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Motivation

 Theinterior of the ocean is no quieter than the upper free surface.

e This is readily discovered by making measurements and is manifest as surface
expressions of interior motion and interior oscillations of temperature and salinity.
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* Why do we care about internal gravity waves in the ocean?
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Motivation

Why do we care about internal gravity waves in the ocean?

1. Mixing 2. Biology
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3. Ocean Engineering 4. Acoustics




History

As early as 1762 Benjamin Franklin had noticed that waves can be formed at the
interface between oil and water in a glass tumbler.

“At supper, looking on the lamp, I remarked that tho’ the surface of the oil was perfectly tranquil, and duly
preserved its position and distance with regard to the brim of the glass, the water under the oil was in great
cominotion, rising and falling in irregular waves, which continued during the whole evening. The lamp was
kept burning as a watch light all night, till the oil was spent, and the water only remain’d. In the morning I
observed, that though the motion of the ship continued the same, the water was now quiet, and its surface
as tranquil as that of the oil had been the evening before. At night again, when oil was put upon it, the water
resumn’d its irregular motions, rising in high waves almost to the surface of the oil, but without disturbing
the smooth level of that surface.”

(Oil & Water, Benjamin Franklin 1762)



History

* An early report of internal gravity waves was by Fridtjof Nansen (1897)

“We approached the ice to make fast to it, but the Fram had got into dead-water, and made hardly any way,
in spite of the engine going full pressure. It was such slow work that I thought I would row ahead to shoot
seal. In the meantime the Fram advanced slowly to the edge of the ice with her engines still going at full
speed.”

“The ice that covered the sound north of Teimur Island was in a state of dissolution and apparently melting
very rapidly, and this was probably the main cause of of the sea in the sound being covered with a fresh-
water layer. I only say in the journal that the water at the surface was almost fresh (drinking water),
whereas through the bottom-cock of the engine room we got perfectly salt water. I suppose that the bottom-
cock at that time was about 4m or more below the surface of the water, and accordingly the Fram struck the
salt water.”

* Dead water is a consequence

. : video
of internal wave dynamics.

(Movie: Mercier & Dauxois)



History

Ekman (1904) explained the true nature of dead water.

Petterson (1909) reported on measurements of temperature fluctuations in a fjord,
although he was preceded by lake measurements in Lac de Longemer in the Vosges region
of France (Thoulet 1894) and Loch Ness in Scotland (Watson 1903).

Attention given to internal waves waned in 1920’s-1940’s, their presence being regarded
as noise — “One man’s noise is another man’s signal” (Walter Munk).

Interest rekindled in 1960’s-70’s by the role of internal waves in diapycnal heat transfer
(Munk 1966)

The “St. Andrew’s Cross” laboratory experiments of Mowbray & Rarity (1967) were very
visual.

Interest in internal waves grew due to their impact
on deep sea operations (Osborne et al 1978) and
submarine operations during the Cold War.

Interest resurged due to results from satellite altimetry data revealing the strong

generation of internal tides by deep ocean ridges (Ray & Mitchum 1996) and

reconsideration of their potential significance to ocean mixing (Munk & Wunsch 1998).
(Partial source: The Turbulent Ocean, Thorpe)



Basic Equations

(Image: Drew, SIO)



Basic equations

The starting point for modeling oceanic internal gravity waves is the linearized, Boussinesq
equations for a fluid on a rotating earth within the traditional /~plane approximation:

Incompressibility: u + v + w_ 0 f=2Qsin6
ox dy 0z I
z
ou 10
M =P
ot P. 0x z=0 X

0 19
Momentum: =+ fu=-—"2L

Continuity: 9P w20 _ g

These can be reduced to the linear internal wave equation:

o [Vzw]+ £ I

2
av;+N2(Z)ViW=O where N2(z)=--2 %
<

or’

P dz



Vertical modes

 Since the ocean has both a surface and a bottom, a convenient and reasonable
approximation is to treat the ocean surface as a rigid lid, so that the boundary
conditions are:

w(0)=w(-H)=0.

e Assuming waves that are sinusoidal in time, i.e. w~ ¢, and two-dimensional,
i.e. 9/dy =0, the internal wave equation reduces to:

9 N
(V-0 2 (- 1) -

e This can be solved using the method of vertical modes:

d*W(z) kZN (z) w*

w=W(z)e™ —
(@) dz’ W’ -

W(z)=0.

 Together with the boundary conditions, this constitutes a Sturm-Liouville problem
and its solution is formed by a set of eigenvalues, £, and eigenfunctions, W,.



Vertical modes

* Within the linear approximation, the other physical variables can all be expressed
in terms of the vertical velocity. For example:

* The vertical modes satisfy an orthogonality relation:

0 2 2
f(w)WmWn =0 for m=n.

-H wz _f
 The general solution of the wave equation consists of a superposition of modes:
W= Ewan (Z)ei(knx—wt)

where w, is the complex amplitude of mode # (i.e. how much and what phase).



Constant stratification

For a constant stratification, the modes can be determined analytically.
The governing equation for the mode shapes becomes:

2 2 2
d vy+m2W=O where m* =k2%.
dz W - f

Solving using the boundary conditions at the ocean surface and floor gives:

W(z)=W sinm z, with mn=i% for n=1,2,3....

The vertical structure is independent of forcing frequency.
w, 0
Mode shapes: s00 // o
H = 4000m, ooy e
8001 T~
N =0.005rad/s E 2000f

@ = 0.0001405rad/s =
f=0.0001046rad/s 3000}

-3500+

-4000

W, (mis) ' © AW fdz (mis)



Wave fields

Wave fields for the
dlf'ferent. vertical modes Mode 1: | =z
are manifest as follows: -

-3500

4000 200 400

x (km)

Horizontal wave lengths

are on the order of N i

MOde 2: -1500 -1500 A
50-100km for modes 1 € aou 4| o= ' . . ' . ' B
and 2, and phase speeds jjjjj' . . . . . T o
are on the order of 1m/s. - " | . 'Y | a .

x (km) X (km)

The dispersion relation k, =+

1/2
’ZE(; - ) has propagating solutions for: f<w<N
B (and N <w < f!)
) N2k2+f2m2

—, the phase and group velocities of the

Rewriting the dispersion relation, w

modes are:
i, (Ha)) N2 —w?\"
c, =—==
"k w’ - f* s  Higher modes
o ( H\(0® - )" (N* -0*)"? propagate more slowly.
\nn w(N* - 2)

kK> +m




Laboratory experiments

A novel internal wave generator developed by Gostiaux et al. (2007) enables the direct
excitation of vertical modes in laboratory experiments.

Laboratory experiment for #=0.416 m, N = 0.85 rad/s, w = 0.6 rad/s (Mercier et al. 2010).

video

(Movie: Mathur)

Horizontal wavelength of mode 2 is 0.416 m with a phase speed of 0.040 m/s.



Laboratory experiments

Using an oscillating sphere arrangement, the lower and upper bounds of the frequency of
propagation can be observed (Peacock& Weidman, 2005).

Experimental arrangement Synthetic schlieren visualization
=" 4 |
_;,,,,,J'f","i’“,,,, e
A0

Results:

N =1.06rad/s,
Q, =0.0rad/s ¢
€2,=0.205rad/s
€2,=0.383rad/s

Results:
N =1.43rad/s,
Q, =0.0rad/s ¢
€2, =0.285rad/s il
€,=0.484rad/s -




Superposition

 The wavelength of the first mode is twice that of the second, three times that of the third,
etc... (i.e. k;=k,/2=k;/3 ...) ——> A superposition of modes is horizontally periodic.

* What happens if we start adding modes (we have freedom to choose amplitude and phase)?

1 1-2 1 1-5 1-20

2 400

4 1 400
350 350 1.5 350
o5 300 d 300
250 \ y - {05 250 |
B o E 200 o E200 ' ’
~ N N
Lo.s
00 a0
1

w,0:

3
3 /
/ /
1 g /
E o E 200 \ o E200 / o
N | N
150 “los 150 150 ! 150 s
R \
100 . ‘ . 1 100 1 ' i 100 \ 10
I \
50 15 50 2 50 50, \ s
: 3

100 200 300 400 : 100 200 300 400 ! 100 200 300 40 0 100 200 300 400 20
X (km) X (km) X (km) x (km)

100 200 3
X (km)

400 2 400 3 400 ﬁ‘—" 5 4 20
350' ' 15 350 30| 350 s
4 , ’3 0 - 0

os 300 1 300 300 : 300 ho

p 250 . . | s 250 ‘ \ ' K 250 250 5

u v . EQOO - 40 EQUU 40 EZQQ ‘ 0 EQUU 0 EQUU <40

p . I~ ~ ™ ~ ) ~
> y 150 ‘os 150' ) 150 : 150 i
Pl /
o5 100 . 1 100 1"0' ) g i // N/ 10
50 . ‘ 15 50 ‘ 2 50 | s 50/ \ /. 15
f \//
- r- 100 200‘ 300 - 2 ’ -3 ’ . - ’ E 20
400 100 200 300 400 100 200 300 400 100 200 300 400
X (km) X (km) x (km) x (km) X (km)

* As aresult of the superposition of modes, spatially coherent internal wave beams become
evident.



Wave beams

The appearance and nature of coherent internal wave
beams in this idealized ocean is a consequence of:

1. Individual modes being a superpositioln of upward and
downward plane waves, i.e. cosmz = —(e"’”Z +e“""z).
2. The ratio of vertical and horizontal wavenulr/rzmbers is
. . 2 2
independent of mode, i.e. m, _ (N -w 3
kn a)2 _f2
2 2 2 2 .2
: : R w =N"cos"0+ f"sin" 0
3. The properties of the underlying plane waves, i.e, ¢, Lk,c,.
* Particle motion is along beams (and into the page); phase propagates through beams.
;;: 7 'E.’ " ;:: A . 350 l" \ " ::Z \ N ::Z . N
¥ | G Y% | /L A | L
wvp: U [ |- vk, | | el /
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100 xtg] 300 400 v s o e
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Energy flux

 Animportant consideration is the energy flux of the vertical modes.
*  Multiply linear momentum equations as follows:

ou_ Lol

| ot Ps 0X |

i ] add equations

g—v+ U=— ! 2—]9 XV CI_) l/()>.<i[u2+vz+w2]+li 8P +V-(up)=0

ot p. 0y | 2" o 2 9t| p.N°

ow ldop p

—- ;a_z Eg}xw KE PE Energy
Flux

* Calculate time averaged, depth integrated energy flux for mode n:

f(up>dz f< L (a)kn / )U,f(z)cosz(knx—a)t)>dz=Z—’3px(w ~/ )

_H _H " 20

* For constant stratification, this becomes:

f (up)de ==+ 22

: ﬂw( 5 _f2 )1/2 (N2 _a)z )1/2

carry less energy.

For a given amplitude, higher modes



Nonuniform stratifications

* Of course, the density stratification of the ocean is not constant but typically varies
significantly within the upper few hundred meters.

Salinity (%o)

Depth (m)

4000
0 5 10 15 20 25 30

Temperature (°C) Density (g cra?)

102 1.03 104 1.05

* Due to combinations of water from different origins, and also physical processes such
as double diffusion, for example, the stratifications can be complex.

- Canada Basin
Western Arctic Ocean :
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(Image: Plnke/ 2005) Potential Temperature (°C) Salinity

(Image: Timmermans et al. 2008)



Modes

For a nonuniform stratification, generally the modes need to be calculated numerically
(the WKB method provides approximate solution, but not ideal).

d*wW . kz(Nz(z)—a)z

w=W(z)e™ —
() Z2 a)Z_fZ

)W=Q
Still a Sturm-Liouville problem, so useful results apply, namely:
(i) Infinitely many solutions with wavenumber &,
(ii) Modes are orthogonal,

(iii) Linear relations between physical variables persist, i.e.

iAW fdW

U = : =L —
k dz wk dz

2 2 2
A )
2w

Energy flux of mode n:

n

General solution is a superposition of modes: w= Ewan(z)e"("nx‘“”)



Modes

The mode shapes, which are now a function of frequency, become biased towards the

Consider reasonable model of an ocean stratification.
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Wave fields

Wave fields for the different

vertical modes are manifest

as follows:

Horizontal wave lengths are
on the order of 50-100km

for modes 1 and 2, and

phase speeds are on the

order of 1m/s.

Mode 1:

Mode 2:
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Modal decomposition

* Presented with a harmonic wave field, it is possible to extract the modal content.

* Provided the forcing frequency, w, stratification, N(z), and background rotation, f, is
known, the vertical modes and their wavenumbers, k,, can be calculated.

* We exploit the fact that the measured wave field is assumed to be of the form:
u(xa Z,f) = EunUn (Z)ei(knx—wz)

* If a vertical profile of horizontal (or vertical) velocity is measured at two different times,
t, and t,,at the same location, x,, for example, the real and imaginary parts of the
complex amplitude u, can be determined from:

Re{u, } cos(k x, —wt,) —sin(k x,—wt,) || T (x,,21)
Im {u, } cos(k,x, —wt,) -sin(k x,-wt,) || T, (x,,21,)
where
. . 0-8 R 0-p
L, (020 =[] *x [ 20U, ()dz and y,,= [ U,(U,(2)dz.
-H+a -H+a

 The approach can do an excellent job even with incomplete information.



Modal decomposition
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* For our example stratification, we can

start with a wave field comprising 10
modes with 10 different phases. / S
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* By applying modal decomposition
routines one can extract the modal
amplitudes and phases.

[ Wl
') radians

4 6
Mode

Vertical Velocity Horizontal Velocity

333833
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loss up to 20% of the vertical domain
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8 0 0 iModes
iModes (internal tide modal decomposition GUI)

z(m)

STEP 1: PARAMETERS

— stratification

() constantN
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Observations

Are modes just an idealization only observed in analytical models? — No. There is
clear observational evidence of propagating modes in the ocean.

Hawaii

30°N |-
25°N
20°N |-
15°N -
L

180°W 170°W 150°W

Latitude

Longitude

e Surface displacement at M2
frequency is alternately reinforced
and reduced by motions consistent
with mode-1 and mode-2

wavelengths (Ray & Mitchum 1997).

Depth

Depth

Italy
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Italy (Carniel et al. 2012).



Generation




Generation in the deep ocean

There are currently understood to be two principle (linear) sources of internal wave
energy flux into the deep ocean:

1. Flow past topography 2. Ocean surface forcing

(Image: Sarkar) (Image: NASA)




Generation in the deep ocean

There are currently understood to be two principle (linear) sources of internal wave
energy flux into the deep ocean:

1. Flow past topography 2. Ocean surface forcing

(Image: Sarkar) (Image: NASA)




Internal tides

* Barotropic (depth-independent) tides exist at frequencies such as:

GOT99.2 NASA/GSFC

M2 - lunar, semi-diurnal = 12.42 hours

K1 - lunar, diurnal = 23.93 hours

S2 - solar, semi-diurnal = 12.00 hours

30 40 50 &0 70 80 9 100 110 120 130 cm

(Image: NASA/GSFC)

* The barotropic tides force the ocean to pass back and forth over ocean floor
topography, disturbing the background stratification.
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(Image: Garrett 2007)

video



Linear model

An important parameter is the tidal excursion parameter Uk provided this is small we
can still use the linearized equations. w N

UyRe[e™ |

It convenient to work with the stream function: ¢ =U, Re[q)(x,z)e'i“’t] where (u,w) = (———)
We decompose the flow into barotropic and baroclinic components:

Y(x,2,1) =, (x,2,0) + ' (x,2,0) = Re[gbb (x,z)e""‘”] + Re[gb’(x,z)e""‘”],

The governing equation and boundary conditions for the perturbation wave field are:

(N(z2)2 - 6202 ) quz' - dzf, =0; ¢'(x,0)=-¢,(x,0), @(x,h(x))=-9,(x,h(x)).
w - f dx~ dz



Point sources

e Astarting point is to determine the wave field for a point source of internal wave
energy at (x',z) subject to rigid boundary conditians at z=0and z=-H:

oL

N -0 \d*G &G
wZ _f2 dx2 dZZ

=i0(x-x")z-7).

-H

* For a constant stratification, N, this equation is solved by separation of variables,
giving:
N | . nw7 . nmwz i
G(x-x"Yz-7)= sin sin e Hn0
( X ) En:rtan@ H H

s

n=1

e The Green’s function is a sum over the vertical modes of the stratification

w’> =N>cos’ 0+ f’sin* 0




Topographic generation

Robinson (1969) and Petrelis et al. (2006) proposed that the wave field generated can
be attributed to the sum of waves emitted from a distribution of point sources on the

topography. 0

U, Re[e""‘”]

Mathematically, we write this as: ¢(x,z) = f 2y (NG (x,x,z,h(x'))dx'.

Since the wave field generated by point sources already satisfies the internal wave
equation, all that remains is to satisfy the boundary conditions.

The top boundary condition (rigid lid) is also already satisfied. The bottom boundary
condition reduces to the following:

Px.h() = [y (G h(x) A = =, (x.h(x)) = Ugh().

Discretize integral in x and choose how many modes # to represent Green’s function
(see, for example, Echeverri & Peacock (2010))



Validation

Numerics: Eouw

To test the method, comparisons were made between theory, laboratory experiments
and numerical simulations (Echeverri et al 2009). —
I mear traverse ( 11Xe I

19.8 cm

Experiments were performed in the
frame of reference of the barotropic

tide. ——

19.6 cm

_ topographic slope

Very good agreement for sub- (¢ <1)and super-critical(e > 1) wave fields. |&=-
internal ray slope
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Nonlinear regimes

By increasing the amplitude of oscillation of the topography (and thus the tidal excursion
parameter), the wave field becomes increasingly nonlinear.

excursion =4.2% excursion = 8.4% excursion = 14.7%
I
= |s/T]
1.5
1.0
0.5
0

0 020 025 030 035
x (m)

* Nevertheless, the linear model still
does a remarkably good job.

* Additional harmonics are evident in e<l e>1
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Isolated ridge

e Further use of the theoretical method reveals the nature of internal tide generation by

isolated ridges.

(a) 3.14 o= (c) 1.8
e 1.6

: 145
0 : 12

e The modal structure of the
radiated wave fields can
also be investigated.

* Both the leftward and
rightward energy fluxes
are dominated by mode 1.
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Double ridge

The presence of multiple ridges can have a profound (and complex) impact on the
radiated wave field.

u/lU

—e— Double ridge
Z 2.0
0 10 5 0 5 10
- - 1.5
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1.0
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g P W Yy N ‘J
0 - 0 . . .
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X Lo

Both criticality and relative location play key roles, making it difficult to anticipate
results.
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Attractors

There is the interesting scenario that ridges can trap wave energy giving internal wave
attractors.

The idea of an internal wave attractor was first realized by Maas et al. (1997).
The linear theory is able to reliably predict the existence of internal tide attractors.
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Theory:

While it may seem somewhat idealized, there is evidence that these ideas are relevant
to the Luzon Strait double ridge system in the South China Sea.



Real stratifications

 Arecent advance enables the Green function method to be extended to arbitrary
nonuniform stratifications (Mathur, Carter & Peacock 2012).

 What makes this possible is that for a nonuniform stratification, the Green function
can be expressed as a sum over the vertical modes:

G(x,x',2,7) = ’i"@p—(zl)(f(%)q)i dZ) eikp\x-x'\q)p(z)

2kp sy -

recalling that the vertical modes @, are obtained by numerically solving (subject to rigid
lid boundary conditions):

N*(z)- o’
(I)p,zz + (W)kiq)p =0.
 The internal wave problem is again solved by imposing the bottom boundary

condition:
[ 7Gx b)Y = Uyh().



Nonuniform stratifications

* Using this approach, it is possible to calculate the internal tide generated by two-

dimensional cross sections of realistic topography in realistic stratifications.

* We use the Hawaiian ridge as an example.
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iTides

STEP 1: PARAMETERS STEP 2: GAMMA DISTRIBUTION———;
— topoaraphy
browse topo | jUsers/mmercier/Documentsfravail/PostDoc/iTides/iTides 500
— stratification Specify output filename (default taken otherwise)
O constantN N (rad/s) dz (m) output_gamma

e provided N browse strat | jUsers/mmercier/Documentsftravail/PostDoc/iTides/iTides_ o
gamma_distribution

— tide and coriolis frequencies

04 0.1
STEP 3: WAVEFIELD
‘ » — computation
{ plot tope & strat J u0 (m/s) rho0 (ka/m*3) 50
0 - - _ _ _ 01 dx (m) 2 # viscous correction
005} oot ¢ 1 |
: Specify output filename (default taken otherwise)
RNy q-01r .
-0.15 | {-015p I : wavefield
021 -0.2 : E ( |
: compute wavefield
-0.25 -0.25 : E
z(m g5} asf o1 ]
035} 035 ] — display
04l 0.4 I . | horizontal velocity I#] " phase (rad)
-045 | -0.45 : : i
L il display_wavefield
-1.5 -1 1.5 0 0.5 1
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http://web.mit.edu/endlab/downloads




Three-dimensionality

Theoretical modeling for ideal

Depth Z

So what about the fact that topography in the real ocean is three-dimensional?

Experiments

o . Numerics
Theory Limited research only in

recent years (e.g. Gaussian Fundamental modeling, e.g.

Holloway & Merrifield (1999),

shapes, such as sphere (Voisin seamount, King et al. 2010). Munroe & Lamb (2005).

2003) and pillbox (Baines 2007). ~——— Tidal forcing
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(Image: Baines 2007)
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(Image: King et al. 2010)
Ridges with a horizontal aspect ratio 3:1 produces an energetic internal tide, nearly an
order of magnitude than for similar sized seamounts (40 times larger for a ridge).

An analytic estimate of the energy flux from all seamounts is 2.4GW (comparable to just
the Hawaiian Ridge system).



Finite excursion

Internal waves need not be generated at the tidal forcing frequency.

This is apparent when the tidal excursion parameter is large, for example, resulting in the
generation of “lee-waves”, which is not uncommon in shallower coastal waters with
smaller topography.

The classic “linear” analysis of this scenario is that of Bell (1975) — retain U, - Vii

/

As excursion parameter is increased, harmonics
of the forcing frequency are excited: o =nw,

/ % e Inthe limit of very large excursion parameter,

the lee wave frequency dominates : w=Uk

ix\

X

These nonlinear waves are readily seen in numerics and experiments.
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(Image: Rapaka et al 2013) (Image: Aguilar & Sutherland 2006)

The contribution of lee waves to the global energy budget is not expected to be significant
(although there is still some more work to be done regarding the ACC).



Nonlinear generation

Los Angeles

When tidal flow speed U, exceeds
the modal internal wave phasec,
speed (i.e. Fr=U,/c,>1), nonlinear
internal waves arise at the
generation site.

An example of this was
demonstrated in lab experiments
by Maxworthy (1979).

(Images: Maxworthy 1979)
Knight Inlet, British Columbia

Related phenomenon are observed
at many different global locations.

Although locally dramatic, it is

believed the energetics are such j:
that this is not a significant |l
contribution to the global energy N

100 to 120 cm/s s

(Image: ERS 2006)
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Field programs

* Several major field experiments have focused on internal tide generation, a pioneering one
in the US being the Hawaiian Ocean Mixing Experiment (HOME).

e 300m amplitude waves
on the ridge flank.

e Comparison of observed and
predicted energy fluxes.
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Field programs

Another major research program is the Internal Waves In Straits Experiment (IWISE) in the
South China Sea.

While 2D analysis gives some insight into the generation, the complexity of the topography
means that this is really a 3D generation problem.
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Coriolis experiment

As part of the IWISE program we performed “the most ambitious laboratory experimental
study of internal tide generation of all time” (?).
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B BM " Ultrasonic ‘
— Array OfET transducer ensdes
probes
Overhead  ---f----> o
field of view : Prlsmatlg .
oy e A g barotropic tide
g : | generator
Vertical laser o /. Reflection
sheet for barrier for
planar PIV .- baroclinic
,,,,,,, tides.
Innerwall 0 0 N_ k< Removaplg
lined with gate for filling
Blocksom 13m process
matting < »

Key challenges to overcome were: (i) Achieving dynamic similarity with the ocean,
(ii) Constructing the experiment,

(iii) Obtaining data.



Coriolis experiment




Coriolis experiment

Dynamical similarity:

10 dimensional X
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Coriolis experiment

The M2 internal tide, whose
wavelength is comparable
to the ridge separation, is
significantly shaped by the
topography.

The K1 internal tide, being
longer wavelength, is less

impacted by the shape of

the ridge system.

The vertical structure of
the radiated internal tide
is dominated by mode 1.
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The global picture

* Internal tides are generated by significant deep-ocean ridges.

(log, kW i)

-05

energy flux magnitude

120°E 180°W 120°W 60°W 0° 60°E
(Image: Simmons 2008)

* The total energy flux in to the deep ocean in the form of internal tides is in the range
0.9-1.2TW.

* There are many other forms of topographic generation process (e.g. lee waves, solitary
waves, 3D) but the energy flux from these, while perhaps locally significant, is likely not
globally significant (an exception might be the ACC).

 Comparisons between field measurements, theoretical models and numerical simulations
all seem to be in accord.
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