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1. Very brief overview of: 

• baroclinic instability;
• why geostrophic eddies matter for the global ocean and climate;  
• Gent and McWilliams eddy parameterisation;  
• alternative paradigm: isopycnal mixing of potential vorticity ... and caveats! 

2. A new framework for parameterising ocean eddies: 

• eddy stress tensor;  
• geometric interpretation;
• Eady problem; 
• ray tracing; 
• potential vorticity mixing; 
• future work and conclusions. 

Structure
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Eady (1949) model of baroclinic instability

• f-plane (neglect β effect)
• uniform stratification
• uniform shear
• opposite potential vorticity gradients
   at upper and lower boundaries
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Fig. 6.12 Left column: Vertical structure of the most unstable Eady mode. Top: con-
tours of streamfunction. Middle: temperature, proportional to @ =@z . Bottom: merid-
ional velocity, proportional to @ =@y . Negative contours are dashed, and two complete
wavelengths are present in the horizontal. Poleward flowing (positive v) air is generally
warmer than equatorward flowing air. Right column: Same, but now for a wave just be-
yond the short-wave cut-o�. There is no phase-tilt in the vertical, and the temperature
perturbations at the upper and lower boundaries are no longer able to interact.

Scale of maximum instability: Lmax ⇤ 3:9Ld ⇤ 4000 km; (6.96)

Growth Rate: � ⇤ 0:3
U

Ld
⇤ 0:3 � 10

106
s�1 ⇤ 0:26 day�1:

(6.97)

For the ocean

For the main thermocline in the ocean let us choose

H ⇥ 1 km U ⇤ 0:1 m s�1 N ⇥ 10�2 s�1: (6.98)

v

0 =
1

⇢0f0

@ 

0

@x

6.6 The Eady Problem 283

0 1 2 3 4 5 6 7
0

0.5

1

Z

0 1 2 3 4 5 6 7

0.5

1

Z

1 2 3 4 5 6 7
0

0.5

1

X

Z

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

Z

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.5

1

Z

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

X

Z

Fig. 6.12 Left column: Vertical structure of the most unstable Eady mode. Top: con-
tours of streamfunction. Middle: temperature, proportional to @ =@z . Bottom: merid-
ional velocity, proportional to @ =@y . Negative contours are dashed, and two complete
wavelengths are present in the horizontal. Poleward flowing (positive v) air is generally
warmer than equatorward flowing air. Right column: Same, but now for a wave just be-
yond the short-wave cut-o�. There is no phase-tilt in the vertical, and the temperature
perturbations at the upper and lower boundaries are no longer able to interact.

Scale of maximum instability: Lmax ⇤ 3:9Ld ⇤ 4000 km; (6.96)

Growth Rate: � ⇤ 0:3
U

Ld
⇤ 0:3 � 10

106
s�1 ⇤ 0:26 day�1:

(6.97)

For the ocean

For the main thermocline in the ocean let us choose

H ⇥ 1 km U ⇤ 0:1 m s�1 N ⇥ 10�2 s�1: (6.98)

most unstable mode:

(figure: adapted from Vallis, 2006)
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Fig. 6.12 Left column: Vertical structure of the most unstable Eady mode. Top: con-
tours of streamfunction. Middle: temperature, proportional to @ =@z . Bottom: merid-
ional velocity, proportional to @ =@y . Negative contours are dashed, and two complete
wavelengths are present in the horizontal. Poleward flowing (positive v) air is generally
warmer than equatorward flowing air. Right column: Same, but now for a wave just be-
yond the short-wave cut-o�. There is no phase-tilt in the vertical, and the temperature
perturbations at the upper and lower boundaries are no longer able to interact.
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For the ocean

For the main thermocline in the ocean let us choose

H ⇥ 1 km U ⇤ 0:1 m s�1 N ⇥ 10�2 s�1: (6.98)
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1.5 Ocean eddies

At any instant, the circulation of the oceans looks very different to the

mean patterns outlined above due to the presence of intense ocean eddies.

The characteristic scale of both ocean eddies and atmospheric weather

systems is controlled by the Rossby deformation radius, O(1000 km) in

the atmosphere and O(30 km) in the ocean:

Composite satellite image showing atmospheric cloud cover and a proxy

for surface biological activity.

OC1-16

Composite satellite image showing cloud cover and proxy for surface biological activity
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James R Maddison

Eddy Parameterisation Problem

Comparison with atmospheric modelling:
 

A 1o ocean model is analogous, in terms of mesoscale eddy 
resolution, to a 30o atmospheric model:

Conversely, a 1o atmospheric model is analogous, in terms of 
mesoscale eddy resolution, to a 1/30o ocean model.

(After P Killworth)

10/02/12 4/52

Challenge of resolving eddies in numerical ocean models

In terms of mesoscale eddy resolution, a 1o ocean model ~ 30o atmosphere model:

Conversely, a 1o atmosphere model ~ 1/30o ocean model:

(after Peter Killworth)
5

Sea surface height variability from TOPEX-POSIEDON

altimeter (http://topex-www.jpl.nasa.gov):

http://topex-www.jpl.nasa.gov
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Sea surface height variability from TOPEX-POSIEDON

altimeter (http://topex-www.jpl.nasa.gov):

http://topex-www.jpl.nasa.gov
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Figure 5: (a) Inverse Eady Timescale ω̃Eady days−1 and (b) baroclinic growth rate ωi days−1 in the
OCCA ocean atlas. Values less than 1/200 days−1 and locations where no local maximum growth
rate is present are shaded black. The coastline is marked by a black contour and regions where no
calculation was made are shaded white.

28

Eady growth rate (Tulloch et al., 2011)
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Impact of eddies: Antarctic Circumpolar Current

(schematic: Visbeck and Olbers 2004;          
          adapted from Rintoul et al. 2001)

Wind stress

VEk

“Deacon cell”

�s

p+ p�

• Wind stress balanced by bottom form stress (          )             (Munk and Palmén, 1951) pb�H

�s

p+ p�

bottom form stress
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• Wind stress balanced by bottom form stress (          )             (Munk and Palmén, 1951) pb�H

�s

p+ p�

�s

p+ p�

• Downward momentum transfer by eddy form stress               (Rhines and Holland, 1979;          
                                                                                                     Johnson and Bryden, 1989)
           

p�

�s

p+ p�

p+ p� p�p+

“non-acceleration conditions”
�s

p+ p�

p+ p�p� p+ p�
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Gent and McWilliams (1990), Gent et al. (1995) adiabatic eddy closure

 eddies diffuse tracers along isopycnals (Redi 1982) 

 and advect by an eddy transport velocity (bolus velocity) - acts to flatten isopycnals

w*

u*

2058 VOLUME 28J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 9. Area-averaged depth of density surfaces for model resolu-
tions with different ratios of A�/Au after 10 yr (see Table 3).

TABLE 3. Biharmonic diffusion coefficients for experiments
detailed in section 3c. All experiments have K� ⌅ 3 ⇤ 10⇥5 m2 s⇥1.

Expt
Resolution
(deg)

A�

(1010 m4 s⇥1)
Au

(1010 m4 s⇥1)

R4-1
R4-2
R4-3

1/4
1/4
1/4

18.0
6.0
18.0

6.0
6.0
72.0

ments in model behavior, for example, a sharper ther-
mocline, improved heat transports, and a restriction
of deep convection to places where it is known to
occur (Danabasoglu et al. 1994). Most of these im-
provements can be attributed to the complete removal
of horizontal diffusion of temperature and salinity,
which eliminates the Veronis effect. Our results sug-
gest that an adiabatic subgrid parameterization will
be necessary, even in models that resolve or partially
resolve mesoscale eddies.
One possibility might be to use a shape-preserving

advection scheme (e.g., the flux-corrected transport al-
gorithm; Boris and Book 1973), which would enable
explicit temperature diffusion to be excluded. However,
Thuburn (1995) has shown that the implicit numerical
diffusion acting on a grid-scale structure as it is advected
across a grid cell by a shape-preserving algorithm is
finite and comparable to that obtained using standard
biharmonic diffusion. Thus, it is not apparent that such
schemes will remove the Veronis effect to a satisfactory
degree.

In this section, we investigate the extent to which
the retention of water masses can be improved by im-
plementing the adiabatic GM90 scheme in our ideal-
ized numerical model. We then propose a new scale-
selective variation of the scheme for use in eddy-per-
mitting models.

a. Gent and McWilliams scheme

Gent and McWilliams (1990) parameterize the lateral
turbulent mixing term F � in (16) by4

��
�F ⌅ ⇥ u*·�� ⌥ w* , (20)� ⇥�z

where

� �b �b
u* ⌅ ⌃ , w* ⌅ ⇥� · ⌃ , (21)� ⇥ � ⇥�z �b /�z �b /�z

and b is buoyancy.
The effectiveness of the scheme in preserving the

model’s water masses is shown in Fig. 10. Here we plot
the mean depth of the isopycnals after 10 years in runs
employing GM90 at 1⇧ and 1⁄4⇧ resolution. For compar-
ison the equivalent results from integrations employing
biharmonic horizontal diffusion are also shown. The
transfer coefficients ⌃ used in the GM90 runs are 400
and 100 m2 s⇥1 at 1⇧ and 1⁄4⇧ respectively; the numerical
discretization is given in the appendix. There is no ver-
tical diffusion in each of these experiments, and thus
the initial water mass profile should be exactly preserved
in a perfect model. We find that the use of GM90 greatly
reduces the loss of light water masses from the model.
The temperature of the main thermocline is also much
better preserved using GM90 at 1⇧ resolution, but the
thermocline cools at 1⁄4⇧ resolution due to vertical mo-
tions that develop at the grid scale around the lateral
boundaries.

b. Scale-selective parameterization

The GM90 scheme has been developed primarily as
a parameterization of mesoscale eddies for use in coarse-
resolution ocean models. While GM90 has been used
in eddy-resolving models (Haines and Wu 1998, sub-
mitted to J. Mar. Sys.), it is not ideally suited to this
purpose: GM90 is less scale selective than biharmonic
diffusion and strongly damps eddies and fronts in ad-
dition to grid-scale structures.
The GM90 scheme is based on two key assumptions:

(i) eddies flux isopycnal layer thickness downgradient
and (ii) the eddies are dissipated adiabatically, that is,

4 In general, one should also include a diffusion of temperature,
salinity, and other water mass properties along density surfaces. In
our model, however, this term is identically zero due to the use of a
constant salinity.

available potential energy sink - 
parameterisation of baroclinic instability
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Simple illustration in buoyancy-forced channel (Lee et al. 1997)
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u + u
∗

u

(Danabasoglu et al., 1994)

Several extensions of Gent and McWilliams, mostly relating eddy diffusivity to mean fields, 
e.g., using Eady growth rate (Visbeck et al., 1997) 

Meridional overturning circulation in a coarse-resolution ocean model:

Many other improvements over previous non-adiabatic eddy closures: 
• sharper thermocline; 
• convection confined to places it is known to occur; 
• removal of spurious upwelling in Gulf Stream;
• improved poleward heat transport. 
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atmospheric box - 
CO2 well mixed

ocean box - 
   circulation, 
   carbon cycle
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b) Diapycnal diffusivity experiments

Diapycnal Diffusivity (x10−5m2/s)
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Fig. 3. Sensitivity of the circumpolar transport to (a) the wind stress, and (b) the diapycnal di↵usivity. The “error
bars” are two standard deviations around the long-term mean, calculated from instantaneous monthly values throughout
the averaging period. The 2� (blue) experiments are averaged over 1000 years, the 1/2� (red) experiments over 100 years,
and the 1/6� (green) experiments over 10 years.

4� experiments and the 1/2� experiments were then ini-
tialised from the result of the 2� experiments. After 1000
years, the 1/2� results were then interpolated to 1/6�, and
these experiments begun.1 Where time-average results are
discussed, the 2� experiments have been averaged over 1000
years, the 1/2� over 100 years, and the 1/6� over 10 years.

3. Key results

The key results of our numerical experiments are sum-
marised in Fig. 3, where the relationship between the time-
mean “circumpolar” transport (the zonal transport through
the re-entrant channel) and the strength of the wind forc-
ing (Fig. 3a) and diapycnal di↵usivity (Fig. 3b) are shown.
Di↵erent averaging periods are used for each grid spacing;
1000 years for 2�, 100 years for 1/2�, and 10 years for
1/6�. The bars represent two standard deviations of the
instantaneous monthly transport about the mean. They
indicate the instantaneous variability of the circumpolar
current, rather than any error in the mean, which is ex-

1For reasons of numerical stability it was found to be easier to
initialise the 1/6� diapycnal di↵usivity experiments from the 4� ex-
periments used to initialise the 2� experiments. In some cases, this
leads to a noticeable “lag” between the 1/6� basic state and the 12
experiments that make up the rest of the 1/6� diapycnal di↵usivity
suite.

tremely small.
Examination of Fig. 3a demonstrates that the non-eddy-

resolving model (2�, blue line) behaves much like global
climate models, i.e. the circumpolar transport changes
dramatically with the wind stress. Even with no wind at
all (⌧0 = 0Nm�2) a significant TACC of ⇠ 50Sv occurs.
This transport occurs for the reasons elucidated by Mun-
day et al. (2011), i.e. that the global pycnocline is deep-
ened by diapycnal mixing, even in the absence of wind.
This then leads to a considerable circumpolar transport
via thermal wind shear. The increase in TACC with wind
forcing continues across the extreme range considered here,
which reaches a peak wind stress of 1.0Nm�2, compared to
the basic state value of 0.2Nm�2. The increase in trans-
port does not remain linear with wind stress, although it
is close to this limit across many of the experiments. The
reader should note that no “error bars” are shown on the
� = 2� line of Fig. 3a as the variability is so low that they
would be smaller than the plotted symbol in most cases.

When the grid spacing is refined to 1/2� (red line),
and again to 1/6� (green line), the model behaves like the
high resolution numerical models discussed in Section 1.
In other words, TACC “saturates” at some finite value of
wind stress and ceases to increase with further increases
in wind stress. Indeed, for the first time our 1/6� exper-

6

Note: explicit (partially-resolved) eddies behave very differently to Gent and McWilliams!
                                                                                     

(Munday et al., 2013, in press, JPO)

parameterised eddies - 
Gent and McWilliams

explicit eddies                                                                                     
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Alternative paradigm: potential vorticity mixing    

often advocated ... rarely implemented!

Idea: potential vorticity                        is materially conserved in absence of forcing/dissipation:q =
f + �

h

@q

@t
+ u ·rq = 0

⇒ stirred and mixed along density surfaces?

  

D P Marshall
1

P S Berloff
2

James R Maddison
1

1
Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford

2
 Grantham Institute for Climate Change and Department of Mathematics, Imperial College London

Eddy parameterisation and the geometry

of the eddy-mean-flow interaction
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PV mixing problem 1: conservation of energy

e.g. , freely-decaying turbulence over a seamount     (Adcock and Marshall, 2000)

geostrophic streamfunction                     potential vorticity

?

Fig. 1. Schematic diagram illustrating a di�culty with eddy closures based on unconstrained
potential vorticity mixing (adapted from Adcock and Marshall, 2000). Flow is confined to
an abyssal layer, underlying an infinitely-deep, motionless upper layer. The initial state
(left-hand panel) consists of a set of geostrophically-balanced eddies, associated with a de-
formed layer interface (solid line), above a seamount (solid shading). If the eddies were to
completely homogenize the potential vorticity field (right-hand panel) this would require
the layer interface to rise completely over the seamount and, in turn, a large anticyclonic
circulation around the seamount. However, the energy of this hypothetical end state exceeds
that in the initial state, indicating that unconstrained potential vorticity mixing is physically
impossible.

46
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Energy ~ conserved in geostrophic turbulence due to inverse cascade:

streamfunction

vorticity

(calculation: Vallis and Maltrud)

16



initial final  final q
final 

vorticity

∂q/∂ψ ∂q/∂ψ

low beta  

high beta  

Freely-decaying barotropic turbulence (Wang and Vallis, 1994)
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PV mixing problem 2: conservation of momentum

e.g. , consider a quasigeostrophic periodic channel: 

conservation of momentum

ZZZ
q

0
v

0
dx dy dz = 0

suppose                     

 ⇒  down-gradient eddy closure,                               , only consistent if              (i.e., no eddies!)  q�v� = �� ⇤q/⇤y

dq/dy > 0

� = 0

not satisfied by down-gradient potential vorticity closure without constraints on eddy diffusivity     
                                                          (Green, 1970; J. Marshall, 1981)

?

Q

y

Q�v�
q�v�z

qz

y

Fig. 2. Schematic diagram illustrating a further di�culty with eddy closures based on
unconstrained potential vorticity mixing. The flow in the zonal channel is such that the
meridional potential vorticity gradient is positive-definite. Conservation of zonal momen-
tum requires that the meridional eddy potential vorticity flux, q0v0z, integrates to zero over
the entire domain. However, this is consistent with a local down-gradient potential vor-
ticity closure if the eddy di↵usivity is identically zero. The latter is consistent with the
unconditional stability of the initial flow.

47

note: this is the Charney-Stern stability condition
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Eddies mix potential vorticity along density surfaces ... 
    ... subject to constraints of energy and momentum conservation

Goal:

Develop framework for interpreting and parameterising eddy potential vorticity fluxes 
in which the relevant symmetries and conservation laws are preserved.  

19

@ug

@t
+ ug ·rug + f0k⇥ uag + �y k⇥ ug +

rpag
⇢0

= 0momentum:

buoyancy:

r · uag +
@wag

@z
= 0

@b

@t
+ ug ·rb+ wag N 2

0 = 0

only eddy forcing

Quasi-geostrophic equations

r · ũag +
@w̃ag

@z
= 0

@b

@t
+ ug ·rb+ w̃ag N 2

0 = 0

@ug

@t
+ ug ·rug + f0k⇥ ũag + �y k⇥ ug +

rpag
⇢0

= �k⇥ q0u0

“Residual-mean” equations: 
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How to build momentum conservation into an eddy closure?

S =
f0

N 2
0

v�b�R =
f0

N 2
0

u�b� eddy buoyancy flux (eddy form stress)
   
   - these are the terms parameterised in
     Gent and McWilliams (1990)

where: M =
v�2 � u�2

2
Reynolds stressesN = �u�v�

eddy potential energyP =
b�2

2N 2
0

q0u0 = r ·

0

@
�N M � P 0

M � P N 0
R S 0

1

A

(Plumb 1986)

Write potential vorticity flux as: 

“Taylor identity”

21

5. Energy conservation can be enforced via explicit eddy energy budget 
                                                                                (cf. Eden and Greatbatch, 2008).

3. Second column is Eliassen-Palm flux  (associated with propagation of wave activity).

Advantages: 

1. Angular momentum constraints preserved if boundary conditions correctly applied. 

2. If we neglect the Reynolds stresses, then reduces to parameterising eddy form 
      stress as in Gent and McWilliams 
      ⇒ natural framework for extending GM to include Reynolds stresses. 

over many time levels, we have

N 2
0

2f 2
0

(R2 + S2) ⇤ 2KP ⇤ E2

2
. (10)

This result emphasises that one needs both eddy potential energy and eddy
kinetic energy in order to achieve an eddy buoyancy flux. If either is absent,
then there are either no buoyancy anomalies to transport or no eddy velocity
to transport the anomalies respectively. The latter inequality follows by noting
P = E �K and maximizing the resultant quadratic.

Summing each of the above results, we find the final result:

1

2

�

(�N)2 + (M � P )2 + (M + P )2 +N2 +
N 2

0

f 2
0

(R2 + S2)

⇥

=

M2 +N2 + P 2 +
N 2

0

2f 2
0

(R2 + S2)⇤E2 (11)

where

E = K + P =
u� · u�

2
+

b�2

2N 2
0

is the total eddy energy.

This result is useful for a number of reasons:

(i) It places an upper bound on the magnitude of the eddy fluxes that we wish
to parameterize.

(ii) The eddy energy is a quantity that can be easily calculated as a prognostic
variable in an eddy closure following the approach of Eden and Greatbatch
(2008), Marshall and Adcroft (2009).

(iii) The fact that the eddies are bounded by the total eddy energy, rather than
the eddy kinetic energy (as used in Eden and Greatbatch 2008) is especially
helpful since it is the total eddy energy that grows or decays at the expense
of mean energy.

2.4 Plane wave limit

It is helpful to briefly consider the simpler scenario of plane waves, in which
case the eddy stress tensor components have a further simple physical inter-
pretation.

8

         

4. Eddy energy provides an upper bound on a norm of the stress tensor: 

q0u0 = r ·

0

@
�N M � P 0

M � P N 0
R S 0

1

A

22



7. Unknowns are nondimensional and ≤ 1 in magnitude. 

horizontal orientation vertical orientation

    

6. Energy norm allows eddy stress tensor to be rewritten, without loss of generality, in 
    terms of eddy energy, 2 eddy anisotropies, and 3 eddy flux angles: 

     

q0u0 = r ·

0

@
�N M � P 0

M � P N 0
R S 0

1

A

P = E sin2 �

R = �b
f0
N0

E cos�b sin 2�

M = ��mE cos 2�m cos

2 � N = �mE sin 2�m cos

2 �

S = �b
f0
N0

E sin�b sin 2�

3. A new framework

In this project, we propose a new  approach in which we rewrite the eddy flux of  quasigeostrophic 
potential vorticity as the divergence of an eddy stress tensor (Plumb 1986): 

where

The terms, M and N, represent the eddy Reynolds stresses, P is the eddy potential energy, and R 
and S represent the eddy form stresses (or eddy buoyancy fluxes); f0 and N0 are the Coriolis 
parameter and buoyancy frequency, and b is buoyancy. 

Writing the eddy flux of potential vorticity in this form is useful for a number of reasons: 
(i) If boundary conditions are correctly applied to the individual components of  the eddy stress 

tensor, then any angular momentum constraints are guaranteed to be satisfied. 
(ii) The eddy form stresses, R and S, are precisely the terms parameterised in the popular Gent 

and McWilliams closure. This is thus a natural framework for extending Gent and McWilliams to 
account for eddy momentum fluxes. 

(iii) The second column in the eddy stress tensor is the three-dimensional Eliassen-Palm flux, 
which has been discussed in detail in the meteorological context (e.g., Plumb 1985) and is also 
associated with the propagation of wave activity (Andrews and McIntyre 1976). 

(iv) Of  particular interest (as far as we are aware, this is a new  result) is that a rigorous upper 
bound exists for the weighted square sum of the five quantities contributing to the eddy stress 
tensor in terms of the total eddy energy:  

This allows the components of  the eddy stress tensor to be rewritten, without loss of generality, 
in terms of the eddy energy, E, two eddy anisotropies, " and !, and three eddy flux angles, 
#, # and $:

The eddy anisotropies are bounded 
by 0 and 1. At a simple conceptual 
level, one can interpret the eddy 
anisotropies as measuring the mean 
“shape” of the eddies. This is 
illustrated in Fig. 1 for the lateral 
anisotropy, ". The eddy flux angles 
measure the direction of anisotropy. 
The vertical angle also quantifies 
the partitioning of  eddy energy 
between kinetic and potential forms. 

(v) Eddy energy is easily carried as a prognostic model variable, following Eden and Greatbatch 
(2008). Note that it is the total, and not kinetic, eddy energy that is required. 

(vi) There is no eddy length scale to be prescribed. Spatial structure in the eddy fluxes of potential 
vorticity arises purely from spatial structure of  the eddy energy field and/or eddy flux angles 
and eddy anisotropies. 

(vii)The eddy flux angles have a strong connection with classical instability theory. When eddies 
lean “against” the mean horizontal or vertical shear, they extract energy from the mean flow, 
i.e., the flow  is unstable; conversely, when eddies lean “into” the mean horizontal or vertical 
shear, they return energy to the mean flow, i.e., the mean flow is stable. 

 

Fig. 1: Schematic diagram of: (a) a circular eddy which has 
no anisotrophy ("=0) and no meridional eddy flux of zonal 
momenum; (b) an anisotropic eddy  ("=1) with a positive 
meridional eddy flux of zonal momentum. 
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(see, for example, Wardle and Marshall 2000, Ferreira and Marshall 2006).

b. Angular momentum constraint

Consider the specific case of a zonal, periodic channel of uniform depth. Integrating the
eddy flux of potential vorticity over the channel, it is easily shown that (refs)

∫ ∫ ∫

Q′v′ dx dy dz =
∫ ∫ ∫

F (x)
eddy dx dy dz = 0. (7)

This is equivalent to the statement that eddies can only redistribute, but not create,
angular momentum.

Now suppose that the eddy flux of potential vorticity is parameterized through a down-
gradient closure,

Q′v′ = −κ
∂Q

∂y
⇒

∫ ∫ ∫

Q′v′ dx dy dz $= 0

unless very strong constraints are imposed on κ (Green 1970).

Instead, we we seek a formulation of the eddy potential vorticity flux which guaran-
tees angular momentum is conserved. To achieve this, we note that the eddy potential
vorticity flux can be written as the divergence of an eddy stress tensor (Plumb 1986):

Q′u′ = ∇ ·







−N M − P
M + P N

R S






. (8)

Here

M =
v′2 − u′2

2
, N = u′v′, P =

b′2

2N 2
0

, R =
f0

N 2
0

b′u′, S =
f0

N 2
0

b′v′.

Boundary conditions are R = S = 0 at the sea surface and sea floor (the latter is assumed
flat for now — not sure how to modify this for a sloping bottom — might be some
unexpected surprises but my gut instinct is that all will work out!) On lateral boundaries,
M = K cos 2φ and N = −K sin 2φ where φ is the angle at which the boundary is oriented
with respect to the x axis and K is the eddy kinetic energy. (For no-slip boundaries,
which are the most likely to be encountered in ocean models, M = N = 0.)

c. A bounded norm for the eddy stress tensor

Firstly, we note that the components of the eddy stress tensor, M and N , and bounded
by

M2 + N2 ≤ K2 (9)

where

K =
u′ · u′

2

3

d. Plane wave limit

It is helpful to briefly consider the simpler scenario of plane waves, in which case the
eddy stress tensor components have a further simple physical interpretation.

Specifically, we define the “puesdo velocity” vector

U′ =

(

u′, v′,
b′

N0

)

=

(

−∂ψ′

∂y
,
∂ψ′

∂x
,

f0

N0

∂ψ′

∂z

)

,

which represents the eddy velocity in the horizontal but a weighted measure of buoyancy
anomalies in the vertical. It follows that

E =
U′ · U′

2
.

We can now write:
U′ = |U′|(cosφ cos λ, sin φ cosλ, sin λ)

where φ and λ represent the orientation of the pseudo velocity vector in the horizontal
and vertical respectively (see Figure). Substituting these into the expressions for the
eddy stress tensor components we find:

M = E cos 2φ cos2 λ, N = −E sin 2φ cos2 λ, P = E sin2 λ,

R =
f0

N0
E cos φ sin 2λ, S =

f0

N0
E sin φ sin 2λ.

Note that inequalities discussed in subsection c become equalities in this plane wave
limit.

e. Arbitrary eddy field

More generally we need to introduce “anisotropy parameters” into these expressions
to account for the fact that the direction of the psuedo velocity vector fluctuates with
time. These anisotropy parameters are bounded by zero and unity, with a value of unity
corresponding to the plane wave limit (where the pseudo velocity vector has a single
direction at each point) and a value of zero corresponding to a completely isotropic eddy
field with no preferred orientation of the psuedo velocity vector.

Without any loss of generality, we can rewrite the components of the eddy stress tensor
for an arbitrary eddy field in the form:

M = γE cos 2φ cos2 λ, N = −γE sin 2φ cos2 λ, P = E sin2 λ,

R = α
f0

N0
E cos φ̃ sin 2λ, S = α

f0

N0
E sin φ̃ sin 2λ. (12)

Note that the angles in the above expressions need no longer relate in a straightforward
manner to the equivalent angles (now fluctuating) instantaneous pseudo velocity vector.
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Firstly, we note that the components of the eddy stress tensor, M and N , and bounded
by

M2 + N2 ≤ K2 (9)

where

K =
u′ · u′
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3

is the eddy kinetic energy (Hoskins et al. 1983). To prove this result, note that the result
is an equality at any instant in time, then apply the triangle theorem to the summation
over many time levels. Indeed Hoskins et al. further note that for barotropic plane
waves, the “E-vector”, (M, N) = Kĉg where ĉg is a unit vector defining the direction of
group propagation.

Secondly, we note that P is exactly the eddy potential energy.

Thirdly, again through application of the triangle inequality to the summation over many
time levels, we have

N 2
0

2f 2
0

(R2 + S2) ≤ 2KP ≤ E2

2
. (10)

This result emphasises that one needs both eddy potential energy and eddy kinetic
energy in order to achieve an eddy buoyancy flux. If either is absent, then there are
either no buoyancy anomalies to transport or no eddy velocity to transport the anomalies
respectively. The latter inequality follows by noting P = E − K and maximizing the
resultant quadratic.

Finally summing each of the above results, we find the final result:1

M2 + N2 + P 2 +
N 2

0

2f 2
0

(R2 + S2) ≤ E2 (11)

where

E = K + P =
u′ · u′

2
+

b′2

2N 2
0

is the total eddy energy.

This result is useful for a number of reasons:

(i) It places an upper bound on the magnitude of the eddy fluxes that we wish to
parameterize.

(ii) The eddy energy is a quantity that can be easily calculated as a prognostic variable
in an eddy closure following the approach of Eden and Greatbatch (2008), Marshall and
Adcroft (2009).

(iii) The fact that the eddies are bounded by the total eddy energy, rather than the eddy
kinetic energy (as used in Eden and Greatbatch 2008) is especially helpful since it is the
total eddy energy that grows or decays at the expense of mean energy.

1Alternatively, one can write the inequality in terms of a norm of the eddy stress tensor defined as
the weighted sum of the squares of the six individual components:

1

2

[

(−N)2 + (M − P )2 + (M − P )2 + N2 +
N 2

0

f2
0

(R2 + S2)

]

≤ E.

4

~

q�v� = ��
⇥q

⇥y

�m = 0 �m ! 1

“wave-like”

e.g., barotropic eddies: 
              (plan view)
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8. Eddy flux angles have a strong connection with classical stability theory: 
        eddies lean “against” mean shear ⇒ extract energy from mean flow (instability);
        eddies lean “into” mean shear ⇒ return energy to mean flow (stability). 

    

eddy force

q’v’

N<0

N>0

(Waterman et al. 2011)

q0u0 = r ·

0

@
�N M � P 0

M � P N 0
R S 0

1

A
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Application to the Eady model
 

uniform 
shear

6.6 The Eady Problem 283
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Fig. 6.12 Left column: Vertical structure of the most unstable Eady mode. Top: con-
tours of streamfunction. Middle: temperature, proportional to @ =@z . Bottom: merid-
ional velocity, proportional to @ =@y . Negative contours are dashed, and two complete
wavelengths are present in the horizontal. Poleward flowing (positive v) air is generally
warmer than equatorward flowing air. Right column: Same, but now for a wave just be-
yond the short-wave cut-o�. There is no phase-tilt in the vertical, and the temperature
perturbations at the upper and lower boundaries are no longer able to interact.

Scale of maximum instability: Lmax ⇤ 3:9Ld ⇤ 4000 km; (6.96)

Growth Rate: � ⇤ 0:3
U

Ld
⇤ 0:3 � 10

106
s�1 ⇤ 0:26 day�1:

(6.97)

For the ocean

For the main thermocline in the ocean let us choose

H ⇥ 1 km U ⇤ 0:1 m s�1 N ⇥ 10�2 s�1: (6.98)

most unstable mode:

 0

leans against  
mean shear

can reverse argument to infer 
Gent and McWilliams diffusivity 
- turns out to be Visbeck et al. (1997)

Eady growth rate 
if α = 0.61

=

Z Z Z
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S dx dy dz.

Eddy energy budget:
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E dxdy dz = �

Z Z Z
u q

0
v

0
dx dy dz

= ↵

f0

N0

@u

@z

Z Z Z
E dxdy dz

↵  (�b sin�b sin 2�)max

 1↵  (�b sin�b sin 2�)max

 1

25

Application to 3-layer,
eddy-resolving 
quasigeostrophic 
basin model: 

(a) (d)

(e)(b)

(c) (f)H3�3 (Sv)
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Fig. 5. A three-layer quasigeostrophic baroclinic double gyre simulation. (a), (b) and (c)
show snapshots of the transport streamfunction Hi i in the upper, middle and lower layers
respectively. (d), (e) and (f) show the snapshots of the potential vorticity q in the upper,
middle and lower layers respectively.
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3-layer eddy-resolving basin model - eddy anisotropy
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cg

Eddy mixing angles: ray-tracing?  

ẋ =
⇥�

⇥k
, k̇ = �⇥�

⇥x

� = �̂ + u · k

⇤ � �k

k2 + l2
+ uk

(e.g., Buhler and McIntryre 2005)

zonal 
momentum 
flux

“banana-shaped” eddies ⇒ 
up-gradient momentum fluxes 
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Jet$sharpening!!

Piecewise'linear'barotropic'jet'with'beta:!

Simple ray-tracing pilot study     (Talia Tamarin)

potential
vorticity

time
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Jet$sharpening!!

Piecewise'linear'barotropic'jet'with'beta:!

Eddy$%lt$from$ray$tracing!

Simple ray-tracing pilot study     (Talia Tamarin)

potential
vorticity

time
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If                    , eddy energy can grow only at the expense of eddy potential enstrophy.

 ⇒ stable (in the sense of Lyapunov) - Arnold’s first stability theorem. 

dq/d� > 0

Physical interpretation?    (Marshall and Adcroft, 2010) 

Eddy energy equation: ⇤

⇤t

u� · u�

2
+⇥ · (. . .) = q�u� ·⇥�

⇥

⇥t

q�2

2
+⇤ · (. . .) = �q�u� ·⇤qEddy enstrophy equation:

What about mixing of potential vorticity?
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Fig. 5. A three-layer quasigeostrophic baroclinic double gyre simulation. (a), (b) and (c)
show snapshots of the transport streamfunction Hi i in the upper, middle and lower layers
respectively. (d), (e) and (f) show the snapshots of the potential vorticity q in the upper,
middle and lower layers respectively.
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If we: (i) solve an explicit eddy potential enstrophy (     ) budget;
          (ii) include dissipation of       ( = potential vorticity mixing); 
          (ii) ensure          vanishes when       vanishes;
          [use another bound on divergence of eddy stress tensor?]

then Arnold’s first stability theorem is preserved. 

⇥
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2
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⇥

⇥t

q�2

2
+⇤ · (. . .) = �q�u� ·⇤q
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Wind-driven gyres (free-slip): 

boundary condition – see Roberts and Marshall, 2000 for further
discussion). This decomposition is made is remove the largest com-
ponent of the eddy flux, directed around contours of eddy energy
(cf. Marshall and Shutts, 1981), consistent with the parameterized
mean-to-eddy conversion being defined in terms of the component
of the eddy vorticity flux directed down the mean vorticity gradient
in (14).3

Over the first time-interval, years 5–6 (Fig. 2), the mean flow
has many qualitative similarities with the solution after 10 years
in the case with parameterized eddies (Fig. 1). The eddy energy
field is roughly a factor of two stronger in the integration with ex-
plicit eddies, but the distribution of eddy energy is broadly similar
with somewhat enhanced eddy energy adjacent to the western
boundary in the eddy-resolving case. The mean-to-eddy energy
conversion in the eddy-resolving integration (Fig. 2d) has a quali-
tatively similar structure to that with parameterized eddies
(Fig. 1d). The largest energy conversion is found in the separated
jet at the inter-gyre boundary. The main difference in the eddy-
resolving integration is a more extended region of eddy energy de-

Fig. 1. Wind-driven gyres with free-slip boundary conditions and parameterized eddies. The panels show snapshots over the entire domain, after 10 years of integration from
a rest state, of: (a) transport streamfunction, Hw (Sv); (b) absolute vorticity ð10"4 s"1Þ; (c) parameterized eddy kinetic energy ðm2 s"2Þ; (d) mean-to-eddy energy conversion,
"jrw $rq ð10"7 m2 s"3Þ. The eddy diffusivity is proportional to the square root of the eddy kinetic energy, with a peak value of roughly 2000 m2 s"1.

3 Note, also, that an explicit time-averaging operator is included in the definition of
the mean velocity in (19) since, in contrast to the case with parameterized eddies
where the ‘‘mean” velocity is defined at every time step, in the case with explicit
eddies it is obtained as the time-average over a two-year window.

D.P. Marshall, A.J. Adcroft / Ocean Modelling 32 (2010) 188–204 193
parameterised eddies

wind
stress

cay within the inertial western boundary currents where
@q=@w? > 0; there is also a hint of inertial Fofonoff gyres forming
at the northern and southern flanks of the basin.

Over the second time-interval, years 9–10 (Fig. 3), the inertial
Fofonoff gyres have grown to similar amplitude as the main gyres,
such that there is now a four-gyre circulation (cf. Greatbatch and
Nadiga, 2000). The pattern of eddy energy conversion in the center
of the basin is qualitatively similar to that obtained over the earlier
time interval, but with some additional structure over the northern
and southern parts of the basin. Our parameterized eddy calcula-
tions appear to be unable to support the growth of substantial
Fofonoff gyres with free-slip boundary conditions; however, these
Fofonoff gyres are obtained if the free-slip condition is replaced by

a hyper-slip boundary condition – this scenario is explored in
freely-decaying turbulence simulations in Section 4.4.

The mean-to-eddy energy conversion term (19) in Figs. 2d and
3d has been calculated using the divergent component of the eddy
vorticity flux. This is in keeping with the definition of the parame-
terized conversion term being in terms of the component of the
eddy vorticity flux directed down the mean vorticity gradient
(14). For completeness. in Fig. 4, we show the equivalent conver-
sion terms calculated using the full eddy vorticity flux,

u ! k" q0u0:

There are significant differences between the two forms of the
eddy conversion term, emphasising that the eddy conversion is

Fig. 2. Wind-driven gyres with free-slip boundary conditions and explicit eddies. The panels show a 2 year average over years 5–6 of integration from a rest state, of: (a)
transport streamfunction, Hw (Sv); (b) absolute vorticity ð10$4 s$1Þ; (c) eddy kinetic energy ðm2 s$2Þ; (d) mean-to-eddy energy conversion, u ! k" q0u0

div ð10$7 m2 s$3Þ.

194 D.P. Marshall, A.J. Adcroft / Ocean Modelling 32 (2010) 188–204

resolved eddies

(Marshall and Adcroft, 2010)Qualitative illustration - with energetically-consistent PV closure 

32



(including on the northern and southern boundaries). The main
difference with the parameterized case is a narrow strip of en-
hanced eddy energy, immediately flanking the inertial Fofonoff
gyres; these strips of enhanced eddy energy appear to be associ-
ated with a localized region of mean-to-eddy energy conversion
at the eastern margin of the Fofonoff gyres, indeed westward prop-
agating eddies can be observed radiating from these regions in the
transient solution (not shown).

Finally, in Fig. 11 we show the domain-averaged energy budget
for the freely-decaying turbulence integrations with both parame-
terized and explicit eddies. Additionally plotted is the energy bud-
get for an integration with parameterized eddies in which the eddy

diffusivity for vorticity is maintained at a uniform, constant value,
equal to the initial value in the standard case with parameterized
eddy energy. With both parameterized and explicit eddies, the
eddy energy initially grows at the expense of the eddy energy
while the total energy decays slightly due to friction (somewhat
more in the case with explicit eddies). The growth of the mean en-
ergy tapers off after about 10 years in the parameterized case, and
after about 5 years in the eddy-resolving case; a notable difference
is that significant eddy energy remains in the eddy-resolving calcu-
lation even after the Fofonoff gyres have achieved their maximum
strength, mostly associated with the band of eddies flanking the
Fofonoff gyres in the eddy-resolving calculation as discussed

Fig. 7. Freely-decaying turbulence with parameterized eddies, after 5 years of integration from an initially uniform parameterized eddy kinetic energy. The panels show
snapshots of: (a) transport streamfunction, Hw (Sv); (b) absolute vorticity ð10"4 s"1Þ; (c) parameterized eddy kinetic energy ð10"2 m2 s"2Þ; (d) mean-to-eddy energy
conversion, "jrw $rq ð10"9 m2 s"3Þ.

D.P. Marshall, A.J. Adcroft / Ocean Modelling 32 (2010) 188–204 199

parameterised eddies

Freely-decaying turbulence (hyper-slip, initial uniform eddy energy):

where the quasigeostrophic potential vorticity is defined:

Q ¼ byþ fþ @

@z
f0
N2 b

! "
:

Surface and bottom boundaries are most conveniently considered
as constant buoyancy, with actual boundary buoyancy variations
instead being represented as delta-sheets of potential vorticity, fol-
lowing the procedure described by Bretherton (1966).

By analogy with the barotropic case, we assume a down-gradi-
ent closure for the eddy flux of potential vorticity, to within an
arbitrary rotational gauge:

Q 0u0 ¼ #jrQ þ k$rk: ð23Þ

5.2. Energetics and Arnold’s first stability condition

The quasigesotrophic energy equation can be written:

@

@t
u0 ' u0

2
þ b02

2N2

 !
¼ k$ Q 0u0 ' uþr ' ð. . .Þ

¼ #jrQ 'rwþr ' ð. . .Þ ð24Þ

¼ #j@Q
@w?

u ' uþr ' ð. . .Þ ð25Þ

where

@Q
@w?

¼ rQ 'rw
rw 'rw

:

Fig. 10. As in Fig. 9 but averaged over years 5–6 of the integration.
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resolved eddies
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Thus, as in the barotropic limit, there is a precise connection be-
tween the net decay or growth of the parameterized eddy energy
and the stability or instability of the flow, analogous to Arnold’s first
stability theorem. Specifically, if @Q=@w? is everywhere positive,
which is a sufficient condition for stability, then the parameterized
eddy energy decays on average and is converted to mean energy;
conversely, if @Q=@w? is somewhere negative, which is a necessary
condition for instability, then the parameterized eddy energy might
be able to grow on average at the expense of mean energy.

6. Discussion

Stability properties of fluid flows are often associated with con-
servation principles. In this manuscript, we have studied the stabil-
ity properties of a class of eddy closures that (i) flux (potential)
vorticity down-gradient, and (ii) solve an explicit conservation
equation for the parameterized eddy energy, as proposed by Eden
and Greatbatch (2008). We have shown that such closures preserve
a parameterized analogue of Arnold’s first stability theorem: the
growth or decay of the eddy energy is related to the sign of
@Q=@w? where Q is the potential vorticity, w is the streamfunction,
and the derivative is evaluated perpendicular to the streamlines.
Specifically @Q=@w? > 0 everywhere is a sufficient condition for
stability and for the parameterized eddy energy to decay on aver-
age; conversely @Q=@w? < 0 somewhere is a necessary condition
for instability and for the parameterized eddy energy to grow on
average. These results have been derived for barotropic and quas-
igeostrophic stratified oceans, but we have no reason to assume
they are specific to these settings.

A practical benefit of solving a prognostic eddy energy equation
is that it allows potential vorticity to be fluxed down-gradient
without generating spurious sources of energy. This has been a
particularly problematic issue over variable bottom topography
where complete potential vorticity homogenization (including
the contribution from the bottom density variations) requires the
isopycnals to rise completely over the topography. Attempts to flux
potential vorticity down-gradient in such regions (e.g., Greatbatch
and Li, 2000) can therefore result in unphysically large topographic
recirculations and imply spurious energy sources. Adcock and Mar-
shall (2000) proposed a potential vorticity closure which conserves
the energy of the resolved flow in order to avoid these spurious en-
ergy sources. However, the present approach offers a more practi-
cal and physically consistent solution in which the eddy energy,
and hence the potential vorticity fluxes, decay as energy is trans-
ferred from the eddies to the mean flow.

One issue that we have not addressed here, but is discussed
briefly in Eden and Greatbatch (2008), is the role of angular
momentum conservation in multiply-connected domains. Angular
momentum conservation imposes additional constraints on the
eddy fluxes of potential vorticity (e.g., Green, 1970; Marshall,
1981; Wood and McIntyre, in press), which are generally incom-
patible with fluxing potential vorticity down-gradient while relat-
ing the eddy transfer coefficient solely to the eddy energy. Eden
and Greatbatch discuss the pragmatic solution of adding an addi-
tional term to the eddy potential vorticity flux to restore angular
momentum conservation, but this approach destroys some of the
relations we have derived here between the stability properties
of the flow and the growth or decay of eddy energy. Instead, we
suspect that it is necessary to parameterize the eddy potential vor-
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average defined above), yields the average QGPV induction equation:

∂tDa +
(
[ug]

b Da
)

;b
+ [f0] [uag]

a + [f1] [ug]
a =

1

[ρ0]
εabcZb[pag],c +Ra − T ab

;b , (2.20)

with continuity equations:

[ug]
a
;a = 0, [uag]

a
;a = 0. (2.21)

and where a QGPV induction eddy flux tensor has been introduced:

T ab = [ug]
b′Da′. (2.22)

It follows that the average QGPV equation is:

∂tq +
(
[ug]

a q
)

;a
= Ra

;a − T ab
;ab. (2.23)

Since the double divergence of the eddy flux tensor T ab
;ab is the eddy QGPV tendency, the

divergence of the eddy flux tensor T ab
;b is equal to the eddy QGPV flux plus a rotational

term.
In the x, y, z coordinate system the eddy flux tensor T ab has components:

T b
a = gacT

cb =




N M −K R

M +K −N S
0 0 0



 (2.24)

where the contravariant index indicates the row and the covariant index the column, and
where:

M =
1

2

(
[vg]

′2 − [ug]
′2
)

N = [ug]
′ [vg]

′

K =
1

2

(
[vg]

′2 + [ug]
′2
)

R =
[f0]

[N0]
2 [ug]

′ b′ S =
[f0]

[N0]
2 [vg]

′ b′. (2.25)

M andN are the eddy Reynolds’ stresses (the horizontal fluxes of horizontal momentum),
R and S are the eddy buoyancy fluxes (the vertical fluxes of horizontal momentum) and
K is the eddy kinetic energy.

2.5. Eliassen-Palm flux tensor

Since the eddy tendency in the QPGV equation appears as the double divergence of the
eddy flux tensor T ab, two forms of gauge freedom may be exploited. In particular, one
may add rotational terms to either the columns or rows of the component expansion
(2.24). Hence T ab can be replaced with [T ∗]ab where:

[T ∗]ab = T ab + εacdU b
d;c + εbcdV a

d;c, (2.26)

where Ua
b and V a

b are arbitrary mixed-type tensors. Gauge freedom can, for example, be
exploited to move eddy momentum fluxes between the momentum and buoyancy equa-
tions, and thereby replace horizontal momentum fluxes with horizontal buoyancy fluxes.
Note that one may not, in general, delete the horizontal eddy momentum fluxes from the
momentum equation without permitting an (arguably non-physical) eddy momentum
flux through either the upper or lower boundaries.
In particular, the QGPV equation, and the resulting dynamics, are entirely unaffected
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case the Eliassen-Palm flux tensor [ER]
ab is replaced by a tensor with components, in

the x, y, z coordinate system:

E b
a = gacE

cb =




−M + P N 0

N M + P 0
−S R 0



 . (2.41)

2.5.4. Hoskins et al 1983 E-vector

The Hoskins et al. (1983) E-vector is arrived at by choosing Aab such that, in the x,

y, z coordinate system, the eddy flux tensor [T ∗]ab = [T ∗

H ]ab and has components:

[T ∗

H ] ba = gac [T
∗

H ]cb




N 2M 0
0 −N 0
R S 0



 . (2.42)

The Hoskins E-vector is then the y-component of this tensor:

[EH ]a =




2M
−N
S



 . (2.43)

In Hoskins et al. (1983) the limiting case ∂xN + ∂zR ≈ 0 is considered, in which case the
E-vector captures the dynamically significant components of the eddy flux tensor.
Since the Hoskins et al. (1983) “E-vector” is formed a component of the tensor [T ∗

H ]ab

it is not a formal vector. It is noted in Hoskins et al. (1983) that the E-vector fails to
transform as a vector, and hence it is termed a “quasi-vector”. The correct geometric
object characterising the eddy-mean-flow interaction is the full rank two tensor.

2.5.5. Symmetric momentum flux tensor

Finally, one may choose:

Aab = [AS ]
ab =

1

2

(
T ba − T ab

)
, (2.44)

leading to:

[T ∗]ab = [T ∗

S ]
ab =

1

2

(
T ab + T ba

)
. (2.45)

In the x, y, z coordinate system this has components:

[T ∗

S ]
b
a = gac [T

∗

S ]
cb =




N M 1

2R
M −N 1

2S
1
2R

1
2S 0



 . (2.46)

Hence one may, in the average QGPV induction equation (2.20), replace the eddy flux
tensor T ab with its symmetric part. This “half-residual-mean” formulation, in which half
of the buoyancy fluxes are transferred to the momentum equation and half are retained
in the buoyancy equation, filters out trivially rotational eddy QGPV fluxes, and yields a
QGPV induction eddy flux tensor with minimum Frobenius norm.

2.6. Geometric decomposition

The QGPV induction eddy flux tensor T ab is an inherently geometric object. Hence this
represents an entirely geometric description of the influence of the eddies on the mean
flow. This is necessarily equivalent to the geometric description in Marshall et al. (2012).

Hoskins et al. (1983) “E-vector” 
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In order to demonstrate this first identify two invariants, the eddy kinetic energy:

K =
1

2
[ug]

a′ [ug]
′

a, (2.45)

and a weighted sum of the eddy kinetic and the eddy potential energies:

L =
1

2
Da′D′

a

= K +
[f0]

2

[N0]
2P (2.46)

Proceeding in a similar manner to Marshall et al. (2012) one can derive, via the triangle
inequality:

[ug]
a′[ug]

b′ [ug]
′

a [ug]
′

b ! 4K2, (2.47a)

[ug]
a′Db′ [ug]

′

a D
′

b − [ug]
a′[ug]

b′ [ug]
′

a [ug]
′

b ! 4
[f0]

2

[N0]
2KP. (2.47b)

Hence one may define two additional invariants via:

[ug]
a′[ug]

b′ [ug]
′

a [ug]b
′ = 4 [γ∗m]2 K2, (2.48a)

[ug]
a′Db′ [ug]

′

a D
′

b − [ug]
a′[ug]

b′ [ug]
′

a [ug]
′

b = 4 [γ∗b ]
2 [f0]

2

[N0]
2KP, (2.48b)

where [γ∗m] and [γ∗b ] are non-dimensional and bounded between zero and unity. In the x,
y, z coordinate system this leads directly to a general decomposition for the components

“half-residual mean”

More rigorous approach: coordinate-invariant derivation        (Maddison and Marshall, 2013)

8 J. R. Maddison and D. P. Marshall

by the addition of any anti-symmetric components to the eddy flux tensor T ab:

∂tq +
(
[ug]

a q
)

;a
= Ra

;a − [T ∗]ab;ab , (2.27)

where:

[T ∗]ab = T ab +Aab, (2.28)

and where Aab is any anti-symmetric tensor, Aab = −Aba. This introduces a non-
divergent (rotational) term into the QGPV induction equation. For any Aab the di-
vergence of the eddy flux tensor T ab

;b is the eddy QGPV flux, plus a rotational term. One
may define a residual-mean ageostrophic velocity:

[
u∗

ag

]a
= [uag]

a −
1

[f0]
Aab

;b , (2.29)

where the second term corresponds to a curl of a vector in Cartesian coordinates. The
QGPV induction equation therefore becomes:

∂tDa +
(
[ug]

b Da
)

;b
+ [f0]

[
u∗

ag

]a
+ [f1] [ug]

a =
1

[ρ0]
εabcZb[pag],c +Ra − [T ∗]ab;b , (2.30)

In the following sections four natural gauge choices are described.

2.5.1. Residual-mean momentum flux tensor

If a tensor Aab is chosen appropriately then [T ∗]ab Za = 0, and the buoyancy equation
will contain no eddy contributions. In particular, one may choose:

Aab = [AR]
ab = T ba − T ab, (2.31)

leading to:

[T ∗]ab = [T ∗

R]
ab = T ba

= [ug]
a′Db′. (2.32)

In the x, y, z coordinate system this has components:

[T ∗

R]
b
a = gac [T

∗

R]
cb =




N M +K 0

M −K −N 0
R S 0



 . (2.33)

Hence one may, in the average QGPV induction equation (2.20), replace the eddy flux
tensor T ab with its transpose. This moves the eddy buoyancy fluxes from the buoyancy
equation to the horizontal momentum equation, yielding a system of dynamical equations
in which no eddy terms appear in the buoyancy equation. With this choice for Aab the
averaged horizontal momentum equation becomes (reached by taking the cross product
of the averaged QGPV induction equation with −Za):

∂t[ug]
a +

(
[ug]

b [ug]
a
)

;b
− [f0] ε

abc
[
u∗

ag

]
b
Zc − [f1] ε

abc[ug]bZc

= −
1

[ρ0]
gab[pag],b + F a − [ER]

ab
;b , (2.34)

while the averaged buoyancy equation can be written (reached by taking the inner prod-
uct of the averaged QGPV induction equation with Za):

∂t
(
DbZb

)
+
(
[ug]

a DbZb

)

;a
+ [f0]

[
u∗

ag

]a
Za = RaZa, (2.35)

“residual-mean”

Plumb (1986)
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where [ER]
ab is the Eliassen-Palm flux tensor:

[ER]
ab = −εacdgce [T ∗

R]
eb Zd. (2.36)

In the x, y, z coordinate system the Eliassen-Palm flux tensor has components:

[ER]
b
a = gac [ER]

cb =




−M −K N 0

N M −K 0
−S R 0



 . (2.37)

Hence, for the quasi-geostrophic equations, the residual-mean equations are reached via
a transpose of the eddy flux tensor T ab.

2.5.2. Cronin 1996 momentum flux tensor

One may also choose Aab such that, in the x, y, z coordinate system, the eddy flux
tensor [T ∗]ab = [T ∗

C ]
ab and has components:

[T ∗

C ]
b
a = gac [T

∗

C ]
cb




N M −K 0

M +K −N 0
R S 0



 . (2.38)

In this case the Eliassen-Palm flux tensor [ER]
ab is replaced by a tensor with components,

in the x, y, z coordinate system:

[EC ]
b
a = gac [EC ]

cb =




−M +K N 0

N M +K 0
−S R 0



 . (2.39)

In Cronin (1996) an Eliassen-Palm flux tensor of this form is derived by applying residual-
mean theory directly, with the exact form differing only in that in Cronin (1996) rota-
tional buoyancy fluxes are removed (equivalent to a slightly modified gauge choice).

2.5.3. Plumb 1986 momentum flux tensor

Alternatively, one may choose Aab such that, in the x, y, z coordinate system, the eddy
flux tensor [T ∗]ab = [T ∗

P ]
ab and has components:

[T ∗

P ]
b
a = gac [T

∗

P ]
cb




N M − P 0

M + P −N 0
R S 0



 . (2.40)

where P = b′2/
(
2 [N0]

2
)
is the eddy potential energy. This is exactly the Plumb (1986)

flux matrix, and the divergence [T ∗

P ]
ab
;b = [ug]

a′q′ is exactly the eddy QGPV flux. In this

case the Eliassen-Palm flux tensor [ER]
ab is replaced by a tensor with components, in

the x, y, z coordinate system:

E b
a = gacE

cb =




−M + P N 0

N M + P 0
−S R 0



 . (2.41)

2.5.4. Symmetric momentum flux tensor

Finally, one may choose:

Aab = [AS ]
ab =

1

2

(
T ba − T ab

)
, (2.42)
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(
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Cronin (1996)

Approach generalises to isopycnal thickness-weighted primitive equations 
 (cf. Young, 2012)
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Other work in progress

• Diagnosing the role of eddy fluxes in zonal jet formation

• Simple extension of Gent and McWilliams to include up-gradient momentum fluxes.

• Simple extension of Gent and McWilliams to include rectified eddy-topography interactions. 

A Geometric Interpretation of Eddy Fluxes
in the Formation of Ocean Jets

James Maddison David Marshall
Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford

1. Introduction
 

Marshall et al 2012 suggests a new geometric framework for the parametrization of 
mesoscale eddies. The framework:
 

a) Includes the popular Gent and McWilliams scheme as a limiting case.
b) Includes horizontal momentum fluxes (Reynolds' stresses).
c) Preserves momentum conservation by construction.
d) Allows energy conservation to be imposed.
e) Yields a simple geometric interpretation of eddy fluxes in terms of eddy
    anisotropies and orientations.

 

We apply this framework to eddy fluxes in the presence of baroclinic zonal jets. The 
mean state of this system is crucially dependent upon both eddy buoyancy fluxes 
and Reynolds' stresses. Hence this a natural context in which to consider extensions 
to the Gent and McWilliams scheme, including horizontal momentum fluxes.

2. Geometric framework

The geometric framework is formulated in a quasi-geostrophic context by writing the 
eddy potential vorticity flux as the divergence of a matrix (Plumb 1986):

A norm of this matrix can be bounded in terms of the total eddy energy    :

 

This leads, without further approximation, to a decomposition for the eddy 
momentum fluxes:

where  five dimensionless and bounded parameters have been introduced:

Marshall et al 2012 propose that one parametrize the total eddy energy     and these 
five non-dimensional and bounded parameters.

A direct parametrization for the horizontal momentum fluxes conserves momentum 
by construction. Hence any parametrization constructed in terms of this 
decomposition also conserves momentum. A parameteization for the total eddy 
energy (e.g. Eden and Greatbatch 2008) can enforce energy conservation.
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4. Quasi-geostrophic model

We use a three-layer quasi-geometric model. The configuration is based on Berloff 2009, forced via lateral 
buoyancy forcing in a 3600km × 1800km domain. The baroclinic deformation radii are 25km and 12km, with 
a grid spacing of 3.5km. The model is integrated in parallel using the CABARET scheme.
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6. Eddy diffusivity
 

The buoyancy diffusivity (Gent and McWilliams coefficient) in a channel is exactly given by:
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1. Introduction
 

Marshall et al 2012 suggests a new geometric framework for the parametrization of 
mesoscale eddies. The framework:
 

a) Includes the popular Gent and McWilliams scheme as a limiting case.
b) Includes horizontal momentum fluxes (Reynolds' stresses).
c) Preserves momentum conservation by construction.
d) Allows energy conservation to be imposed.
e) Yields a simple geometric interpretation of eddy fluxes in terms of eddy
    anisotropies and orientations.

 

We apply this framework to eddy fluxes in the presence of baroclinic zonal jets. The 
mean state of this system is crucially dependent upon both eddy buoyancy fluxes 
and Reynolds' stresses. Hence this a natural context in which to consider extensions 
to the Gent and McWilliams scheme, including horizontal momentum fluxes.

2. Geometric framework
The geometric framework is formulated in a quasi-geostrophic context by writing the 
eddy potential vorticity flux as the divergence of a matrix (Plumb 1986):

A norm of this matrix can be bounded in terms of the total eddy energy    :
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4. Quasi-geostrophic model
We use a three-layer quasi-geometric model. The configuration is based on Berloff 2009, forced via lateral 
buoyancy forcing in a 3600km × 1800km domain. The baroclinic deformation radii are 25km and 12km, with 
a grid spacing of 3.5km. The model is integrated in parallel using the CABARET scheme.
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We use a three-layer quasi-geometric model. The configuration is based on Berloff 2009, forced via lateral 
buoyancy forcing in a 3600km × 1800km domain. The baroclinic deformation radii are 25km and 12km, with 
a grid spacing of 3.5km. The model is integrated in parallel using the CABARET scheme.
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The Eliassen-Palm flux tensor
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The aim of this paper it to derive general coordinate-invariant forms of the Eliassen-Palm
flux tensor and thereby characterise the true geometric nature of the eddy-mean-flow in-
teraction in Boussinesq rotating fluids. In the quasi-geostrophic limit previous forms of
the Eliassen-Palm flux tensor are shown to be related to each other via a gauge trans-
formation; a general form is stated and its geometric properties are discussed. Similar
methodology is then applied to the Boussinesq Navier-Stokes equations to rederive the
residual-mean equations in coordinate-invariant form. Finally the Eliassen-Palm flux ten-
sor arising from the thickness-weight averaged equations is formally derived via a careful
definition of a volume-form-weighted average. Attempts to parameterise eddies in terms
of closures for the eddy potential vorticity flux vector are unlikely to preserve the true
geometric nature of the eddy-mean-flow interaction and, as a consequence, such closures
may violate key physical constraints. A consistent eddy closure, in which physical con-
straints are enforced, may instead be achieved via a direct parameterisation of the rank
two Eliassen-Palm flux tensor.

Key words:

1. Introduction

Residual-mean theory, or the Transformed Eulerian Mean, enables one to recast the
directionally-averaged thermodynamic and momentum equations so that only diabatic
eddy buoyancy fluxes appear in the thermodynamic equation, and the eddy interaction
in the momentum equation appears as the divergence of an Eliassen-Palm flux vector
(Eliassen & Palm 1961; Andrews & McIntyre 1976). The approach yields a simple geo-
metric description in terms of a vector eddy flux of horizontal momentum, and has been
successful in describing and generalising earlier theoretical results concerning eddy-mean-
flow interaction (Andrews & McIntyre 1978; Andrews et al. 1987).
A range of approaches have been suggested in order to extend residual-mean theory to

more general averages, with three-dimensional averaged fields. In the context of the hy-
drostatic primitive equations one traditionally introduces two Eliassen-Palm flux vectors,
one for each component of the horizontal velocity (see, for example, Gent & McWilliams
1996; Smith 1999; Young 2012). Subject to an appropriate definition of a residual cir-
culation one may, as in the directionally averaged case, remove eddy interaction terms
from the thermodynamic equation. This yields a description in which only diabatic eddy
buoyancy fluxes appear explicitly in the thermodynamic equation, and in which eddy
terms appear in the residual-mean horizontal momentum equations as the divergence
of the two Eliassen-Palm flux vectors. In Cronin (1996) a rank two Eliassen-Palm flux
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ABSTRACT

We use a sector configuration of an ocean general circulation model to examine the sensitivity of
circumpolar transport and meridional overturning to changes in Southern Ocean wind stress and
global diapycnal mixing. We find that at eddy-permitting, and finer, resolution, the sensitivity of
circumpolar transport to forcing magnitude is drastically reduced. At su�ciently high resolution,
there is little or no sensitivity to wind stress, even in the limit of no wind. In contrast, the
meridional overturning circulation continues to vary with Southern Ocean wind stress, but with
reduced sensitivity in the limit of high wind stress. We find that both the circumpolar transport
and meridional overturning continue to vary with diapycnal di↵usivity at all model resolutions.
The circumpolar transport becomes less sensitive to changes in diapycnal di↵usivity at higher
resolution, although sensitivity always remains. In contrast, the overturning circulation is more sensi-
tive to change in diapycnal di↵usivity when the resolution is high enough to permit mesoscale eddies.

1. Introduction

The Southern Ocean encircles Antarctica and connects
the major ocean basins through the agency of the Antarctic
Circumpolar Current (ACC) and its associated Meridional
Overturning Circulation (MOC). Cold abyssal waters, en-
riched in carbon and nutrients, upwell in the Southern
Ocean amidst a complex interleaving of water masses, giv-
ing its circulation a global significance (Rintoul et al. 2001;
Meredith et al. 2011). As the cross-roads of the oceans, un-
derstanding the Southern Ocean circulation, and how that
circulation might change, is thus crucial to understanding
both the past and future climate of the Earth system.

The simple model due to Gnanadesikan (1999) (hence-
forth G99) heuristically links the global pycnocline depth,
and thus the circumpolar transport of the ACC (TACC)
through thermal wind balance (Gnanadesikan and Hall-
berg 2000; Munday et al. 2011), to four processes:

i. Southern Ocean wind forcing;

ii. the eddy bolus transport, via baroclinic instability,
in the Southern Ocean;

iii. deep water formation at Northern high latitudes;

iv. global diapycnal mixing.

The southern hemisphere westerly winds may have been
significantly di↵erent from the present day mean climate
at times in the past (see, for example, Otto-Bliesner et al.
2006). Similarly, estimates of tidal mixing for the Last
Glacial Maximum (LGM) suggest that diapycnal mixing
was higher (Egbert et al. 2004), particularly in the North
Atlantic (Green et al. 2009). However, obtaining robust es-
timates of global palaeoceanographic circulations, whether
at the LGM or otherwise, remains di�cult due to a paucity
of data (Wunsch 2003). As a result, numerical and analyt-
ical models of varying complexity must be used to assess
how such changes might have impacted the Southern Ocean
circulation and global climate. Projections of future cli-
mate also suggest that changes in both the magnitude and
position of the southern hemisphere westerlies are plausible
(IPCC AR4 WG1 2007). The consequences for Southern
Ocean circulation and the potential for climate feedbacks
have yet to be robustly determined.

In the context of the G99 model, the response of the
Southern Ocean circulation to changing forcing has been
investigated using general circulation models for wind forc-
ing (Saenko et al. 2002; Fyfe and Saenko 2006; Delworth
and Zeng 2008; Allison et al. 2010; Wang et al. 2011), di-
apycnal di↵usivity (Gnanadesikan and Hallberg 2000; Mun-
day et al. 2011), and northern sinking (Fučkar and Val-
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a b s t r a c t

A family of eddy closures is studied that flux potential vorticity down-gradient and solve an explicit bud-
get for the eddy energy, following the approach developed by Eden and Greatbatch (2008, Ocean Model-
ling). The aim of this manuscript is to demonstrate that when energy conservation is satisfied in this
manner, the growth or decay of the parameterized eddy energy relates naturally to the instability or sta-
bility of the flow as described by Arnold’s first stability theorem. The resultant family of eddy closures
therefore possesses some of the ingredients necessary to parameterize the gross effects of eddies in both
forced-dissipative and freely-decaying turbulence. These ideas are illustrated through their application to
idealized, barotropic wind-driven gyres in which the maximum eddy energy occurs within the viscous
boundary layers and separated western boundary currents, and to freely-decaying turbulence in a closed
barotropic basin in which inertial Fofonoff gyres emerge as the long-time solution. The result that these
eddy closures preserve the relation between the growth or decay of eddy energy and the instability or
stability of the flow provides further support for their use in ocean general circulation models.

! 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The parameterization of geostrophic eddies in ocean models has
been an active area of research throughout the last four decades.
Many early ocean general circulation models (OGCMs) represented
eddies through simple diffusion of heat, salt and momentum (e.g.,
Bryan, 1969). However, it was recognized early on that eddy clo-
sures should be constructed around properties that are materially
conserved by fluid parcels, such as potential vorticity, while also
respecting larger-scale constraints such as conservation of energy
and angular momentum (Green, 1970).

A major advance resulted from the family of eddy parameter-
izations initiated by Gent and McWilliams (1990). These can be
viewed as representing baroclinic instability through the introduc-
tion of an ‘‘eddy-induced” or ‘‘bolus” velocity (Gent et al., 1995)
which acts to flatten density surfaces. Crucially, because the eddies
are represented purely through additional advection of tracers, the
Gent and McWilliams eddy parameterization conserves the net
volume of fluid contained between any two isopycnal surfaces.
The removal of the spurious diapycnal water mass transformations
associated has resulted in a long list of improvements in OGCMs
(Danabasoglu et al., 1994).

The success of Gent and McWilliams naturally leads one to
speculate whether incorporating additional conservation proper-
ties into eddy parameterizations may lead to further improve-
ments. One important issue concerns the fate of the energy
released to the eddy field through baroclinic instability, which
might be dissipated through bottom drag (as implicitly assumed
in Gent and McWilliams, 1990; also see Arbic and Scott, 2008), sur-
face drag (Duhant and Straub, 2006; Zhai and Greatbatch, 2007),
exchange of energy with internal waves (Polzin, 2008) and subse-
quent interior diapycnal mixing (Tandon and Garrett, 1996), lee
wave generation and subsequent bottom-enhanced diapycnal mix-
ing (Marshall and Naveira Garabato, 2008), exchange of energy
with submesoscales (Capet et al., 2008), or in western boundary
layers (Zhai et al., manuscript in preparation).

Alternatively the eddy energy might be returned to the mean
flow. This scenario is consistent with the results of freely-decaying
turbulence in closed basins, in which finite-amplitude Fofonoff
gyres emerge as the equilibrium solution (Bretherton and Haidvo-
gel, 1976; Salmon et al., 1976; Cummins, 1992; Wang and Vallis,
1994) or bathymetry-following flows in the case with variable
bathymetry (Bretherton and Haidvogel, 1976; Salmon et al.,
1976; Holloway, 1987). Moreover, banded zonal jets naturally
emerge in many instances of forced and freely-decaying turbulence
in zonally-reentrant domains (e.g., Rhines, 1975; Williams, 1978).
These results can be understood as a consequence of the direct cas-
cade of potential enstrophy and the indirect cascade of energy.
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• Geostrophic eddies play an key role in setting the mean structure of the ocean. 

• Much of the success of the Gent and McWilliams eddy closure is down to preserving the 
     near-adiabatic nature of the ocean interior. 

• Preserving symmetries and conservation laws in models with parameterised eddies
    ⇒ classical stability conditions carry over:
               - Eady growth rate; 
               - Charney-Stern;
               - Arnold’s first stability theorem. 

• Down-gradient eddy potential vorticity flux closures are inconsistent with the underlying 
     mathematical structure of the eddy-mean flow interaction. 

• Gent and McWilliams is consistent with this underlying mathematical structure.

• Anisotropy (“wave-like” behaviour) is a prequesite for non-vanishing eddy fluxes. 

• Much left to do! 

Summary of key points 
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