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Talk Outline

® |nterior of the kEarth

x mantle to core

® Dynamo Fundamentals

® Open Questions
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® Oceanic lithosphere: thinner and
denser

® Continental lithosphere: Lhicker, less
dense

®x Continents float higher on mantle

x Well-defined ocean basins
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® Recycling oceanic lithosphere

= Jop boundary layer of convecting
mantle

®x OQverturn timescale ~ 100 Myrs
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® Recycling oceanic lithosphere

% Drives plate tectonics
® Successfiul kinematic model
% No fully dynamical model yet

= Subduction process

Monday, February 11, 2013



B - o R D R

around 660 ki

Qradioactivity _

~1TW

Primary

Deflected plume

slab

Penetrating
siab

Continent

Ore Inditie
0ISCOMTIRE Y DOURAARY

CMB

(core-mantle
boundary)

Tackley, Nat. Geo. 2008

Monday, February 11, 2013



Primary

Deflected plume

slab

| ) Penetrating
Enriched slab
plles |
Continent
Slab
grave yards

e narltie

x Basal,.boundary layer: D> ...

® Strongly heterogeneous

x possible 3x variations in gecmb (05 ¢)

Tackley, Nat. Geo. 2008

Monday, February 11, 2013



B - o R o R

around 660 ki

Primary

Deflected plume

slab

Penetrating
siab

Outer Core

Continent

ol KR Cpremantle

Fe+|0%LE £
CMB

(core-mantle
boundary)

SCONTIRE Y

Tackley, Nat. Geo. 2008

Monday, February 11, 2013



Liquid
Outer Core

Q~45
T™W

' Sufficient

Monday, February 11, 2013



Inner Core
radius = 1220
km

Monday, February 11, 2013



. 1 melt
X
o
3 5000 K
o
U
ol
=
- A
130 330 360
Pressure (GPa)
S S GETEtN
5,02'0 ol dRZC
b~ | Gic
p C) dt
raarus = TZZG

km

Monday, February 11, 2013

x Growing Ee
INNer core

x | atent heat
source

x Chemical
buoyancy
source

x [hermo-
chemical
convection

x Jight energy
budget
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® |G seiIsmics

= fast along
axial
direction

= Hemi-
sphericity

®x Dynamics

= [ransiation?

x Anomalous

Inner Core rotation

radius = 1220
km
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x Surface field extrapolation

x Qutside of core, current density IS ~zero:
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Farth’'s Magnetic Fleld

x Surface field extrapolation

x Qutside of core, current density IS ~zero:

VXBeuJ=0: V- -B=0

» Scalar potential: B = VW —= V2 = 0

x Solution to Laplacian:
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Other Planetary B-Fields

Axial Dipoles Multipoles

c) Jupiter ¢) Uranus

Data taken from Uno et al. (2009), Kivelson et al. (2002),Yu et al. (2010), Burton et al. (2009), and

Holme and Bloxham (1996).

Image: K. Soderlunad
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x | arge-scale flux patches

x Field changes over relatively short times
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1he Induction Equation

x |nduction Equation:

0B = 1 i

=N AGAB V4B

6’t - R@M
B @ i induction

n - diffusion

x Relatively simple equation for B-evolution

= Bm must be ~ 100 for dynamo action
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x Field changes over relatively short times Complex
Y <
x Infer core flows with Re ~ 1078; Ro ~ 10A-7~ Flows
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Magnetic Fields in the Core

x Poloidal-Toroidal Decompositions

x Break up B (and u) into poloidal and toroidal vector fields
BT T (TI’)
BP — V. X VX (PI‘)




Magnetic Fields in the Core

x Poloidal-Toroidal Decompositions
x Break up B (and u) into poloidal and toroidal vector fields
Bt =V x (Ir)
Bp =V XV X (Pr)
® Bp lies In plane containing r

® B on surfaces perpendicularto r

Monday, February 11, 2013



Magnetic Fields in the Core

x Poloidal-Toroidal Decompositions
x Break up B (and u) into poloidal and toroidal vector fields
Bt =V x (Ir)
Bp =V XV X (Pr)
® Bp lies In plane containing r

® B on surfaces perpendicularto r

x NB: Curlofa [ givesaP; CurlofaPgivesa T

Monday, February 11, 2013



AXisymmetric Flelds

x For axisymmetric fields & only s=varying zonal velocities:
0B, /0t = nN*B,
OBy /0t = $B, (0w/[ds) + N "By

x The w-effect: angular 7-shears convert £ field (here Bs)
into 7 field (B4)
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AXiIsymmetric Flelds

x For axisymmetric fields & only s=varying zonal velocities:
0B, /0t = nN*B,
OBy /0t = $B, (0w/[ds) + N "By

x The w-effect: angular 7-shears convert £ field (here Bs)
into 7 field (B4)

®x However, axisymmetric flows do not convert I into P
fields

x Any initial Bp wWill eventually decay away and the
axisymmetric dynamo field will fail

Oversimple dynamos fail: Requires complex flows
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Complex Dynamics

®x Farth’s core parameters:
= Re ~ 1078; Ro ~ 10-7 (thus, E ~ 102-15)
x Pr~107-2; Pm ~ 102-6
x M ~ 1023, Elsasser ~ 0.1

® | aminar present day dynamos
x Earth-like Bm, Earth-like B

x [ ow Re, high Pm and high
E thermal convection
Mmodels

x Are they accurate’”
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Vorticity in 3D Dynamo

Simulations:

d) E = le-4; Re =95,
Ra/RaC =4.9.

¢) E =1e-4; Re =2014,
Ra/RaC = 562.

Vorticity in 3D Rotating Turbulence: a) initial horizontal slice; b) after 30 overturn times;
c¢) 3D rendering also after 30 overturn times. Parameters: Ekman E = 1e-5; Reynolds Re = 5100.
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Complex D

x | aminar present day

dynamos

x Farth-like Bm, Earth-
ike B

= Possibly kinematically
accurate; but - TS
dynamically inaccurate |y LEIT TSI

RaRa_=8 /)7(‘2\':7 :\‘,' (ol &\“ -
B T M TN

x | imited predictability

» Or bulk turbulence 1s
2nd fiddle, i.e., BCs
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Complex Dynamics

®x [hermochemical convection: not obviously superadiabatic
N terrestrial planets

= Mechanically-forced core flows?

x Mechanical driving: Precession, nutation, lioration

x Gan possibly- tap into massive resevolrs of planetary
rotational energy
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What powers
turbulent
dynamo!

Couplings b/w
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Liquid
Outer Core

Solid
Inner
Core

Effects of

BCs on
dynamos

Behavior of
core-like
turbulence?

Monday, February 11, 2013



APPENDIX
ol IDES




Liquid
Outer Core

CMB

(core-mantle
boundary)

Monday, February 11, 2013



Radius = 6470
km

Liquid

QT::,S Outer Core
Solid
« « Inner
~|5-5 Core

T™T™W
Fe+10%!?

CMB

(core-mantle

Inner Core otipga)

radius = 1220
km

Monday, February 11, 2013

CMB radius =
3485 km



P-waves

@ Primary waves: Compressional (or dilatational) waves
@ Solution:

O = 0,(Z — Vyt) + O,(Z + V,t)

K+ 4/348°

Vp =

@ Non-dispersive, propagating dilatations in the form
of longi’rudinal waves (wave velocity parallel to displacemen’rs)
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S-waves

@ Secondary waves: Shear waves (only in “solids”)

@ Solution:

—

Q= QZ — Vit) + Q,(Z + Vit)

- 11/2

@ Non-dispersive, propagating “shears” in the form of
transverse waves (wave velocity perpendicular to displacemen’rs)
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Seismic Phases

Figure 3.5-5: lllustration of various body wave phases.
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Adams-Williamson Equation

@ Adiabitic radial density gradient

dp _ ( iy #aD CHETEC . SH B
dr Op |, dr K/p ) :drg 7| o

@ Seismic Parameter, phi:
G i nr 2
@ Hydrostatic pressure gradient:

d_p o _pg @ Lastly, we need a g(r) equation:

4% da 5
ar . | g:—47TG,0

dr r




Earth Structure - 1D

14

Figure 3.8-4: Preliminary Reference Earth Model.
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Earth Structure - 1D
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@ Can carry out 3D
inversions for best
fitting seismic
velocities to fit
modern, massively
overlapping data
sets

® Shows anomalies of
S-wave velocities
relative to 1D PREM

model

Van Heijst, Ritsema, and Woodhouse [1999]
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D = Fluid Shell
thickness

Ekman E = v/(Q2D”2)
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thickness
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Ekman boundary
Layers (EBL)
~EM/2 D
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thickness
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Magnetic Polarity Reversals

Normal polarity Bl Reversed polarity

90 80 70 60 50 40 30 20 10 0

Millions of Years Ago Image: P. Olson

x Reversals ~ 5 kyrevent, every ~ 0.25 Myrs

x How & why do reversals happen??

= Boundary conditions AND/OR core
turbulence
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Magnetic Fields in the Core

x Poloidal-Toroidal Decompositions
x Break up B (and u) into poloidal and toroidal vector fields
Bt =V x (Ir)
Bp =V XV X (Pr)
® Bp lies In plane containing r

® B on surfaces perpendicularto r
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AXiIsymmetric Flelds

® |nserting axisymmetric P-1 vectors into Induction eqg:
OB, /0t =N X (u, x B,) +n¥V:B,
(‘9BT/0t = (up X B =X Bp) He UVZBT

Monday, February 11, 2013



AXiIsymmetric Flelds

® |nserting axisymmetric P-1 vectors into Induction eqg:
OB, /0t =N X (u, x B,) +n¥V:B,
(‘9BT/0t = (up X B =X Bp) He UVZBT
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AXiIsymmetric Flelds

® |nserting axisymmetric P-1 vectors into Induction eqg:
OB, /0t =N X (u, x B,) +n¥V:B,
(‘9BT/0t = (up X B =X Bp) He UVZBT

= Now, let'slet = up = Us(s)
0B, /0t =N x (0) £ n\V2B,
OBr /0t =N X Uy(s) X B, + nV-Br
= (Bp : V)Ug(s)
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AXiIsymmetric Flelds

® |nserting axisymmetric P-1 vectors into Induction eqg:
OB, /0t =N X (u, x B,) +n¥V:B,
(‘9BT/0t = (up X B =X Bp) He UVZBT

= Now, let'slet = up = Us(s)
0B, /0t =N x (0) £ n\V2B,
OBr /0t =N X Uy(s) X B, + nV-Br
= (B, - V)Uy(s) = 5B, (0[Uy/5]/0s)¢
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AXiIsymmetric Flelds

® |nserting axisymmetric P-1 vectors into Induction eqg:
OB, /0t =N X (u, x B,) +n¥V:B,
(‘9BT/0t = (up X B =X Bp) He UVZBT

= Now, let'slet = up = Us(s)
0B, /0t =N x (0) £ n\V2B,
OBr /0t =N X Uy(s) X B, + nV-Br
= (B, - V)Uy(s) = sB. (0[Uy/5]/0s)0
=8B, 0w/0s¢ where U, = w s
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