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Solitary Waves

solitary waves in the atmosphere and ocean
Korteweg de Vries equations and extension to radially spreading waves
shoaling solitary waves
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Solitary Waves in the Ocean and Atmosphere

Propagation, Stability and Instability of Waves 3 / 51



Solitary Waves Modulational Stability/Instability Wave Generation by Turbulence Internal Wave Breaking Discussion

River Plumes
Columbia River

A plume of freshwater propagates along the surface of a salt-stratified ambient.

Surface waters are displaced downwards, forming a large amplitude wave.

Wave separation occurs when the plume decelerates.

[Nash & Moum, Nature (2005)]
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Atmospheric Gravity Currents

Thunderstorm outflows, the collision of storm fronts, etc create gravity currents
that can go on to excite solitary waves in the atmosphere

Morning Glory east of Burketown, 1996

[from http://www.dropbears.com/brough/]

Undular Bore west of Baja Peninsula
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Generating Solitary Waves from Gravity Currents

Thunderstorm outflows are blasts of
cold air that flow under an
atmospheric inversion.

This is modelled in the laboratory with dense fluid moving in a shallow layer of a
2-layer fluid.
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Surface Solitary Waves

Korteweg-de Vries (KdV) solitary waves result from balance of nonlinear
steepening and (linear) wave dispersion

Their evolution is governed by Korteweg-de Vries equation:
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Solitary Waves in Stratified Fluids

Atmospheric and oceanic solitary waves exist in continuously stratified fluid.

For example, they can be generated by lock-release experiments in uniformly
stratified fluid.

[Munroe et al, J. Fluid Mech. (2009)]
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Derivation of Internal KdV Equation

Start with the governing 2D hydrostatic, Boussinesq equations:

ρ0ut + px = −ρ0(uux + wuz)

pz + ρg = 0

ρt + wρ̄′ = −(uρx + wρz)

ux + wz = 0

and relate these to the vertical displacement field using w = Dξ/Dt:

w − ξt ' uξx

Expand the fields in terms of the amplitude parameter, α:

ξ(x, z, t) = αξ0 + α2ξ1 + ...

Assume
ξ0 = η(x, t) φ(z) with η ≡ A(ε(x− c0t), εαt)

φ(z) is vertical structure and c0 the shallow water speed given by linear theory
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Internal Solitary Waves
Rectilinear Theory

Assume ε ' α and keep terms to order α3.

The result is the KdV equation for the maximum deflection:

ηt + c0ηx + γηηx + βηxxx = 0

γ =
3

2
c0

∫
ρ̄φ3z dz∫
ρ̄φ2z dz

and β =
1

2
c0

∫
ρ̄φ2 dz∫
ρ̄φ2z dz

Solution:

η(x, t) = A sech2

(
x− ct
λ

)
Width: λ =

√
12β
γ

1
A

Speed: c = c0 + γ
3
A

Note: Results are consistent with a surface solitary wave.
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Non-KdV Solitary Waves

If the solitary wave is forced at very large amplitude, its crest flattens and the
wave broadens.

several “modified” KdV equations have been proposed to capture this structure.

Extremely large solitary waves exhibit breaking and/or closed cores.

[Magda Carr, http://www-vortex.mcs.st-and.ac.uk/˜ magda/research.html]

Dubreuil-Jacotin-Long equation sometimes used to describe these waves
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Radially Spreading Solitary Waves

In all these images wave fronts spread radially from a localized source.
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Radial Intrusions at a Thick Interface

Intrusion should slow down as it spreads, but it does not!

Side View
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Numerical Simulations

Initialization:
specify the initial density field – hyperbolic tangent profile
use experimental parameters for densities and depths
vary interface thickness and tank radius
include a passive tracer to simulate dyed lock fluid

1 2 3 4 5 6 7
r/r0

-0.5

0

0.5

z

H ρU

ρL

Results:

Vertical velocity field

[McMillan & BRS, Nonlin. Proc. Geophys. (2010)]
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“Rigorous” Derivation of Axisymmetric KdV Equation

Start with the governing axisymmetric equations:

ρ0ut + pr = −ρ0(uur + wuz)

pz + ρg = 0

ρt + wρ̄ ′ = −(uρr + wρz)

1

r
(ru)r + wz = 0

w − ξt '
1

r
(rξu)r

Expand the fields in terms of the amplitude parameter, α:
ξ(r, z, t) = αξ0 + α2ξ1 + ...

Assume

ξ0 = η(r, t) φ(z) with η ≡
(
r

r0

)−1/2

A(ε(r − c0t), εαt)

Here φ(z) is the vertical structure given by linear theory.
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Axisymmetric KdV Equation Result

Assume r � r0 and extract terms up to O(α2):

ηt + c0
(
ηr +

η

2r

)
+ γηηr + βηrrr = 0

Consistent with axisymmetric surface solitary wave eqn [Miles, JFM (1978)]

But result is asymptotically inconsistent [Weidman and Zakhem, JFM (1988)]

derivation requires r � r0
but nonlinearity becomes negligible at large r

The equation also differs from the equation assuming a KdV structure:

ηt + c0
(
ηr +

η

2r

)
+ γ

(
r

r0

)1/2

ηηr + βηrrr = 0

with solution η ∝ sech2
(
r−ct
λ

)
/
√
r, as seen in simulations.

More theoretical work needs to be done . . .
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Shoaling Solitary Waves in the South China Sea

Internal waves are launched by tides flowing through the Luzon Strait.

Eventually these steepen to form internal solitary waves (large-amplitude
undulations of the thermocline).

Where the waves break they can resuspend sediments (and nutrients)
enhancing, for example, the development of the coral reef at Dongsha.

Bathymetry of the South China Sea Internal Solitary Waves Approaching Dongsha
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Internal Solitary Wave Generation and Shoaling

A series of experiments were performed in which internal solitary waves,
generated by lock-release, propagated toward a slope.

Ir ' 1.1

How the waves shoal on a slope is assessed by the Iribarren Number:

Ir =
topographic slope

wave slope
=

s

A/L

AL

Slope: s
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Shallow and Steep Slopes

Tumbling breaker: Ir = 0.69

Spilling breaker: Ir = 1.34
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Resuspension from Shoaling Solitary Waves

When an internal wave encounters a slope, sediment
is carried downslope in advance of the wave.

Particles may resuspend where the trailing edge of the
wave reaches the slope.

[Boegman & Ivey, JGR (2009)]
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Solitary Wave Maximum Descent

When solitary wave shoals, assume
its area wave fills a triangle of height
h? and length l? = h?/s.

Equate this area with the area,
Asw(2Lsw), of the incident internal
solitary wave:

2AswLsw =
1

2
h?l? =

1

2s
h?

2

So expect maximum deepening is

h? '
√

4sAswLsw.

This is consistent with experiments.

h⋆

l⋆

0

2

4

6

8

h
i/

H̄

0 2 4 6 8√
4sAswLsw /H̄

s < 0.2
0.2 ≤ s < 0.42

Maximum interface descent
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Sediment Transport and Resuspension

The ADCPs measure the along slope
speeds us, 0.5 cm above the bottom
of the slope.

The maximum downslope speed
above the maximum descent scales
approximately with the incoming
solitary wave speed.

0
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20

|u
s
|2 /

(g
p
′ D

p
)

0 10 20

Csw
2/(gp

′Dp)

No transport
Bedload transport
Resuspension

Define the Shield’s parameter to be the ratio of bottom stress to the buoyancy of
the particles (with reduced gravity gp′ and diameter dp):

Sh ≡ us
2

gp′dp

along-slope transport if Sh & 1
resuspension at maximum depth if Sh & 5
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Limitations of the Shields Parameter

The Shields parameter comes from studying
bedform deformations in river flows.

It assumes steady, uniform density flow and
predicts transport and resuspension as the
flow speed increases.

However, internal solitary waves resuspend
sediment at the separation point, where the
flow speed (hence Sh) goes to zero.

A new diagnostic should be created to predict
resuspension in transient stratified flows.

erosion

deposition
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Modulational Stability/Instability

derivation of stability condition

nonlinear Schrödinger equation

modulational stability and instability of internal waves
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Modulational Stability (Part 1)

For η(x, t) = Aeıθ, define ω ≡ −θt; k ≡ θx ⇒ ∂k
∂t

+ ∂ω
∂x

= 0

Energy conservation requires ∂
∂t

(f(k)A2) + ∂
∂x

(cgf(k)A2) = 0

f(k) is function set so that fA2 is energy

Suppose weakly nonlinear dispersion relation is ω = ω0(k) + ω2(k)A2

conservation laws become

∂k

∂t
+
[
ω0
′ + ω′2A

2
] ∂k
∂x

+ ω2
∂A2

∂x
= 0

f ′
∂k

∂t
A2 + f

∂A2

∂t
+ f ′

∂k

∂x
cgA

2 + fcg
′ ∂k

∂x
A2 + fcg

∂A2

∂x
= 0

Simplify to get matrix equation( ∂k
∂t
∂A2

∂t

)
+

[
ω0
′ ω2

ω0
′′A2 ω0

′

]( ∂k
∂x
∂A2

∂x

)
= 0
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Modulational Stability (Part 2)

Matrix equation is advection equation: ∂u
∂t

+ C ∂u
∂x

= 0

with u ≡
(

k
A2

)
and C ≡

[
ω0
′ ω2

ω0
′′A2 ω0

′

]
Eigenvalues of C are λ (= dx

dt
) = ω0

′ ±A [ω2 ω0
′′]

1/2

Case 1: ω2 ω0
′′ > 0.

Initial disturbance splits into two separate wavepackets moving at speeds greater
and less than cg .
such wavepackets are modulationally stable

Case 2: ω2 ω0
′′ < 0.

Initial disturbance grows exponentially at rate ∝ A.
such wavepackets are modulationally unstable
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Modulational Instability of Deep Water Waves

For moderately large deep water waves, the dispersion relation is

ω =
√
gk

(
1 +

1

2
k2A2

)
.

So ω2 = 1
2

√
gk k2 and ω0

′′ = − 1
4

√
g
k3

Hence ω2 ω0
′′ = −gk/8 < 0: deep water waves are always unstable!

Periodic waves near source Disintegrated wave train downstream

Generally, all “non-shallow” interfacial internal waves are modulationally
unstable, with marginal stability as kH̄ → 0.
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The Nonlinear Schrödinger Equation

For finite amplitude waves, suppose dispersion relation is

ω(k, |A|2) ' ω|(k0,0) +
∂ω

∂k

∣∣∣∣
(k0,0)

(k − k0) +
1

2

∂2ω

∂k2

∣∣∣∣∣
(k0,0)

(k − k0)
2
+

∂ω

∂|A|2

∣∣∣∣
(k0,0)

|A|2

Solving as before . . . ı(At + ω′(k0)Ax) + 1
2
ω′′(k0)Axx − ω2|A|2A = 0,

where ω2 = ∂ω
∂|A|2

∣∣∣
|A|2=0

In translating frame, X = x− cgt,
gives the Nonlinear Schrödinger
Equation:

At = ı
1

2
ω′′(k0)AXX − ıω2|A|2A

η
=

R
e{

A
ex

p
[ı
(k

0
x
−

ω
0
t)

]}
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0
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b) k0|A|(X̃, T̃ )
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The Boussinesq NLS Equation for Internal Waves

Assume the leading order weakly nonlinear dynamics for internal waves results
from the wave-induced mean flow Doppler shifting the waves:

∂tA+ cgz∂zA = ı
1

2
ωmm∂zzA− ıkUA

in which U = −〈ξζ〉 ∝ |A|2

Compare with generic form of the NLS equation:

At = ı
1

2
ω′′AXX − ıω2 |A|2A

For Boussinesq internal waves, ω2 > 0. So, according to the criterion for
modulational stability, which depends upon the sign of ω2 ω0

′′, moderately large
wavepackets are . . .

unstable if N > ω >
√

2
3
' 0.82N (|m| < 1√

2
|k| ' 0.71 |k|)

stable if ω <
√

2
3
N ' 0.82N (|m| > 1√

2
|k| ' 0.71 |k|)
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Moderately Large Internal Waves

Wavepackets with amplitude A ≡ Aξ/λx = 0.048

kz = −0.4 kx, (Θ ' 22o)︸ ︷︷ ︸ kz = −1.4 kx, (Θ ' 55o)︸ ︷︷ ︸

contours: |ξ| ≤ 0.048 λx U range: 0 ≤ 〈U〉 ≤ cgx

[BRS, J. Fluid Mech. (2006)]
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Wave Generation by Turbulence

generation by flow over rough topography
generation by oscillatory turbulent patch
generation by convective storms
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Flow Rough Terrain and Turbulence

Internal waves are generated in the lee of fast flow over rough terrain.

At late times, quasi-monochromatic waves appear above the turbulent wake.

[Aguilar & BRS, Phys. Fluids (2006)]

Also see simulations by Diamessis et al, J. Comp. Phys. (2005)
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Breaking Internal Waves

Internal Wave Generation, Propagation and Breaking

[Clark & BRS, Phys. Fluids (2010)]
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Internal Wave Generation by Storms

Internal waves originate from a storm in the troposphere.

They propagate through the middle atmosphere and are visualized by
OH airglow in ionosphere.

[Movie by Dave Sentman, U. Alaska. Taken from Black Hills, SD looking ESE toward a storm over Nebraska, August 18 1999.]

Propagation, Stability and Instability of Waves 34 / 51


airglow_990818_GravAndSprites.mpg
Media File (video/mpeg)



Solitary Waves Modulational Stability/Instability Wave Generation by Turbulence Internal Wave Breaking Discussion

Generation by Storms
Experimental Setup

Lc = 310 cm 39.5 cm Ls = 5 cm Lf = 5 cm

Camera

Screen

Fluorescent
lights

ρ(z)

z

ρ2ρ1 ρ0

H

ρ0

N

ρ1

Laboratory experiments model the mechanical oscillations of a storm near the
tropopause as a plume impacting stratified fluid.
In the laboratory it is convenient to set-up the experiments “upside-down”

inject salty fluid downward in uniform-density fresh water (the model troposphere)
waves are generated in the underlying uniformly stratified fluid (the model
stratosphere)
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Generation by Storms
Composite movie from experiment

[Ansong & BRS, J. Fluid Mech. (2010)]
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Internal Wave Breaking

gravity wave drag parameterization
breaking at critical levels, the quasi-biennial oscillation
anelastic growth and breaking
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GCMs without Internal Waves

Small spatial-scale, fast time-scale internal wave dynamics are not captured by
general circulation models (GCMs) of the atmosphere.

But without internal waves, observed mean winds and temperature are not well
reproduced. In particular . . .

the winter-hemisphere Jet Stream does not peak at the tropopause (it is not “closed”)
wind speeds are too strong at high altitudes

Observed Zonal Winds

From Figure 10a of McLandress (1998)

Simulated Winds with Insufficient Drag

From Figure 10b of McLandress (1998)
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A Simple View of Momentum Transport and Deposition

We may combine the concept of critical levels and anelastic growth to predict
heuristically where internal waves deposit their momentum in the atmosphere:

waves deposit their momentum at a critical
level (where their horizontal phase speed
matches the background flow speed)

waves grow anelastically until they reach their
overturning amplitude and then continually
deposit momentum to the mean flow so they
remain at that amplitude
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This was first proposed by Lindzen (1981) as an efficient method to include
momentum transport by internal waves in coarse-resolution general circulation
models.
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Internal Wave Breaking: Critical Level in Ambient Shear

Upward propagating internal waves break and exert drag near a critical level.

Large amplitude or sustained wave breaking can change the mean flow itself. In
this way the height of the critical level descends.

[From Figure 5 of Koop and McGee, J. Fluid Mech (1986)] [From Figure 7 of Koop and McGee, J. Fluid Mech (1986)]
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The Quasi-Bienniel Oscillation

Beginning in the mid 1950s, observations showed that the stratospheric tropical
winds (between 20-30 km) flowed alternately eastward and westward.

Typically winds with zero velocity descended over time on a two-year cycle.

Eventually this behaviour was attributed to breaking waves alternately
depositing momentum eastward and westward.

Though originally thought to be Kelvin and Rossby waves, it is now believed
internal waves dominately drive the mean flow.
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Theory for the Quasi-Bienniel Oscillation

Waves propagate upward with eastward and westward phase speeds.

These are alternately absorbed by winds in the stratosphere which changes the
wind speed.
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A Laboratory Model of the Quasi-Bienniel Oscillation

An annular tank (Ro = 0.30 m, Ri = 0.18 m) is filled 0.44 m deep with
salt-stratified fluid having buoyancy frequency N = 1.6 s−1.

16 pads at bottom alternately move up and down at fixed frequency and
amplitude.

These launch a superposition of left- and right-moving waves

Side View

McEwan and Plumb, J. Atmos. Sci. (1977)

Top View
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A Laboratory Model of the Quasi-Bienniel Oscillation

After a few hours, the system
settles into a steady state in
which the standing waves (a
superposition of leftward and
rightward waves) alternately
deposit momentum leftward and
rightward where they encounter
a descending critical level.

Where the waves break, they
deposit momentum in the
direction of the flow at that level
and the position of the critical
level descends.

[From experiments by McEwan & Plumb (1977)]
Frequency: ω = 0.43 s−1 Amplitude: A = 0.8 mm
The movie is sped up 100 times.

Embedded particles visualize the alternately leftward and rightward moving flow
that descends in time.
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Wave Breaking through Anelastic Growth

Due to momentum conservation, the amplitude of internal waves must increase
as they move upwards into less dense fluid. This is referred to as anelastic
growth.

The mean density, ρ̄(z), of the
atmosphere decreases at an
approximately exponential rate. So
atmospheric internal waves grow
exponentially in height (though with twice
the density’s e-folding height).

For example, the density at the
tropopause is about 1/4 that at sea level.
So waves will double in amplitude going
upward through the troposphere.
Likewise their amplitude increases
tenfold going through the stratosphere.
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Eventually, the amplitude of internal waves becomes so large that they break
and deposit their momentum to the background flow.
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Anelastic Growth of a Wavepacket in Linear Theory

A horizontally periodic, vertically localized wavepacket grows exponentially in
height as it advances upward.

The waves are predicted to overturn
at

zb = 2Hρ ln

(
1

|mAξ0|

)
.

where m is the vertical wavenumber
and Aξ0 is the initial maximum
vertical displacement at z = 0.

In a simulation that neglects the
nonlinear advective terms, ~u · ∇(·),
the waves continue to grow
exponentially even after they are
overturning.

In reality, we anticipate they should
break above the overturning level.
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A Modulationally Unstable Anelastic Wavepacket

Wavepackets with |m| < |k|/
√

2 ∼ 0.71|k| are modulationally unstable.
The interaction becomes more significant as the waves grow in amplitude
Eventually this changes the wave structure: the packet narrows and increases
in amplitude
This leads to overturning below the level predicted by linear theory

Simulation initialized with wavepacket: ξ = Aξ0 e
−z2/2σ2

(
eı(kx+mz−ωt)ez/2Hρ

)
m = −0.4k, Aξ0 ' 0.008λx, σ = Hρ ' 1.6λx

[Dosser & BRS, J. Atmos. Sci (2011)]
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A Modulationally Stable Anelastic Wavepacket

Wavepackets with |m| > |k|/
√

2 ∼ 0.71|k| are modulationally stable.

Such packets broaden and decrease in amplitude

This leads to overturning above the level predicted by linear theory

Simulation initialized with wavepacket: ξ = Aξ0 e
−z2/2σ2

(
eı(kx+mz−ωt)ez/2Hρ

)
m = −1.4k, Aξ0 ' 0.008λx, σ = Hρ ' 1.6λx

[Dosser & BRS, J. Atmos. Sci (2011)]
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Simulated Overturning Heights

For strongly non-hydrostatic waves with |m| . |k|/
√

2 ' 0.71|k| waves break
below the level predicted by linear theory. Breaking occurs well below if
Hk � 1.

For more hydrostatic waves with |m| & |k|/
√

2 waves break above the level
predicted by linear theory. Breaking occurs well above if |m/k| is large.
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Simulated Overturning Heights

Fully nonlinear 3D simulations are being
performed to examine more precisely where
momentum is deposited by a breaking
anelastic wavepacket.

Eventually the intent is to perform a wide
range of simulations of wave breaking in
realistic stratification and wind.

Thus momentum transport may thus be
included in GCMs using a look-up table.

[Courtesy B. Laughman and T. Lund, Colorado Research Associates]
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Summary and Outstanding Questions

Generation
Topographic generation (steady and tidal) is best
studied.
Convection and turbulence also create waves.
How important are non-topographic generation
mechanisms?

Propagation
Ray (WKB) theory is used for waves in non-uniform media.
But this assumes their vertical scale is small compared to vertical
background variations.
Is WKB theory reasonably used to examine low mode internal
waves?

Breaking
Waves evolve to breaking by approaching critical levels and are
modified by weakly nonlinear modulations.
Ultimately they break down due to overturning, shear instability
and PSI
How do internal waves ultimately result in drag and mixing?
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