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Turbulence induces rotation in the living and the non-living materials in the ocean. The

time scale of rotation for a living organism is important in understanding an organism’s

feeding efficiency, mating, prey capture rate, etc. This time scale is also crucial for

understanding the migration of non-living materials such as microplastics. Herein, we

investigate the tumbling motion of mesoscale particles that resemble organisms of

intermediate size, such as zooplankton that appear in the ocean. Using time-resolved

measurements of the orientation of rigid inertial fibers in a turbulence-tank, we analyze

the autocorrelation of their tumbling rate. The correlation time (τd) is well-predicted by

Kolmogorov inertial-range scaling based on the fiber length (L) when the fiber inertia

can be neglected. For inertial fibers, we propose a simple model considering fiber inertia

(measured by a tumbling Stokes number) and a viscous torque which accurately predicts

both the correlation time and the variance of the tumbling rate. Our measurements and

the theoretical model provide a basic understanding of the rotational response of an

intermediately sized organism to the surrounding turbulence in its non-active state.

Keywords: fiber in turbulence, Lagrangian turbulence, timescale, microplasitcs, tumbling, marine organism

1. INTRODUCTION

Understanding the dynamic response of a particle suspended in turbulent flow is applicable to
many small marine organisms. For instance, the rate of prey capture, predator sensitivity, feeding
efficiency, and habitat selection of an organism depend on how an organism responds to the varying
intensity of turbulence across the ocean (Rothschild and Osborn, 1988; MacKenzie et al., 1994;
Gilbert and Buskey, 2005; Reidenbach et al., 2009; Sutherland et al., 2014; Byron, 2015; Michalec
et al., 2017). The alignment and rotation of a non-spherical organism may influence its nutrient
uptake by influencing the surrounding boundary layer thickness, and hence the biological cycles
of the environment at various scales (Pahlow et al., 1997; Nguyen et al., 2011; Byron, 2015).
Further, the local distribution ofmicro-organisms such as phytoplankton relate to their mechanistic
response to the turbulence in the ocean (Durham and Stocker, 2012).

Organisms such as phytoplankton are typically smaller than the smallest scale of oceanic
turbulence. Orientation and rotation of sub-Kolmogorov particles in turbulence have been widely
studied in the past and are relatively well-understood (Jeffery, 1922; Maxey, 1983; Ferrante and
Elghobashi, 2003; Lundell and Carlsson, 2010; Pumir and Wilkinson, 2011; Pujara and Variano,
2017). Of particular interest to this research are the mesoscale organisms such as zooplankton;
their sizes exceed the Kolmogorov scale but are within the inertial subrange of turbulence. Earlier
studies have shown that the orientation of an organism plays a significant role in their gravitaxis,
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settlement, and directed swimming (Roberts and Deacon, 2002).
Besides, the active swimming characteristics of such organisms
add further complexity to the problem (Michalec et al., 2017).

The motion, aggregation and fragmentation of microplastics
in the ocean are also affected by turbulence. Such mesoscale
particles are also often non-spherical. Besides being an obvious
threat to the environment, these particles also act as rafting
mechanism in long distance transport for various organisms
that influences the ecological connectivity of the ocean (Thiel
and Gutow, 2005; Wright et al., 2013). However, the kinematics
of rotation of mesoscale particles are complex; because they
experience non-linear shear along their size, these organisms
respond to the ambient distribution of angular velocities in a
non-trivial way.

Several fundamental studies in the past few years have
been devoted to the passive rotation induced by turbulence of
spheres (Zimmermann et al., 2011; Klein et al., 2013; Mathai
et al., 2016), of complex particles (Pujara et al., 2018), and
axisymmetric anisotropic particles [Voth and Soldati (2017) and
reference therein]. Two important goals related to these inquiries
are to understand: (A) how the statistics of rotation relates to
the particle size, and (B) once set to motion by the ambient
turbulence, how long a particle continues to preserve its rotation.
Considering the simple cylindrical shape as analogous to the
shape of various oceanic organisms, the first piece of this puzzle
has been addressed extensively in the past for both non-inertial
(tracer) (Parsa et al., 2012; Marchioli and Soldati, 2013; Pujara
and Variano, 2017) and inertial particles (Parsa and Voth, 2014;
Bordoloi and Variano, 2017; Sabban et al., 2017; Bounoua et al.,
2018; Kuperman et al., 2019). Inertia might arise due to the
density difference between the fiber and the fluid, and/or because
of the fiber dimensions (length and diameter) being larger than
the Kolmogorov length ηK . In the latter category, long fibers with
negligible diameter (d ≤ ηK) were shown to obey Kolmogorov
inertial-range scaling such that the variance of the tumbling rate,
〈

ṗiṗi
〉

≈ (L/ηK)
−4/3τ−2

K (Parsa and Voth, 2014). Here, ηK and τK
are Kolmogorov length and time scales, respectively. For fibers
with large diameter (d ≫ ηK) and small aspect ratio (L/d = 1,
4), Bordoloi and Variano (2017) modified this relationship by
replacing particle length (L) by the spherical-volume-equivalent
diameter deq = (Ld2)1/3. The deq-based scaling was also found to
be consistent for particles of other complex shapes, such as cubes,
cuboids, and cones (Pujara et al., 2018).

In general, the rotation of a rigid fiber can be described by the
conservation of angular momentum, written in the frame of the
particle as

I�̇ + � × (I · �) = Ŵf (1)

Here, � is the total rotation (i.e., spinning and tumbling) rate; I
is the moment of inertia tensor of the fiber, and Ŵf is the total
torque applied on the fiber by the turbulent flow. Considering a
viscous torque (linear in velocity profile), Bounoua et al. (2018)
model the torque asŴf ∼ −4πη�L3/3+4πη

∫

uf×sds. The first
term corresponds to the viscous dissipation. The second term is
the forcing term which is responsible for the transfer of energy
from the fluid to the fiber. The Coriolis term � × (I · �) is

generally neglected for long fibers assuming that the spinning rate
is smaller than the relaxation rate of tumbling. This disputable
assumption is generally justified by the weak alignment of long
fibers with coarse grained vorticity (Pujara et al., 2019). The
Equation (1) then reduces to a simplified Langevin equation,

p̈i +
1

τr
ṗi =

1

τr
ξ . (2)

Here, τr = I/4πηL3 is the rotational response time and ξ ∼
∫

uf × sds/L3 is a colored noise related to the background
turbulence. The tumbling rate (ṗ) is then determined by the
nature of the forcing ξ and by the ratio of the response time
of the particle (τr) and the characteristic time of the forcing
τL ∼ L/uL ∼ ǫ−1/3L2/3. This ratio defines the tumbling Stokes
number Stṗ ∼ τr/τL that scales as:

Stṗ ∼
1

48

ρ

ρf

(

d

ηK

)4/3 (

d

L

)2/3
[

1+
3

4

(

d

L

)2
]

. (3)

for a cylindrical fiber of length L and diameter d.
In a previous letter (Bounoua et al., 2018), we modeled ξ

as a Dirac function peaked at fiber length, L. This provided a
theoretical basis to understand the influence of the fiber inertia
on the variance of the tumbling rate via:

〈

ṗiṗi
〉

∼
1

1+ St2ṗ
(L/ηK)

−4/3τ−2
K . (4)

The model stated in Equation (4) unified results from Parsa
and Voth (2014) and Bordoloi and Variano (2017), and our
experimental data over a wide range of aspect ratios. This relation
has also been verified recently by Kuperman et al. (2019) for long
nylon fibers in air.

While the variance of rotation rate has been investigated in
detail, few studies have been devoted to the correlation time
of rotation. The main results come from numerical simulation,
which are limited to either short (L ≈ 10ηK) (Marchioli and
Soldati, 2013) or slender (d < ηK) (Shin and Koch, 2005) fibers.
Shin and Koch (2005) showed that in the slender body limit,
the correlation time is constant for fiber length smaller than
10ηK and then increases with fiber length. For fibers smaller than
Kolmogorov length but heavier than the carrying fluid, Marchioli
and Soldati (2013) showed that the correlation time increases
with the Stokes number, so with the fiber inertia. Extrapolating
our previous model (Bounoua et al., 2018) to inertial fibers longer
than the Kolmogorov length, we find that the correlation time of
the tumbling rate scales with the forcing time scale, τL ∼ L2/3

independent of fiber inertia (see section 3). The correlation
time is important in understanding the temporal response of
an organism to the surrounding turbulence and its rotational
diffusivity. For example, a comparison between the response time
of a copepod with the frequency of fluctuating nutrient field can
help better understand the nutrient uptake event of the organism
(Peters and Marrasé, 2000).

Herein, we take an experimental approach to measure the
correlation time of rotation for inertial fibers over a wide range
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TABLE 1 | Characteristics of turbulence in the cube tank facility.

Rotation frequency, f 5 Hz 10 Hz 15 Hz

Reynolds number, Reλ 350 530 610

Kolmogorov lengthscale, ηK 78.3 µm 46.6 µm 34.4 µm

Kolmogorov timescale, τK 6.14 ms 2.17 ms 1.18 ms

of length and diameter. We also take the work of Bounoua et al.
(2018) a step further and propose a new model that predicts
both variance of tumbling rate and the correlation time scale of
tumbling. In section 2, we review the experimental setup and
describe our data analysis method. In section 3, we present our
results and a theoretical model interpreting the results. Finally,
we provide concluding remarks with a discussion about future
research directions in section 4.

2. EXPERIMENTAL SETUP AND METHOD

The experimental setup consists of a cubic tank (each side =
60 cm) filled with water.We generate homogeneous and isotropic
turbulence inside the tank by strategically stirring the water using
8 disks (diameter = 17 cm) with straight blades (height = 5 mm),
each mounted on one corner of the tank. Each impeller is set to
rotate independently via a 1.5 kW brushless motor at the same
frequency but with opposite chirality to its adjacent three nearest
neighbors. The turbulence inside the tank, set by the impeller
frequency (f = 5, 10, or 15 Hz), is characterized using standard
PIVmeasurements (Xu and Chen, 2013), and is found to be fairly
homogeneous and isotropic in the central region (volume ≈ 10
× 10× 10 cm3). The relevant characteristics of turbulence in the
tank are summarized in Table 1. Rigid polystyrene fibers cut to
specific length (L = 3.2–40 mm) and diameter (d = 0.5–2.5 mm)
are introduced in dilute concentration (< 0.01% by volume) into
the turbulence tank. We perform experiments on 18 different
cases with aspect ratio (3 = L/d) varying between 1.28 and
80. The details of each experimental case is provided in Table 2.
The density of polystyrene (ρd = 1.04 g/cm3) makes the fibers
near-neutrally buoyant, and the low fiber concentration allows to
neglect the interaction between fibers and the retro-action of the
fiber on the turbulence.

We image the fibers on two orthogonally arranged 1-MP-
high-speed-cameras, all cameras being triggered simultaneously
at a frame rate of 0.5–1 kHz. The fibers are backlit onto each
camera by an accompanying LED panel with diffuser. Each fiber
is reconstructed into the 3D space using a custom MATLAB
code. First, the extremities of each fiber are detected in all two
images. Then, those extremities are triangulated into the 3D
space. Finally, the centroid location (xc,i) and the orientation (pi)
of each fiber are optimized such that the difference between the
projection of the fiber onto each camera and the actual image is
minimized. Themeasurement volume is that of a cube of≈ 13 cm
length centered at the center of the tank. N ≥ 5, 000 individual
trajectories are stored and used to compute the rotation statistics
for each case.

The characteristic time of the dynamics of a random signal
is given by the correlation function. The correlation function of

TABLE 2 | Fiber-dimensions (L,d) normalized by Kolmogorov length scale (ηK ),

aspect ratio (3 = L/d), and rotational Stokes number (Stṗ) of fibers tested under

three specific Reynolds number (Reλ) of the background turbulence.

Length

(L/ηK )

Diameter

(d/η)

Aspect ratio

(3)

Stokes number

(Stṗ)

Reynolds number

(Reλ)

Symbol

510.8 6.4 80 0.014 350  

858.9 10.7 80 0.027 530 �

255.4 8.2 31 0.035 350  

127.7 8.2 15 0.056 350  

429.5 13.7 31 0.071 530 �

40.9 8.2 5 0.123 350  

127.7 12.8 10 0.138 350  

429.5 21.5 20 0.172 530 �

81.7 12.8 6 0.187 350  

255.4 25.5 10 0.347 350  

137.4 21.5 6 0.375 530 �

127.7 25.5 5 0.563 350  

429.5 42.9 10 0.694 530 �

51.1 20.4 2 0.722 350  

127.7 31.9 4 0.894 350  

214.7 42.9 5 1.126 530 �

85.9 34.4 2 1.443 530 �

214.7 53.7 4 1.788 530 �

291 72.8 4 2.682 610 N

Each case is specified by a symbol color-coded in the ascending order of Stṗ. The three

Reλ (see Table 1) are designated by the symbol shape.

ṗi(t) is defined as,

Cṗi (t) =
〈

ṗi(t)ṗi(t + τ )
〉

. (5)

Here there is no summation over i. The angle-bracket 〈.〉 indicates
mean over all temporal lags, τ = 0 → ∞. For our calculations,
we consider trajectories which are longer than 10 ms. Typically,
a fast moving particle remains in the camera frame for a
shorter duration compared to a slow moving particle. Hence, the
trajectory length is dependent on particle speed. To avoid bias in
the mean of Cṗi due to the correlation between trajectory length
and particle speed, we compute the mean weighted on trajectory
length, such that

C̄ṗi (τ ) =

∑N
k=1 Cṗi (τ )Tk
∑N

k=1 Tk

, (6)

where Tk is the length of a trajectory and N is the total number
of trajectories. The correlation function is normalized by the
variance

〈

ṗiṗi
〉

, such that C̄ṗi (0) = 1. For our analysis, we use the

average of the three components of C̄ṗi , which were statistically

indistinguishable. We denote the average as C̄ṗ(τ ) and use it to
compute two time scales of rotation. The first time scale is based
on the zero-crossing time (τd1) of the Lagrangian autocorrelation
function C̄ṗ(τ ) as described in Shin and Koch (2005). The second
time scale is the integral time scale computed as:

τd2 =

∫ ∞

0
C̄ṗ(τ )

2dτ ≈
∑

C̄ṗ(τ )
21τ (7)
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FIGURE 1 | (A) Lagrangian autocorrelation of fiber tumbling rate, (B) the integral time scale of rotation (τd2) and in inset: the zero-crossing time (τd1) of a representative

fiber (L = 3.2ηK , d = 0.64ηK ) for different filtering window size. The two dashed lines in the inset of (B) indicate a range of ±10% of τd1 obtained from the σc shown by

the square symbol.

which is more tractable theoretically as
shown later.

Before computing the statistics of rotation, the experimental
noise in pi(t) is removed by filtering it through a series of
one-dimensional Gaussian kernels of window-size σ ≤ 20 ms
(Mordant et al., 2004; Volk et al., 2007). The tumbling rate (ṗi(t))
for each σ is then computed using a symmetric second-order
central-difference scheme. Figure 1 demonstrates this method
by showing the effect of σ on (a): the mean autocorrelation of
tumbling rate C̄ṗ(τ ), and (b): the integral time-scale of rotational
dispersion (τd2). Assuming that the experimentally measured
ṗi(t) contains only uncorrelated noise, we extract the noise-free
τd2 by fitting a straight line for the linear segment (σ ≥ 10 in
this example) of each plot and extrapolating it to σ = 0 (see
Figure 1B). We use a critical σc to compute the noise-free mean
autocorrelation (C̄ṗ(τ )) of rotation and the zero-crossing time
(τd1). We choose σc to be the smallest σ at which the filtered data
deviated from the fit by less than 10%. We tested the sensitivity
of this criterion by varying it between 5 and 20% and did not
find it to affect our results. This is demonstrated in Figure 1B

(inset) where we show the evolution of zero-crossing time for the
example case.

3. CORRELATION TIME SCALE OF
TUMBLING RATE

3.1. Experimental Observation
If we neglect inertia and assume that a fiber of size L is rotated
only by eddies of size L, the tumbling rate of the fiber should
correlate to a timescale τL ∼ L/uL ≈ (L/ηK)

2/3τK , where
uL is the typical velocity at scale L. The mean Lagrangian
autocorrelation function C̄ṗ(τ ) of tumbling for various fibers are
shown in Figure 2A. This plot includes our measurements and
the longest fiber (L = 41.7ηK) simulated by Shin and Koch (2005)
at Rλ = 39.9 neglecting fiber inertia (I = 0). With the horizontal-
axis normalized by τL, the measurements of the autocorrelation

function for fibers with Stṗ < 0.7 are independent of Stṗ
and close to the one obtained by Shin and Koch (2005). In
all these cases, the zero-crossing time is τd1 = 0.43τL with a
95% confidence interval ±0.02. The difference from the slender
body approximation appears after the zero-crossing time, such
that our measurements decorrelate on a shorter time scale than
simulations by Shin and Koch (2005). For fibers with Stṗ > 0.7,

C̄ṗ(τ ) becomes sensitive to Stṗ, such that the zero-crossing time
increases with Stṗ.

In Figure 2B, we directly show the evolution of zero-crossing
time (τd1) normalized by the Kolmogorov time scale (τK) with
respect to normalized fiber length (L/ηK). We also include the
zero-crossing time for all slender fibers computed by Shin and
Koch (2005). Irrespective of the Reynolds number (Reλ), a 2/3
power-law scaling qualitatively captures the evolution of τd1 for
fibers with Stṗ < 0.7. Also, the zero-crossing times reported in
Shin and Koch (2005) approach this power-law scaling as their
length enters the inertial range. A similar plot for the integral time
(τd2) is shown in inset that also demonstrates the 2/3 power-law
fit. Shin and Koch (2005) proposed a linear fit for τd1 from their
simulations with long fibers (25η < L < 60η); the inertial-range
scaling was not obvious there because of the limited range of fiber
length they simulated.

Our data agree with the scaling law when Stṗ < 0.7, but
not when Stṗ > 0.7. To investigate this effect, we propose
an improved version of the model proposed in Bounoua et al.
(2018) which captures both the evolution of the variance and the
tumbling rate for inertial fibers (L ≥ 10ηK).

3.2. Theoretical Model
In Bounoua et al. (2018), we modeled the forcing torque ξ as
a Dirac function peaked at the fiber length, L. As we saw, this
assumption fails to predict the effect of fiber inertia on the
correlation time scale (τd) measured from our experiments. Here,
we assume that the process of filtering due to the integration of
the viscous forces along the fiber length is smoother and can be
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FIGURE 2 | (A) Lagrangian autocorrelation C̄ṗ(τ ) of tumbling rate, (B) the zero-crossing time τd1 and the integral time scale τd2 (see inset) for inertial fibers. Numerical

result from Shin and Koch (2005) for a slender fiber with L = 41.7ηK , Reλ = 39.9 is included in (A) and slender fibers at multiple lengths and Reλ = 16.5 (�), 30.7 (#),

39.9 (△), and 53.3 (▽) are included in (B) for comparison. The dashed lines in (B) represent the linear fit (τd/τK = 2.66+ 0.063L/ηK ) suggested in Shin and Koch

(2005). This fit is multiplied by the mean ratio of the zero crossing time and the integral time from our data in the inset. Data include particles from very little inertia ( )

to those with Stṗ > 0.7 (  � � � N).

FIGURE 3 | The effect of quality factor (Q) on (A) the white noise spectrum, the transfer functions for (B) variance of tumbling rate and (C) correlation time scale. The

colormap indicates the value of Q used for this computation.

described by a bandpass filter peaked on ωL ∼ ǫ1/3L−2/3. In that
case, the forcing torque ξ in Fourier space can be scaled as,

ξ (x) ∼ ξL
1

1+ ıQ(x− 1/x)
, (8)

with x = ω/ωL and Q is the quality factor of the filter. ξL is the
amplitude of the turbulent spectrum at scale L, such that |ξL|

2 ∼

τ−2
K (ηK/L)4/3. The quality factor Q determines the width of the
band-pass filter as shown on Figure 3. The spectrum reduces to
the Dirac function when Q → ∞.

The solution of Equation (2) leads to:

ṗi =
ξ (ω)

1+ ıωτr
. (9)

For a given spectrum of ξL, one can determine the variance
and the correlation time of tumbling rate from Equation (9).

For simplicity, we will assume that ξL is a white noise to derive
analytical expression for the variance and the tumbling rate. This
assumption should hold as long as the quality factor is not too
low and that the spectrum is indeed peaked at the frequency
ωL. Further, this assumption will be justified by the agreement
between the model and our experimental results (which do not
match when the Dirac function selects the amplitude of the
spectrum only at the frequency ωL). Within this framework, the
variance of ṗi is:

〈

ṗiṗi
〉

= ξ 2L

∫

1

1+ St2ṗx
2

x2

x2 + Q2(x2 − 1)2
dx. (10)

In a similar vein, we can derive an analytical expression for the
correlation time (τd) of the tumbling rate:

τd =

∫

Cṗ(t)
2dt =

∫

Ĉṗ(ω)Ĉ
∗
ṗ(ω)dω, (11)
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FIGURE 4 | Evolution of transfer functions of (A) variance of tumbling rate and (B) correlation time-scale of rotation with respect to rotational Stokes number for fibers

of various length and diameter.

where, Ĉṗ(ω) is the Fourier transform of the autocorrelation
of ṗi. Contrary to the definition of the zero-crossing time, this
expression is suitable analytically. From Equations (8) and (9),
the modulus of the correlation function Ĉ can be written:

∣

∣

∣
Ĉṗ(x)

∣

∣

∣

2
=

1
〈

ṗiṗi
〉2

(

ξ 4L

1+ St2x2
x4

(x2 + Q2(x2 − 1)2)2

)

. (12)

Hence, the correlation time τd is,

τd =
ξ 4L

〈

ṗiṗi
〉2

∫

1

1+ St2ṗx
2

x4

(x2 + Q2(x2 − 1)2)2
dx. (13)

The solutions for the two transfer functions:
〈

ṗiṗi
〉

τ−2
K (L/ηK)

4/3

and τd(L/ηK)
−2/3/τK are shown for multiple Q values

in Figures 3B,C, respectively. The rescaled variance
〈

ṗiṗi
〉

τ 2K(L/ηK)
−4/3 for all Q values show similar trends with a

plateau for low Stokes number, and its value decreasing as St−2
ṗ

for higher Stokes numbers as observed for the Dirac function
approximation in Bounoua et al. (2018). Also, the Stokes number
where the transition between these two regimes occurs increases
with decreasing Q (see Figure 3B). The correlation time for
the large values of Q is almost constant irrespective of Stokes
number, which is a trend observed for the Dirac function
formulation in Bounoua et al. (2018). For smaller values of Q, we
observe that the correlation time increases beyond Stṗ ≈ 1 and
eventually reaches a plateau.

We test this model on our experimental measurements of
〈

ṗiṗi
〉

and τd1 in Figures 4A,B, respectively. We fit Equations
(10) and (13) simultaneously using two least-squares fits with
3 fitting parameters: besides the quality factor Q, we introduce
a parameter α to compensate the scaling in tumbling Stokes
number Stṗ (see Equation 4), and a parameter β to compensate
the scaling in the amplitude of the spectrum ξ (see Equation 8).
This last parameter is fully justified to compare our prediction
with the measurement of the zero-crossing time τd1 and to
compensate the finiteness of the trajectory for the evaluation

of the correlation time τd2. The best fit for τd1 is reached for
Q = 0.72, α = 0.41, and β = 3.12. A similar fit to the
integral time (τd2) has yielded the same Q and α, but a smaller
scaling factor (β = 0.64) because of the lower magnitude in τd2
seen previously (see Figure 2B). The dashed lines in each plot
represent the predictions from Bounoua et al. (2018). Results
show that although the previous model is able to predict the
variance of tumbling rate, it fails to estimate the evolution of the
correlation time. The current model predicts both quantities very
well. Our fitted results for Q shows that the inertial effects begin
for Stṗ between 0.1 to 1. This agrees qualitatively with the critical
Stṗ = 0.7 that we chose by eye in Figure 2.

4. SUMMARY AND CLOSING COMMENTS

We report experimental measurements of Lagrangian
autocorrelation of tumbling rate of inertial fibers in
homogeneous isotropic turbulence that is applicable to
zooplankton-like organisms in their non-active state. Based on
the zero-crossing and the integral of the mean autocorrelation
function, we compute two correlation times (τd1 and τd2) for
fibers with a wide range of length and aspect ratio. The inertia
of a fiber is quantified using a rotational Stokes number (Stṗ)
that takes into account fiber length, diameter, as well as the
relative density. For low Stṗ, both correlation times from our
measurement follow Kolmogorov’s inertial range scaling of
(L/ηK)

2/3. This scaling is further supported by the numerically
computed zero-crossing times for long slender fibers (L > 10ηK)
in Shin and Koch (2005). For fibers with high Stṗ, the rotation
rate escapes this prediction. We find that our previous model
(Bounoua et al., 2018) designed for the variance of tumbling rate
does not capture the effect of fiber inertia on correlation time.
Instead of assuming the spectrum of background excitation to be
a simple Dirac function peaked at the fiber length, we model the
excitation as a white noise filtered by a bandpass filter (viscous
torque). The evolution of the tumbling rate can then be described
by a Langevin equation with a response time given by the fiber
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inertia. We show that this model recovers the evolution of both
the variance and the correlation time of tumbling rate for the
range of explored Stokes number.

Recent studies on settling of anisotropic particles in turbulent
flows (Lopez and Guazzelli, 2017; Gustavsson et al., 2019; Roy
et al., 2019) argue that non-linear torque plays an important role
on the orientation dynamics. It can be surprising that our model,
which only considers viscous torque, is in very good agreement
with our measurements. We attribute this contradiction to two
main differences between ours and these studies on settling:
(a) the settling speed in our case is negligible compared to
turbulent fluctuations, and (b) the size of particles considered in
the latter case are generally smaller than the Kolmogorov length.
A direct estimation of inertial torque requires measurement of
fluid velocity around the particle, which is beyond the scope
of this work. Future experiments or DNS study will help better
understand the importance of inertial torque in the rotational
kinematics of fibers.

Oceanic organisms such as zooplankton are capable
of active locomotion in turbulence. Results from this
investigation will help in addressing the biological aspect of
their locomotion by separating the passive rotation from their
active swimming.

Finally, to fully characterize the rotation of an anisotropic
inertial particle, it is necessary to investigate also its spinning
motion, which is currently underway in our laboratory. This
quantity has been shown to be larger than the tumbling for
fibers smaller than the Kolmogorov length due to a preferential
alignment (Parsa et al., 2012). Measuring spinning along with

tumbling will also help estimating the total torque and lift
experienced by a fiber.
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