Internal waves in stellar interiors

S. Mathis

CEA/DSM/IRFU/SAp; Laboratoire AIM, CEA/DSM - CNRS - Université Paris Diderot

Laboratory Dynamics of Stars and their Environment

Waves and Instabilities in Geophysical and Astrophysical Flows;

February 3rd - 8th 2013, Les Houches

MagnetoHydroDynamics of stellar interiors

Angular momentum history & differential rotation

Complex various magnetisms

Our Sun and solar-type stars

Intermediate & massive main sequence stars

Kochukhov 2010

Various companions

Coherent picture of stars, of their environment and of their evolution → need to obtain a precise physical picture of angular momentum exchanges

The major actor: the differential rotation

Those processes transport

Angular Momentum $\longrightarrow \Omega(\mathbf{r}, \theta)$

➤ Matter → modify chemical composition & nucleosynthesis

Major impact on the internal dynamics, the evolution, and the environment of stars

A multi-scales problem in time and space

Decressin et al. 2009

Convection vs. radiation

Kippenhahn & Weigert 1997

Turbulent transport in convective envelopes

Transport in convective cores

Featherstone et al. 2009

Secular transport processes in radiation zones

Transport equations in stellar radiation zones (expanded on spherical harmonics)

- Dynamics equation (Navier-Stockes equation)

$$\rho \left[\partial_t V + (V \cdot \nabla) V\right] = -\nabla P - \rho \nabla \phi + \underline{\nabla \cdot \|\tau\|} + \left[\frac{1}{\mu_0} (\nabla \wedge B)\right] \wedge B$$
Advection
Turbulent
Stresses
Use Stresses
Turbulent
Stresses
Turbulent
Stresses
Turbulent
Stresses
Turbulent
Stresses

$$\partial_t \rho + \nabla \cdot (\rho V) = 0$$

- Induction equation for magnetic field

$$\partial_t B - \nabla \wedge (V \wedge B) = -\nabla \wedge (||\eta|| \otimes \nabla \wedge B)$$

- Equation for the transport of heat

$$\rho T \left[\partial_t S + \underline{V \cdot \nabla S}\right] = \underline{\nabla \cdot (\chi \nabla T)} + \rho \epsilon - \underline{\nabla \cdot F} + \mathcal{J}(\underline{B})$$
Thermal diffusion perturbing force
Spherical diffusion
Description
Descri

(+ Poisson equation and the transport equation for chemicals)

TI: Meridional circulation & shear-induced turbulence

Method

- Internal macroscopic velocity field:

-

$$V = r \sin \theta \Omega(r, \theta) \widehat{\mathbf{e}}_{\varphi} + r \widehat{\mathbf{e}}_{r} + \mathcal{U}_{M}(r, \theta)$$

$$\boxed{\mathbf{Differential}} \qquad \boxed{\mathbf{Contraction}} \qquad \boxed{\mathbf{Meridional}} \\ \overrightarrow{\mathbf{circulation}}$$
where $\Omega(r, \theta) = \overline{\Omega}(r) + \widehat{\Omega}(r, \theta) = \overline{\Omega}(r) + \sum_{b>0} \Omega_{l}(r) Q_{l}(\theta)$

$$\boxed{\mathbf{Average}} \qquad \boxed{\mathbf{Fluctuation}}$$
and $\mathcal{U}_{M} = \sum_{l>0} \left[U_{l}(r)P_{l}(\cos \theta)\widehat{\mathbf{e}}_{r} + V_{l}(r) \frac{\mathrm{d}P_{l}(\cos \theta)}{\mathrm{d}\theta} \widehat{\mathbf{e}}_{\theta} \right]$ with $V_{l}(r) = \frac{1}{l(l+1)\rho r} \frac{\mathrm{d}}{\mathrm{d}r} \left(\rho r^{2}U_{l}\right)$

$$\boxed{\mathbf{Anelastic approximation}}$$
Temperature and mean molecular weight:
$$T(r, \theta) = \overline{T}(r) + \delta T(r, \theta) \quad \text{where} \quad \delta T(r, \theta) = \sum_{l\geq 2} \delta T_{l}(r)P_{l}(\cos \theta)$$

$$\mu(r, \theta) = \overline{\mu}(r) + \delta \mu(r, \theta) \quad \text{where} \quad \delta \mu(r, \theta) = \sum_{l\geq 2} \delta \mu_{i}(r)P_{l}(\cos \theta)$$

Numerical simulation of Type I Rotational Transport (I)

Hydrodynamical shellular case with $\Omega(\mathbf{r},\theta)=\Omega(\mathbf{r})$ (I=2)

Mathis & Zahn 2004 Decressin et al. 2009 $1.5 M_{\odot}$ $Z=Z_{\odot}$ $V_i=100 \text{ km.s}^{-1}$ *Magnetic braking*

Numerical simulation of Type I Rotational Transport (II)

Hydrodynamical shellular case with $\Omega(\mathbf{r},\theta)=\Omega(\mathbf{r})$ (I=2)

Mathis & Zahn 2004 Decressin et al. 2009

because of thermal wind

Diagnosis and identification

between the advective and the viscous transports of A. M.

 $r (R_{o})$

Numerical simulation of Type I Rotational Transport (III)

Shellular case with $\Omega(\mathbf{r}, \theta) = \Omega(\mathbf{r})$ (I=2) – massive stars Mathis &

Mathis & Zahn 2004; Decressin et al. 2009

The transport loop

Zahn 1992; Rieutord 2006; Decressin et al. 2009

Mathis & Zahn 2004

Angular momentum transport in stars

TII: Magnetic field

Transport of angular momentum in the axisymmetric case 3D-MHD models of the solar interior

Fossil poloidal magnetic field Gough & McIntyre 1998

Interaction between a poloidal fossil field and the inward propagation of a latitudinal shear Ferraro's law at solar age + N-A instabilities; other geometry? Brun & Zahn 2006; Zahn, Brun & Mathis 2007; Strugarek, Brun & Zahn 2011-2012

Garaud & Garaud 2008; Rogers 2011; Wood et al. 2011; <u>N. Brummell's talk</u>

TII: Internal Waves

Internal waves in stellar interiors (I)

Convective excitation (PMS, MS & Advanced phases)

Goldreich, Murray & Kumar 1994; Belkacem et al. 2009; Samadi et al. 2010; <u>Lecoanet</u> & Quataert 2012

Kiraga et al. 2003-2005; Browning et al. 2004; Dintrans et al. 2005; <u>*Rogers et al. 2005-2006-2008-2010-2012; Meakin et al. 2007; Brun, Miesh, Toomre 2011;*</u>

Brun, Miesch & Toomre 2011; Alvan et al., in prep. (& <u>poster</u>)

e.g. Garcia et al. 2007; Beck et al. 2012; Neiner et al. 2012

Internal waves in stellar interiors (II)

κ – mechanism

Lee & Saio 1993; Lee 2006;

Tidal excitation

Zahn 1975; Witte & Savonjie 1999-2001-2002; Barker & Ogilvie 2010; Barker 2011

Courtesy P. Degroote

→ Angular momentum transport? (Help to probe it?)

The propagation equation (Ω =0, B=0)

The linearized equations

Velocity field expansion

$$\begin{cases} D_t u = -\frac{\nabla p'}{\bar{\rho}} + \frac{\rho'}{\bar{\rho}}g, \\ D_t \rho' + \nabla .(\bar{\rho}u) = 0, \\ D_t \left(\frac{\rho'}{\bar{\rho}} - \frac{1}{\Gamma_1}\frac{p'}{\bar{p}}\right) - \frac{N^2}{\bar{g}}u_r = 0 \end{cases}$$

$$u_r(r,\theta,\varphi,t) = \sum_{l,m} \hat{u}_{r;l,m}(r) Y_{l,m}(\theta,\varphi) e^{i\sigma_w t}$$

same form in the θ & ϕ directions

The propagation equation (Schrödinger like; e.g. <u>B. Surtherland's talk</u>)

$$\frac{\mathrm{d}^2 \Psi_{l,m}}{\mathrm{d}r^2} + k_V^2(r)\Psi_{l,m} = 0 \qquad k_V^2(r) = \left(\frac{N^2}{\sigma_w^2} - 1\right) \frac{l(l+1)}{r^2}$$

$$\overset{}{\underset{K_H}{\overset{}}}$$
We have introduced $\Psi_{l,m}(r) = \bar{\rho}^{\frac{1}{2}} r^2 \hat{\xi}_{r;l,m}$ and $u = D_t \boldsymbol{\xi}$

I=5, m=3, n=5

Low-frequency internal waves structure (Ω =0, B=0)

JWKB

$$\begin{bmatrix} u_{r;l,m} = \mathcal{E}_{l,m}(r) \exp\left[i \int_{r}^{r_{c}} k_{V;l,m}(r') dr'\right] Y_{l,m}(\theta,\varphi) \exp[i\sigma t] \\ k_{V;l,m}(r) = \left(\frac{N}{\sigma}\right) \frac{\left[l(l+1)\right]^{1/2}}{r} \end{bmatrix}$$

same form in the $\theta \& \phi$ directions

Normal modes: Bohr's quantization rule

30

I=1, m=0 (<u>Alvan</u>, Brun, Mathis 2012)

Transport: at the beginning,...

Astron. & Astrophys. 41, 329 – 344 (1975)		Publ. Astron. Soc. Japan 35, 343–353 (1983)
		Wave-Rotation Interaction in Stars
The Dynamical Tide in Close Binaries		Hiroyasu Ando
JP. Zahn Observatoire de Nice, and Joint Institute for Laboratory Astrophysics, Univer	rsity of Colorado, Bould er	Tokyo Astronomical Observatory, University of Tokyo, Mitaka, Tokyo 181
Astron. Astrophys. 279, 431–446 (1993)	ASTRONOMY AND ASTROPHYSICS	
Transport of angular momentum and diffusion by the action of internal waves Evry Schatzman		Mon. Not. R. Astron. Soc. 261, 415–424 (1993)
Astron. Astrophys. 322, 320–328 (1997)	ASTRONOMY AND ASTROPHYSICS	Angular momentum transfer by non-radial oscillations in massive main-sequence stars
Angular momentum transport by internal waves in the solar interior		Umin Lee ^{1,2} and Hideyuki Saio ³ ¹ Department of Astronomy, Faculty of Science, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan ² Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0011, USA ³ Astronomical Institute, Faculty of Science, Tohoku University. Sendai. Mivaei 980, Japan
Jean-Paul Zahn ¹ , Suzanne Talon ¹ , and José Matias ^{1,2} THE ASTROPHYSICAL JOURNAL, 475:L143–L146, 1997 February 1 © 1997. The American Astronomical Society. All rights reserved. Printed in U.S.A.		
ANGULAR MOMENTUM TRANSPORT BY GRAVITY WAVES AND ITS EFFECT ON THE ROTATION OF THE SOLAR INTERIOR PAWAN KUMAR ¹ Institute for Advanced Study, Princeton, NJ 08540 AND ELIOT J. QUATAERT Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Received 1996 September 3; accepted 1996 November 18		
└		↓ l

Transport of Angular Momentum by internal waves

m<0 - prograde (deposit)

Equation for the transport of Angular Momentum:

$$\rho \frac{d}{dt} (r^2 \overline{\Omega}) = \frac{1}{5r^2} \partial_r \left(\rho r^4 \overline{\Omega} U_2 \right) + \frac{1}{r^2} \partial_r \left(\rho v_v r^4 \partial_r \overline{\Omega} \right) - \frac{1}{r^2} \partial_r \left[r^2 \mathcal{F}_J (r) \right] \qquad \text{Zahn et al. 1997}$$

$$\boxed{\text{Advection}} \qquad \boxed{\text{Viscous}} \qquad \boxed{\text{Internal wave}} \\ \text{Reynolds stresses} \end{aligned}$$
where: $4\pi r^2 \mathcal{F}_J (r) = -4\pi r_c^2 \sum \left\{ \frac{m}{\sigma(r_c)} \mathcal{F}_E (l, m, \sigma; r_c) \exp\left[-\tau_{l,m} \left(r, \overline{\Omega} (r) \right) \right] \right\}$

$$\underbrace{\text{spectrum excited}} \\ \text{by convection} \qquad \boxed{\text{Mean Energy flux at}} \\ \text{the base of the CZ} \end{aligned}$$
with the radiative damping:
$$\underbrace{\tau_{l,m} (r) = \left[l \left(l + 1 \right) \right]^{3/2} \int_r^{r_c} K \frac{N^3}{\sigma^4 (r')} \frac{dr'}{r'^3}}{\sigma'^3} \qquad \text{with} \qquad \sigma(r) = \sigma_{\text{exc}} + m\Delta\overline{\Omega} (r) \\ m > 0 - \text{retrograde (extraction)} \end{aligned}$$

If prograde and retrograde waves are equally excited:

No differential rotation \rightarrow no net deposition of A. M. $\mathcal{F}_{AM;m} + \mathcal{F}_{AM;-m} = 0$ Differential rotation \longrightarrow Doppler shift \longrightarrow net deposition of A. M.

Cases of spin-down/spin-up

$$\sigma_{\rm p} < \sigma_{\rm r} \Rightarrow \sigma_{\rm p}^{-4} > \sigma_{\rm r}^{-4} \Rightarrow \tau_{\rm p} > \tau_{\rm r}.$$

 \Rightarrow Prograde waves are thus damped closer to the excitation region than retrograde waves which propagate deeper in the core.

 \Rightarrow Net extraction of angular momentum in the core.

Transport by low degree, low frequency waves: the secular extraction

Diagnosis and identification

Diagnosis and identification

Sustaining the meridional circulation

$$U_{2} = \frac{5}{\overline{\rho}r^{4}\overline{\Omega}} \left[\Gamma_{M}(r) - \overline{\rho}v_{V}r^{4}\partial_{r}\overline{\Omega} + \frac{3}{8\pi}\mathcal{L}_{J} \right]$$

Extraction Viscous IWs

Multi-cellular circulation driven by the wind and IWs Reynolds stresses (C. Staquet's talk)

The transport loop with internal waves

Mathis & de Brye 2012

Zahn et al. 1997; Talon & Charbonnel 2005; Mathis et al. 2013

Internal waves interaction with shear induced turbulence: critical layers

Alvan, Mathis & Decressin 2013 (cf. Lindzen & Barker 1985; Nault & Sutherland 2007; D. Zimmerman's talk)

Internal waves region of excitation and propagation

Complex magnetic fields

- Dynamo Browning et al. 2006
- Fossil Duez, Mathis & Braithwaite 2010

Differential rotation

Schou et al. 1998, Garcia et al. 2007, Eff-Darwich et al. 2008

A coherent picture of internal wave machanisms → needs to take into account the (differential) rotation and magnetic fields

Ω & B effects in the treatment of internal waves: a necessity

Angular momentum extraction

by low-frequency waves

Dintrans & Rieutord 2000; Mathis et al. 2008; Mathis 2009; Ballot et al. 2010, 11; Mathis & de Brye 2011, 12

A first global Magneto-Gravito-Inertial waves set-up

 $\sigma_s^2 \approx \left(\widehat{\boldsymbol{B}} \cdot \boldsymbol{k}\right)^2 V_A^2 + \left(\boldsymbol{N} \times \widehat{\boldsymbol{k}}\right)^2 + 4\left(\boldsymbol{\Omega} \cdot \widehat{\boldsymbol{k}}\right)^2$

- Schatzman 1993; Kumar, Talon & Zahn 1999; Kim & McGregor 2003; Rogers & Mc Gregor 2010-2011

- Dintrans & Rieutord 2000; Mathis et al. 2008; Mathis 2009; Ballot et al. 2010, 11; Mathis & de Brye 2011, 12

- <u>H.-C. Nataf's talk</u>

A first global Magneto-Gravito-Inertial waves set-up

- Velocities:

 $V(\mathbf{r},t) = V_0(\mathbf{r},t) + u(\mathbf{r},t)$ with $V_0 = r \sin \theta \Omega(\mathbf{r},\theta) \hat{\mathbf{e}}_{\varphi}$

Wave's velocity field

$$\overline{\Omega}(r) = \Omega_s + \Delta \overline{\Omega}(r)$$
, where $\Delta \overline{\Omega}(r) \ll \Omega_s$

Uniform rotation: waves structure

Differential rotation: thermal diffusion

-Magnetic fields:

$$\boldsymbol{B}(\boldsymbol{r},t) = \boldsymbol{B}_0^T(\boldsymbol{r},t) + \boldsymbol{b}(\boldsymbol{r},t) \text{ with } \boldsymbol{B}_0^T = \sqrt{\mu\rho}r\sin\theta\,\omega_A\,\widehat{\boldsymbol{e}}_{\varphi}$$

Wave's magnetic field

Uniform Alvén frequency

The Magneto-Gravito-Inertial waves dynamics - I

Friedlander 1987-1989; Mathis & de Brye 2011

- Induction equation (q = n/K <<1) $b = \nabla \times (\boldsymbol{\xi} \times \boldsymbol{B}_0^{\mathrm{T}}) \longrightarrow b = \sqrt{\mu \rho} \, \omega_{\mathrm{A}} \partial_{\varphi} \, \boldsymbol{\xi}$ - Momentum equation ($P_r = v/K <<1$) Wave's total pressure $\left(\partial_t + \Omega_s \,\partial_\varphi\right) \left[\left(\partial_t + \Omega_s \,\partial_\varphi\right) \boldsymbol{\xi} + 2 \,\Omega_s \,\widehat{\boldsymbol{e}}_z \times \boldsymbol{\xi} \right] =$ $\Pi = \widetilde{P} + \frac{B_0^{\mathrm{T}} \cdot b}{2}$ $-\frac{1}{\overline{\rho}}\nabla \Pi(\mathbf{r},t) - \nabla \widetilde{\Phi} + \frac{\widetilde{\rho}}{\overline{\rho}^2}\nabla \overline{P} + \frac{F_{\mathcal{L}}^{\text{Te}}(\boldsymbol{\xi})}{\overline{\rho}}$ Wave's volumetric magnetic tension force $\boldsymbol{F}_{\mathcal{L}}^{\mathrm{Te}}(\boldsymbol{\xi}) = \frac{1}{\mu} \left[\left(\boldsymbol{B}_{0}^{\mathrm{T}} \cdot \boldsymbol{\nabla} \right) \boldsymbol{b} + \left(\boldsymbol{b} \cdot \boldsymbol{\nabla} \right) \boldsymbol{B}_{0}^{\mathrm{T}} \right]$ $= \overline{\rho} \omega_{\rm A}^2 \left[\partial_{\varphi^2} \boldsymbol{\xi} + 2 \,\widehat{\boldsymbol{e}}_z \times \partial_{\varphi} \, \boldsymbol{\xi} \right]$

- Continuity equation: anelastic approximation
- Energy equation: regime dominated par thermal diffusion; i.e. P_r & q <<1

- Poisson's equation: the Cowling's approximation is assumed

The Magneto-Gravito-Inertial waves dynamics - II

Using an expansion in Fourier's series $\exp(im\varphi)\exp(i\sigma t)$

 $u' = i \sigma_{s} \xi'$ $b' = im \sqrt{\mu \rho} \omega_{A} \xi'$

$$-\mathcal{A}\xi' + i\mathcal{B}\widehat{e}_{z} \times \xi' = -\nabla W' + \frac{\rho'}{\overline{\rho}^{2}} \nabla \overline{P}$$

$$O < \mathcal{A} = \sigma_{M}^{2} = \sigma_{s}^{2} - m^{2}\omega_{A}^{2}$$
Vertical trapping if $A < 0$

$$\mathcal{B} = 2\left(\Omega_{s}\sigma_{s} - m\omega_{A}^{2}\right)$$

Braginsky & Roberts 1975; Friedlander 1987-1989; Mathis & de Brye 2011

The strong stratification case: the MHD Traditional Approximation

In stellar radiation zones
$$S_{\Omega} = \frac{N}{2\Omega_s}$$
 and $S_B = \frac{N}{\omega_A} <<1 \rightarrow asymptotic expansion$

M.-G.-I. waves angular structure under MHD TA

M.-G.-I. waves horizontal eigenfunctions:

Hough functions (eigenfunctions of the Laplace Tidal Operator; Laplace 1799, Hough 1898)

M.-G.-I. waves structure under MHD TA

Wave velocity and magnetic fields

$$u = \sum_{j=\{r,\theta,\varphi\}} \left[\sum_{\sigma,m,k} u_{j;k,m}(r,t) \right] \widehat{e}_{j}$$
$$u_{r;k,m} = -\mathcal{E}_{k,m}(r) \ \Theta_{k,m}(\cos\theta; v_{M;m}) \sin\left[\zeta_{k,m}(r,\varphi,t)\right]$$
$$\times \exp\left[-\frac{\tau_{k,m}\left(r; v_{M;m}, \Delta\overline{\Omega}\right)}{2} \right],$$
same form in the $\theta \& \varphi$ directions

$$\boldsymbol{b} = \sum_{j=\{r,\theta,\varphi\}} \left[\sum_{\sigma,m,k} b_{j;k,m} \left(\boldsymbol{r}, t \right) \right] \widehat{\boldsymbol{e}}_{j}$$
$$b_{j;k,m} = \sqrt{\mu \overline{\rho}} \, \omega_{\mathrm{A}} \frac{m}{\sigma_{s}} \, u_{j;k,m} \, .$$

- Wave propagation function

$$\begin{aligned} \zeta_{k,m}\left(r,\varphi,t\right) &= \int_{r}^{r_{c}} k_{V;k,m}\left(r'\right) \mathrm{d}r' + m\varphi + \sigma_{s}t \qquad k_{V;k,m} \equiv \left(\frac{N}{\sigma_{\mathrm{M}}}\right) \frac{\Lambda_{k,m}^{1/2}\left(\nu_{\mathrm{M};m}\right)}{r} \\ &\equiv F_{r}^{-1} \left(1 - \frac{m^{2}}{2} R_{\mathrm{o}}^{-1} \Lambda_{\mathrm{E}}\right)^{-1/2} \frac{\Lambda_{k,m}^{1/2}\left(\nu_{\mathrm{M};m}\right)}{r} \end{aligned}$$

- Wave damping

$$\underline{\tau_{k,m}\left(r;\nu_{\mathbf{M};m},\Delta\overline{\Omega}\right)} = \Lambda_{k,m}^{3/2}\left(\nu_{\mathbf{M};m}\right) \int_{r}^{r_{c}} K \frac{N_{T}^{2}N}{\widetilde{\sigma}_{m}\,\widetilde{\sigma}_{M;m}^{3}} \frac{\mathrm{d}r'}{r'^{3}} \qquad \begin{cases} \widetilde{\sigma}_{m}\left(r\right) = \sigma_{s} + m\Delta\overline{\Omega}\left(r\right) \\ \widetilde{\sigma}_{M;m}\left(r\right) = \widetilde{\sigma}_{m} - m^{2}\omega_{A}^{2} \end{cases}$$

M.-G.-I. waves propagation

2011, 12

→ If B≠0, net bias between pro & retrograde waves: θ_c (prograde)> θ_c (retrograde)

Action of angular momentum

Definition:

$$\mathcal{L}_{V}^{\text{AM}}(r,\theta) = \sum_{\sigma,k,m} \left\{ r^{2} \mathcal{F}_{V;k,m}^{\text{AM}} \right\} = \sum_{\sigma,k,m} \left\{ -\frac{m}{\sigma_{s}} \left(r^{2} \mathcal{F}_{V;k,m}^{\text{E}} \right) \right\}$$

$$= r^{2} \sum_{\sigma,k,m} \left\{ \mathcal{F}_{V;k,m}^{\text{Re}}(r,\theta) + \mathcal{F}_{V;k,m}^{\text{Ma}}(r,\theta) \right\} \quad \begin{array}{l} \text{Energy flux at the borders with CZ} \\ \\ \text{Lagrangian wave's} \\ \text{Reynolds stresses} \end{array} \quad \begin{array}{l} \text{Lagrangian wave's} \\ \text{Maxwell stresses} \end{array}$$

Grimshaw 1984 Mathis & de Brye 2012

$$\begin{cases} \mathcal{F}_{V;k,m}^{\text{Re}} = \overline{\rho} \, r \sin \theta \left\langle u_{r;k,m} \left(u_{\varphi;k,m} + \sigma_s \, R_0^{-1} \cos \theta \, \xi_{\theta;k,m} \right) \right\rangle_{\varphi} \\ \mathcal{F}_{V;k,m}^{\text{Ma}} = \\ -\overline{\rho} \, r \sin \theta \, m \, R_0^{-1} \Lambda_{\text{E}} \left\langle u_{r;k,m} \left(\frac{m}{2} u_{\varphi;k,m} + \sigma_s \cos \theta \, \xi_{\theta;k,m} \right) \right\rangle_{\varphi} & \xrightarrow{\rightarrow} \text{act against} \\ \text{Reynolds stresses} \\ \text{and scales as} \\ (\omega_{\text{A}}/\sigma_{\text{s}})^2 \end{cases}$$

The case of solar type stars: energy flux<0

- prograde waves (m<0) \rightarrow angular momentum flux<0: deposit
- ondes rétrogrades $(m>0) \rightarrow$ angular momentum flux>0: extraction

Angular momentum transport

Angular momentum transport:

$$\overline{\rho} \frac{\mathrm{d}}{\mathrm{d}t} \left(r^2 \overline{\Omega} \right) = -\frac{3}{2} \frac{1}{r^2} \partial_r \overline{\mathcal{L}_V^{\mathrm{AM}}}$$

$$\overline{\mathcal{L}_{V}^{\text{AM}}}(r) = \left\langle \mathcal{L}_{V}^{\text{AM}} \right\rangle_{\theta}$$

$$= \sum_{\sigma,k,m} \overline{\mathcal{L}_{V;k,m}^{\text{AM}}}(r_{c}; \nu_{\text{M};m}) \exp\left[-\tau_{k,m}\left(r; \nu_{\text{M};m}, \Delta\overline{\Omega}\right)\right]$$
A.-M. flux at the borders with CZ Radiative damping spectrum

$$\underline{\tau_{k,m}\left(r;\nu_{\mathbf{M};m},\Delta\overline{\Omega}\right)} = \Lambda_{k,m}^{3/2}\left(\nu_{\mathbf{M};m}\right) \int_{r}^{r_{c}} K \frac{N_{T}^{2}N}{\widetilde{\sigma}_{m}\,\widetilde{\sigma}_{M;m}^{3}} \frac{\mathrm{d}r'}{r'^{3}} \qquad \begin{cases} \widetilde{\sigma}_{m}\left(r\right) = \sigma_{s} + m\Delta\overline{\Omega}\left(r\right) \\ \widetilde{\sigma}_{M;m}\left(r\right) = \widetilde{\sigma}_{m} - m^{2}\omega_{A}^{2} \end{cases}$$

Radiative damping and Doppler effect:

- Doppler effect: σ_m (prograde) < σ_m (retrograde): prograde waves damped before retrograde waves

- $\Lambda_{k,m}$ (prograde)< $\Lambda_{k,m}$ (retrograde): reduces the bias between prograde and retrograde waves - $\Lambda_{k,m}$ > $\Lambda_{k,m}$ ($\Omega \& B_0$ =0): waves are damped closer to their excitation region

Excitation energy transmission

$$\mathcal{P}_{m} = \underbrace{\left(\frac{\sigma_{\mathrm{M}}}{\sigma_{s}}\right)^{2}}_{\text{vertical trapping}} \underbrace{\left[\frac{1}{2\pi} \int_{\theta_{c;m}}^{\pi/2} \sin\theta \,\mathrm{d}\theta \int_{0}^{2\pi} \mathrm{d}\varphi\right]}_{\text{equatorial trapping}}$$
$$= \left(1 - \frac{m^{2}}{2} R_{0}^{-1} \Lambda_{\mathrm{E}}\right) \left[\cos\theta_{c;m} \,\mathrm{H}_{\mathrm{e}}\left(|\nu_{\mathrm{M};m}| - 1\right) + \mathrm{H}_{\mathrm{e}}\left(1 - |\nu_{\mathrm{M};m}|\right)\right]$$

Transport of angular momentum

Mathis & de Brye 2012 (Mathis et al. 2008)

For a given wave, the Radiative Damping is increased if Ω & B₀ ≠ 0
 Modified horizontal structure → the bias between the RDs of retrograde and prograde waves decreases
 Magnetic field induces Maxwell stresses, acting against Reynolds ones,

- Magnetic field induces Maxwell stresses, acting against Reynolds ones, that scales as $(\omega_A/\sigma_s)^2$

-The difference in equatorial trappings \rightarrow transmission of convective energy to retrograde waves is favoured

What's next: general differential rotation and B

Mathis 2009 Mathis, Alvan & Brun 2013

Interaction with stellar environment: winds, accretion disks

Matt & Pudritz 2005

Interaction with stellar environment: The tidal fluid velocity fields

Equilibrium tide: large-scale circulation induced by the hydrostatic adjustement to the tidal potential perturbation

Dynamical tide: waves excited by the tidal potential

The "engine" of the dynamical evolution of binary systems: energy dissipation

Dynamical evolution of a binary system:

- aligned spins

or spiraling (Hut 1980, 1981; Levrard et al. 2009)

A critical test of the theory for star-planet systems: the orbital state

Schneider

Dissipative processes

Dynamical tide: the case of gravity (& inertial) waves

- Zahn 1975, Goldreich & Nicholson 1989: dynamical tide in stars with external radiative envelopes;

Witte & Savonije 1999, 2001, 2002: take into account the Coriolis acceleration in the case of a uniform rotation; resonance locking: two modes, one which tends to accelerate the body, the other to decelerate it, lead by their combined action to lock the body in a resonant state
 strong orbital evolution

- Barker & Ogilvie (2010-2011), Weinberg et al. (2012): breaking and parametric instabilities

Mechanism which could explain the orbital state of close binaries of which components are main sequence solar-type or massive stars

Modification of global rotation

Witte & Savonije 2002; see also Ogilvie & Lin 2007

KOI-54: Welsh et al. 2011

Modification of internal angular momentum

See also the elliptic instability for gravito-inertial waves, etc.

Internal waves are key players to understand angular momentum exchanges in stellar systems

