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Structure

1. Very brief overview of:

* baroclinic instability;

* why geostrophic eddies matter for the global ocean and climate;

* Gent and McWilliams eddy parameterisation;

* alternative paradigm: isopycnal mixing of potential vorticity ... and caveats!

2. A new framework for parameterising ocean eddies:

* eddy stress tensor;

* geometric interpretation;

* Eady problem;

* ray tracing;

* potential vorticity mixing;

* future work and conclusions.




Eady (1949) model of baroclinic instability

* f-plane (neglect B effect)

* uniform stratification

* uniform shear

* opposite potential vorticity gradients
at upper and lower boundaries
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energy growth rate for most unstable mode:
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(figure: adapted from Vallis, 2006)

Composn‘e satelllte image showing cloud cover and proxy for surface biological act/wty




Challenge of resolving eddies in numerical ocean models

In terms of mesoscale eddy resolution, a 1° ocean model ~ 30° atmosphere model:

Conversely, a 1° atmosphere model ~ 1/30° ocean model:

(after Peter Killworth)

ENo Valid Data

Variability of Ocean Dynamic Topography (cm)
Sep 23, 1992 - Sep 24, 1993




¢ Eady growth rate (Tulloch et al., 2011)
> rams

Impact of eddies: Antarctic Circumpolar Current
. Wind stress acc

e P

>~ (schematic: Visbeck and Olbers 2004;
adapted from Rintoul et al. 2001)
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* Wind stress balanced by bottom form stress ( p,VH) (Munk and Palmén, 1951)
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* Wind stress balanced by bottom form stress ( p,VH) (Munk and Palmén, 1951)

* Downward momentum transfer by eddy form stress (Rhines and Holland, 1979;

. . o Johnson and Bryden, 1989)
non-acceleration conditions
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Gent and McWilliams (1990), Gent et al. (1995) adiabatic eddy closure

eddies diffuse tracers along isopycnals (Redi 1982)

B

and advect by an eddy transport velocity (bolus velocity) - acts to flatten isopycnals
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available potential energy sink -
parameterisation of baroclinic instability
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Simple illustration in buoyancy-forced channel (Lee et al. 1997) cooling

heating -~

layer 1
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Meridional overturning circulation in a coarse-resolution ocean model:

90°s 45°S o 45°N 90°N )°
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(Danabasoglu et al., 1994)

Many other improvements over previous non-adiabatic eddy closures:
* sharper thermocline;
* convection confined to places it is known to occur;
* removal of spurious upwelling in Gulf Stream;
* improved poleward heat transport.

Several extensions of Gent and McWilliams, mostly relating eddy diffusivity to mean fields,
e.g., using Eady growth rate (Visbeck et al., 1997)
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Note: explicit (partially-resolved) eddies behave very differently to Gent and McWilliams!

a) Wind stress experiments
50!

parameterised eddies -

o
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ocean box -
circulation,
carbon cycle
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Alternative paradigm: potential vorticity mixing

often advocated ... rarely implemented!

Idea: potential vorticity g = is materially conserved in absence of forcing/dissipation:

h

9

at+u-Vq:0

=> stirred and mixed along density surfaces?
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PV mixing problem 1: conservation of energy

e.g. , freely-decaying turbulence over a seamount  (Adcock and Marshall, 2000)

NNNNAN
=

geostrophic streamfunction potential vorticity

Initial 14 days Initial
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Energy ~ conserved in geostrophic turbulence due to inverse cascade:

streamfunction

vorticity

(calculation: Vallis and Maltrud)
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Freely-decaying barotropic turbulence (Wang and Vallis, 1994)

high beta

initial ¥ final ¥

PV mixing problem 2: conservation of momentum

e.g., consider a quasigeostrophic periodic channel:
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conservation of momentum

not satisfied by down-gradient potential vorticity closure without constraints on eddy diffusivity

suppose dq/dy > 0

(Green, 1970; J. Marshall, 1981)

= down-gradient eddy closure, qv = —kK Jq/0y, only consistent if Kk = 0 (i.e., no eddies!)

note: this is the Charney-Stern stability condition
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Eddies mix potential vorticity along density surfaces ...
... subject to constraints of energy and momentum conservation

Goal:

Develop framework for interpreting and parameterising eddy potential vorticity fluxes
in which the relevant symmetries and conservation laws are preserved.
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Quasi-geostrophic equations

momentum: % +u, - Vu, + fok x ug, + Byk x u, + VPag _ 0
0b )
buoyancy: = +uy - Vb+ wegNg =0
Owg
V-ug + 629 =0
“Residual-mean” equations:
\Y%7) —
%—f—ﬁg'Vﬁg—f—fokXﬁag—Fﬂykxﬁg_’_ pu‘g:—qu’u’
Po
0b - only eddy forcing
54
vV - gy + GWag =0

0z
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How to build momentum conservation into an eddy closure?

-N M-P 0
Write potential vorticity flux as: gqu=V-| M-P N 0

, - R S 0
“Taylor identity (Plumb 1986)
’U’2 _ u/2
where: ) = T N = —u’v’  Reynolds stresses
12
P = —— eddy potential energy
oNZ
fo—+ fo— eddy buoyancy flux (eddy form stress)
R= _2u/b/ S = —QU/b/
0 0 - these are the terms parameterised in
Gent and McWilliams (1990)
21
-N M-P 0
qu =V M—P N 0
R iS] 0

Advantages:
1. Angular momentum constraints preserved if boundary conditions correctly applied.
2. If we neglect the Reynolds stresses, then reduces to parameterising eddy form
stress as in Gent and McWilliams
= natural framework for extending GM to include Reynolds stresses.

3. Second column is Eliassen-Palm flux (associated with propagation of wave activity).

4. Eddy energy provides an upper bound on a norm of the stress tensor:

1 2
3 (—N)2+(M—P)2+(M+P)2+N2+/}/3(RZ+52) =
0
2
M?+N2+P2+2—J§2(R2+52)§E2
0

5. Energy conservation can be enforced via explicit eddy energy budget
(cf. Eden and Greatbatch, 2008).
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N M-P 0
Ju=v.-| M-P N 0
R S 0

6. Energy norm allows eddy stress tensor to be rewritten, without loss of generality, in
terms of eddy energy, 2 eddy anisotropies, and 3 eddy flux angles:

M = —v,, E cos 2¢,, cos> A N = 4, E sin 2¢,, cos® \ P = Esin® \
R:'ybﬁEcosd)b sin 2\ S :%ﬁEsinqu sin 2\
N() NO

horizontal orientation vertical orientation

e.g., barotropic eddies:

(plan view) ™ T 0 Ym = 1
“wave-like”

uv' =0 wv' > 0

7. Unknowns are nondimensional and = 1 in magnitude.
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N M-P 0
Ju=v.-| M-P N 0
R S 0

8. Eddy flux angles have a strong connection with classical stability theory:
eddies lean “against” mean shear = extract energy from mean flow (instability);
eddies lean “into” mean shear = return energy to mean flow (stability).

Depth-Averaged Observations
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(Waterman et al. 2011)
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Application to the Eady model most unstable mode:
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Eddy energy budget:
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can reverse argument to infer
Gent and McWilliams diffusivity
- turns out to be Visbeck et al. (1997)
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3-layer eddy-resolving basin model - eddy anisotropy

buoyancy

momentum

N :@E sin 2¢,, cos® \ S :E sin ¢y sin 2\
0
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Eddy mixing angles: ray-tracing?
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Simple ray-tracing pilot study

(Talia Tamarin)

Piecewise linear barotropic jet with beta:

— zonal mean U

U 1 :
" —t=0
0.9r ' — =50 07
. ---1=95
0.8t ossk  f
. ¢
0.7l Jet sharpening! | oof
Kl
0.6- 055 ) AN
> 0.5} = 0§ : - - ~
0.4r 045 L, 7
!
0.3f 0sl ’,’
4
0.2f , ot {
’,
01 | I\ 1 I n L 1 I
N 035 04 045 05 0.55 06 085 07 0.7!
0 ‘ . . ‘
-0.2 0 02 04 06 08 1 1.2
u
potential
vorticity

time

29
Simple ray-tracing pilot study (Talia Tamarin)
Piecewise linear barotropic jet with beta:
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What about mixing of potential vorticity?

If we: (i) solve an explicit eddy potential enstrophy ( ¢’?) budget;
(i) include dissipation of ¢’? ( = potential vorticity mixing);
(ii) ensure ¢’u’ vanishes when ¢'? vanishes;
[use another bound on divergence of eddy stress tensor?]

then Arnold’s first stability theorem is preserved.

Physical interpretation? (Marshall and Adcroft, 2010)

u-u
Eddy energy equation: %u 2u +V-(...)=q¢u- -V
9 q? _
Eddy enstrophy equation: EDY +V.-(...)=—¢u -Vq

If dq/dy > 0, eddy energy can grow only at the expense of eddy potential enstrophy.

= stable (in the sense of Lyapunov) - Arnold’s first stability theorem.
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Qualitative illustration - with energetically-consistent PV closure (Marshall and Adcroft, 2010)

Wind-driven gyres (free-slip):

resolved eddies parameterised eddies
(a) mean streamfunction (Sv) (b) mean vorticity (104 s) (a) streamfunction (Sv) (b) vorticity (104 1)
wind
stress F
;
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(c) eddy kinetic energy (m2s2) (d) energy conversion (107 m2s%) (c) eddy kinetic energy (m?s2) (d) energy conversion (107 m?s3)
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Freely-decaying turbulence (hyper-slip, initial uniform eddy energy):

resolved eddies parameterised eddies

(a) mean streamfunction (Sv) (b) mean vorticity (10 s*) (a) streamfunction (Sv) (b) vorticity (104 s1)

-0.4 -0.2 0 0.2 0.4

(c) eddy kinetic energy (m?s2) c) eddy kinetic energy (m2s2) (d) energy conversion (10 m2s3)

-
v
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Freely-decaying turbulence - energetics:

0.4 T T T T
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MKE* (with constant eddy diffusivity)
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time (years)
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More rigorous approach: coordinate-invariant derivation

PV equation: 9, + ([ug]a ﬁ) =

a

ab
- T';ab

eddy flux tensor

(Maddison and Marshall, 2013)

double divergence
= 2 forms of gauge freedom

N M—-K R
gacTCb = M+ K —N S
0 0 0
“residual-mean” Cronin (1996)
N M+K 0 N M-K 0
M-K —-N 0 M+K - 0
R S 0 R S 0
“half-residual mean” Hoskins et al. (1983) “E-vector”
N M %R Plumb (1986) N 2M 0
AT g N M-P 0 0 -N 0
sk 35 0 M+P — 0 R S 0
R 5] 0

Approach generalises to isopycnal thickness-weighted primitive equations

(cf. Young, 2012)

Other work in progress

* Diagnosing the role of eddy fluxes in zonal jet formation

Upper layer instantaneous perturbation stream function ‘anisotropy
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* Simple extension of Gent and McWilliams to include up-gradient momentum fluxes.

» Simple extension of Gent and McWilliams to include rectified eddy-topography interactions.
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Summary of key points
* Geostrophic eddies play an key role in setting the mean structure of the ocean.

* Much of the success of the Gent and McWilliams eddy closure is down to preserving the
near-adiabatic nature of the ocean interior.

* Preserving symmetries and conservation laws in models with parameterised eddies
= classical stability conditions carry over:
- Eady growth rate;
- Charney-Stern;
- Arnold’s first stability theorem.

* Down-gradient eddy potential vorticity flux closures are inconsistent with the underlying
mathematical structure of the eddy-mean flow interaction.

* Gent and McWilliams is consistent with this underlying mathematical structure.
* Anisotropy (“wave-like” behaviour) is a prequesite for non-vanishing eddy fluxes.

* Much left to do!
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