

d
dr
−

(
m2

r2
+ α2n2

)}]
ŵ(n+1)

m,n

= 2ŵ(n)
m,n −

1
2

ŵ(n−1)
m,n +

1t
2
(3Ĥ(n)

w;m,n − Ĥ(n−1)
w;m,n). (A 18)

The boundary conditions (A 15) become

ûm,n = 0,
∂

∂r
(rv̂m,n)=

∂ŵm,n

∂r
= 0. (A 19a,b)
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Case 1rmin/R0 1z/R0 Ω (0)
max1t T0 Lr/R0 σ

Reference 2.5× 10−3 2.05× 10−3 3.51× 10−3 12 100 4.2443× 10−3

Case G 5× 10−3 4.09× 10−3 7.03× 10−3 12 100 4.2443× 10−3

Case L1 5× 10−3 4.09× 10−3 7.03× 10−3 12 50 4.2443× 10−3

Case L2 5× 10−3 4.09× 10−3 7.03× 10−3 12 25 4.2443× 10−3

Case L3 5× 10−3 4.09× 10−3 7.03× 10−3 12 10 4.2443× 10−3

Case DT 5× 10−3 4.09× 10−3 3.51× 10−3 12 100 4.2437× 10−3

Case TL 2.5× 10−3 2.05× 10−3 3.51× 10−3 24 100 4.2125× 10−3

TABLE 4. Growth rate obtained by different numerical settings. The curvature instability
mode of (−1, 0; [1, 3]) with ε0 = 0.1 and k= 1.144.

The Poisson equation for Φ is also expressed in Fourier space as{
d2

dr2
+

1
r

d
dr
−

(
m2

r2
+ α2n2

)}
Φ̂m,n

=
dĥu;m,n

dr
+

ĥu;m,n

r
+

im
r

ĥv;m,n + iαnĥw;m,n, (A 20)

with the boundary condition

∂Φ̂m,n

∂r
= 0. (A 21)

Equations (A 16)–(A 18) and (A 20) for each Fourier mode are second-order ordinary
differential equations; they are solved by a sixth-order accurate compact scheme.

The numerical method for the linear stability analysis is the same except that the
nonlinear terms in hu, hv and hw are replaced by the corresponding linearized terms.
For example, hu is replaced by

h′u = −ub
∂u′

∂r
−
vb

r
∂u′

∂θ
−wb

∂u′

∂z
− u′

∂ub

∂r
−w′

∂ub

∂z
+

2vbv
′

r

+ ν

(
−

u′

r2
−

2
r2

∂v′

∂θ

)
. (A 22)

Appendix B. Accuracy of numerical simulation
In this appendix we check the accuracy of DNS by showing dependence on the

spatial resolution, the radial domain size, the time step and the relaxation time of the
base flow. We choose the curvature instability mode of (−1,0; [1,3]) with ε0=0.1 and
k= 1.144. Table 4 compares the growth rate obtained for different numerical settings.
In this table ‘reference’ is used for the results of the present paper. In case G, the
minimum/constant grid size is doubled in the r/z direction, while the time step is also
doubled to keep the Courant number constant. The growth rate is unchanged up to the
digits shown in the table, showing that the grid resolution is sufficient and the coarser
grid of case G could have been used. Having confirmed grid resolution, dependence
on the radial domain size Lr is checked with cases L1, L2 and L3 with Lr/R0= 50, 25
and 10. Again the growth rate is unchanged up to the digits shown in the table. By
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halving the time step (case DT) from case G the growth rate decreases a little with
0.015 % change, which is sufficiently small.

In case TL, we changed the relaxation time of the base flow to T0 = 24, while the
results shown in the present paper are based on T0 = 12 and 16 for Re = 104 and
5× 104, respectively. The growth rate decreases a little with 0.75 % change, which is
also sufficiently small for the purposes of the present paper.
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