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Generation in the deep ocean

There are currently understood to be two principle (linear) sources of internal wave
energy flux into the deep ocean:

1. Flow past topography 2. Ocean surface forcing

(Image: Sarkar) (Image: NASA)




Surface forcing

 The ocean surface is exposed to forcing by surface winds.

 Mid-latitude storms provide the bulk of the energy flux, with much of the remainder
coming from hurricanes/typhoons.

The storm winds excite currents in the surface mixed layer with a resonant coupling at the
local inertial frequency f =2Qsinf and scales of order 100km (Pollard & Millard 1970).
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Convergences and divergences in these currents pump vertical motions at the base of the
mixed-layer, exciting near-inertial internal gravity waves.

The waves propagate toward the equator (they cannot propagate toward the poles).



Analytical model

There are several established models of this process (e.g. Gill 1984, D’Asaro 1989).

The approach of Nault & Sutherland (2007) can be adapted to handle the downward
propagation of inertia-gravity waves excited by forcing of the ocean surface or base of the
mixed layer, through arbitrary stratifications with shear.

Impose surface disturbance
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Analytical model

Consider an imposed disturbance of known horizontal wave number &k and frequency o,
and the stratification is known.

In the deep ocean we require only a downward propagating wave: ¢(z) = Ce"*.
g . a . i(kx—wt i(kx—wt .
The surface boundary condition is: w(z) = —a—w = —ikge' " =w e — —ik¢p =w, at z=0.
X
We also reconfigure the lower boundary condition:

Impose surface disturbance

: z with horizontal wavenumber &k
— C myz .« ! _
#(z)=Ce | e¢(_D)+l¢( D)_o. ) — AN~
¢’(Z) — imzcel"’lzZ m2 L j_

We can then solve as a BVP. -
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Analytical model

 Even for a two-layer stratification, with upper
layer N, and deep ocean N,, there are complex
predictions (Ghaemsaidi et al, in prep.).
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Off piste




Interferometer

 There is a nice analogy between internal waves in the ocean and an optical Fabry-Perot
interferometer (Mathur & Peacock 2010).
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Interferometer

Laboratory experiments for a wave beam comprising a range of wavenumbers clearly
demonstrate selective transmission (accounting for viscosity).
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On piste




Field experiments

* Near-inertial waves are clearly seen in mooring and ship board ADCP and profiler data.
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The global picture

Near-inertial waves are excited by mid-latitude storms and head equatorward.
Comparison with ocean measurements north of Hawaii show respectable agreement.
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The fate of deep ocean internal waves




The fate of deep-ocean internal waves

* There are several conduits for the transfer of inertia-gravity wave energy from large to
small scales and onward to turbulent mixing via instabilities, including:

o u s wWwNhRE

Dissipation at topographic generation sites
Scattering by deep-ocean bathymetry
Interaction with pycnocline

Mesoscale interactions

Wave-wave interactions

Solitary waves



1. Dissipation at topographic generation sites

 There is substantial evidenge of high turbulent dissipation, and correspondingly high
turbulent diffusivity K, = vt in the vicinity of internal wave generation sites.
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* Detected values of K, between 103-10* m?s™! are one-to-two orders of magnitude greater
than values deduced from the upper ocean interior.

* This activity occurs remote from the bottom and/or is phase locked with the forcing tide,
implicating internal wave processes.



1. Dissipation at topographic generation sites

Turbulent dissipation attributed to instabilities driven by some combination of shear and

unstable buoyancy. Knight Inlet, British Columbia
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While these events are locally very strong, for large scale topography a majority of the
energy radiates away in the form of low modes (e.g. Alford & Zhao 2007).



2. Topographic scattering

» Satellite altimetry suggests that scattering could be significant in regions of strong
topography (Johnston et al 2003).

e Scattering provides a means to transfer energy from long to short wavelengths, which
are more prone to instability because of higher levels of shear and steepening (Staquet
& Sommeria 2002).
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* Previous studies have suggested that topographic scattering is weak (~¥9% of energy
flux), but these analytic models were subject to substantial assumptions.



2. Topographic scattering

* The Green function approach can be adapted to the case of scattering
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2. Topographic scattering

* We calculate the fraction of the energy flux scattered into the transmitted and
reflected wave fields as a function of the criticality and the depth ratio.

C’,111—100 Cf{—lOO
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€

e Critical topographic features are the most efficient at scattering energy to higher
modes. Tall critical features can scatter over 80% of the incident energy flux.
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2. Topographic scattering
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2. Topographic scattering

There is excellent agreement between the Green function theory and the results of 2D

numerical simulations.
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The fraction of the energy flux scattered into the transmitted and reflected wave
fields is a function of the criticality and the depth ratio, with critical topographies
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2. Topographic scattering

e Consider a mode-1
internal tide propagating
north from Hawaii.

e Overall the scattering is very
modest, accounting on
average for 8% of energy flux.

e There is a very strong
correlation between scattering
efficiency and existence of tall,
supercritical ridges.
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3. Interaction with pycnocline

For downward and upward propagating inertia-gravity waves, the enhanced stratification
near the ocean surface causes regions of enhanced vertical shear and strain that promote

instability.
Y Banda Sea

The lowest Richardson number
for a plane wave is expected at
the stratification peak, which is
where shear and strain of near-
inertial waves is greatest, and
this is where instability is
observed.
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(Image: Alford & Gregg 2001)



4. Critical layers and mesoscale structures

For a disturbance of frequency w,,,, the Doppler shifted frequency, w,, is: @, =w, + k -

The laboratory experiments of Koop (1986) clearly
indicate the possibility of instability as an internal
wave encounters a critical layer.

Laboratory Experiments

More generally, in the ocean
three-dimensional shear
structures exist as mesoscale
eddies and the associated
shear structure can trap and
focus inertia-gravity waves.

This could be important for
lee waves in the ACC.

(Image: Moulin & Flor 2005)

(Image Koop 1986)

Field studies
WRINCL (Gulf Stream)

(Image: Kunze et al. 1995 )
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5. Wave-wave interactions

: : I A S I I [k,
Consider a wave field composed of several waves: i = uoel[ o] +uet Hiet U+

Weakly nonlinear interaction through quadratic term “slowly” changes wave
amplitudes and phases: GITA

E = —ﬁl.Vﬁz e

Energy exchange is efficient if the following resonance conditions are satisfied:

w, =w, +w, and EO =I€1+I€2.
This Parametric Subharmonic Instability (PSI) transfers energy from a large scale to
two smaller scale waves at close to half the frequency with lower group velocity.

PSl is observed in laboratory experiments (e.g. Joubaud et a/ 2012), with good
agreement for growth rates.
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5. Wave-wave interactions

* Initially believed that PSl is slow (and thus not important) for energy transfer from mode-1.

 Numerical and theoretical studies suggest the process is more efficient at the critical
latitude where o, ~w, ~ f.
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5. Wave-wave interactions

Realistic global simulations using M2 only
barotropic forcing reveal key generation
sites.

Where strong internal tides cross the

log,, variance (m?/s?)

critical latitudes (28.8°) there is
amplification of subharmonics, high
vertical wavenumber, high shear (Ri<1/4)
and increased diapycnal diffusivity.

log,, variance (m?/s?)

(Image: Simmons 2008)
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5. Wave-wave interactions

* The Internal Waves Across the Pacific * Observations of near-inertial standing

(IWAP) field program set out to observe waves consistent with PSI were observed.
PSI at the critical latitude.
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5. Wave-wave interactions

* More generally, away from strong generation sites the ocean displays a somewhat
universal distribution of energy in wavenumber and frequency space.

* Comprises an integrated energy spectrum in wavenumber that scales as w?, which
has been detected (e.g. Cairns & Williams 1976)

* The basic picture is that there is a steady cascade of energy from large to small
vertical scales, where energy can be dissipated via wave breaking, the cascade
being driven by wave-wave interactions (McComas & Bretherton 1977, Staquet &
Sommeria 2002).



6. Solitary waves

As low mode internal waves radiate from their generation site they undergo nonlinear
steepening due to a balance between:

1. Nonlinearity
2. Non-hydrostatic dispersion
3. Background rotation

The governing equation for a two-layer model of this process is the rotationally-modified
KdV, or Ostrovsky, equation (Li & Farmer 2011):

0 (dn e, on
ox\ ot

3 2
817+/331Z _J n where a=3co(h1_h2),/3=—cohlh2.

+a
L X 2c hh, 6

0x ox

Both the non-hydrostatic dispersion and the background rotation counteract the nonlinear
steepening.

When the wave is initially a long-wavelength mode-1 wave, rotation dominates over non-
hydrostatic dispersion and seeks to prevent steepening.

Provided that is overcome, then the balance is between nonlinearity and non-hydrostatic
dispersion in setting the shape of the wave.

A fully nonlinear, two-layer model has been developed by Helfrich (2007) to overcome
shortcomings of weakly nonlinear analysis.



6. Solitary waves

An excellent example of nonlinear steepening is found in the South China Sea.
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Processes at continental shelves




Processes at continental shelves

* There are several key processes at continental shelves, including:

W oe

Generation

Scattering

Steepening of solitary waves
Wave breaking



1. Generation

 As well as interacting with deep ocean topography, the barotropic tides interact with
continental shelves to generate internal wave fields of a variety of forms.

* Linear internal tide generation can produce modes and internal tidal beams at continental

shelves. ,
North West Australia
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e Overall, tidal conversion at continental shelves is considered to be weak compared to the
deep ocean because the “across-ridge” velocities are weaker.



1. Generation

The interaction of barotropic tides with continental shelves can lead to a variety of local
nonlinear processes.

Extended regions of critical slope are locally strong generators of potentially unstable
internal wave fields.
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1. Generation

An interesting consequence of internal wave beams that was first reported in the
vicinity of continental shelves occurs when a wave beam strikes a pycnocline.

Evidence of this process was reported by Pingree & New (1991) in the Bay of Biscay.

Trains of nonlinear internal waves were observed to arise somewhat suddenly in mid-

ocean, well away from any topography.

The process has been studied analytically (Gerkema 2001, Akylas et al 2007),

numerically (Grisouard, Staquet & Gerkema 2011) and experimentally (Mercier et al

2012) —> phase speed of excited solitary waves matches horizontal phase speed of
incident wave beam.
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2. Scattering

Low-mode internal tides have been observed to propagate thousands of kilometers from

their generation sites.

170°w 160°W 150°W

(Images: Zhao &
Alford 2009)

Altimetry can onIy'detect temporally coherent signals, which maybe disrupted by
propagation through mesoscale eddy fields, for example (Rainville & Pinkel 2006).
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2. Scattering

For an internal tide impinging on a continental shelf, one needs to consider the scattering
of this internal tidal energy.

A simple, linear model of scattering is obtained ,
by considering a ‘step’ and using vertical
modes to enforce continuity across the step.

A more sophisticated model allows
investigation of more realistic

topographic features.
The response turns out to be highly sensitive
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2. Scattering

The interaction of an internal tide and a critical slope can give rise to intense internal wave
activity.

Theoretical and laboratory e
studies reveal the onset of
buoyancy driven instability at
critical slopes. Y
(Image: Dauxois & Young 1999) (Image: Dauxois et al 2004)
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3. Steepening of solitary waves

1>n

When the background bathymetry and stratification vary (slowly) the extended, variable
KdV (evKdV) equation can be used (Grimshaw et al. 2010):

Jt 0x

Internal waves can steepen substantially and even encounter a turning point (a change of
sign of a(x)), where waves of depression transform into waves of elevation.
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3. Steepening of solitary waves

 When solitary waves approach continental shelves, dissipation can occur through a
variety of means, including: (i) radiation damping, (ii) boundary layer, (iii) shear instability
and (iv) buoyancy instability. South China Sea
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4. Wave breaking

 When baroclinic tides or large amplitude solitary waves propagate onto continental shelves,
wave breaking can occur.

* Laboratory experiments find mixing efficiencies of up to 25% (Michallet & lvey 1999).
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* In many cases boluses of fluid to propagate up on to the shelf.



Global picture




depth in m

Global picture

There are significant energy fluxes, on the order of 1TW, being input into the ocean by

topographically generated internal tides and surface generated near-inertial waves.

This I TW+1TW=2TW of energy is believed to be important to maintaining the large scale
circulation of the ocean by virtue of its impact on vertical diffusivity.

The energy flux is dissipated somewhere and somehow, but there are a range of processes
in the deep-ocean and at continental shelves that are possible sinks.

At present there is no one process or location at which dissipation appears to be dominant,

leading to the notion of ‘patchy mixing’.

This makes things challenging because the large scale behavior of ocean models is sensitive
to the distribution of mixing.
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Outstanding questions

* There are many outstanding questions to address to obtain a more complete picture on
the role if internal waves in the ocean, including:

1.

Can we more clearly define the energy flux associated with near-
inertial waves?

Are there other sources of energy flux that still need to be seriously
considered (e.g. lee-waves in the ACC, loss of balance, high
frequency waves generated by the mixed layer)?

Is anything really going on at the ‘critical’ latitudes?

What fraction of low-mode energy flux makes it all the way to
continental shelves?

Are there one or two dominant dissipation processes or do low-
mode internal waves suffer death by a thousand cuts?

Can this knowledge be incorporated into large scale numerical
models?

What will be the impact of enhanced internal wave activity in the
Arctic Ocean?
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