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Anisotropic particles play a major role in many environmental and industrial turbulent flows. The
modeling of their rotation dynamics is a fundamental challenge which has some important consequences in
industrial processes, such as in the paper making industry. This study investigates the rotation rate of
neutrally buoyant fibers longer than the Kolmogorov length ηK . We show that the fiber inertia is at the
origin of a decrease of the rotation rate. We propose a model which describes this phenomenon. We
introduce also a new Stokes number which defines the limit of validity of the classical slender body
approximation.
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The rotational dynamics of fiberlike particles in turbu-
lence is a key feature for both fundamental and applied
sciences. For instance, in environmental sciences, the
chemotaxis of planktons, which play a major role in the
carbon budget in the ocean, depends on the rotation rate of
the organisms [1]. In industrial flows, the quality of the
paper depends on the fiber orientation in the sheet. This
orientation is determined by the hydrodynamical processes
during the paper making [2]. Moreover, it has been shown
that the orientation dynamics of small neutrally buoyant
fiber is strongly correlated to the local vorticity of the
flow, opening new perspectives to probe the properties of
turbulence [3].
For an axisymmetric particle, the rotation dynamics can

be decomposed into two modes: the spinning, which
corresponds to the rotation around the axis of symmetry
p of the particle, and the tumbling which corresponds to the
rotation of this axis of symmetry [4]. There are few studies
on the spinning of spheres in turbulence [5–7]. However,
most of the studies on the rotation of particles focus on the
tumbling of anisotropic particles [8–12]. Experimental
works on fibers smaller than the Kolmogorov length ηK ¼
ðν3=ϵÞ1=4 [8–10], where ν is the kinematic viscosity of
the fluid and ϵ the dissipation rate of the turbulent kinetic
energy, are in good agreement with numerical and theo-
retical predictions: the dynamics is determined by a
preferential alignment of the particle with the local vorticity
[3,13]. For fiber longer than the Kolmogorov length,
currently there are only two different studies which find
different results. In the first one [12], they used thin fibers
with diameter d smaller than or equal to ηK . Varying the
fiber length L, they found that the tumbling rate h _pi _pii
scales as ðL=ηKÞ−4=3 independent of the aspect ratio of
the particle. This prediction is in agreement with slender
body (SB) prediction [14,15] for which the fiber inertia is

neglected when its aspect ratio Λ ¼ L=d is large enough
(Λ ≫ 1) as “the volume of fluid set in motion by the
translation and rotation of a fibre is a sphere of diameter L,
the fluid inertia is much more important than the inertia
of the fiber itself” [15]. In the second one [11], they used
large fibers (d > ηK and L > ηK) and focused on the total
rotation (tumblingþ spinning) rate hΩiΩii. They found
that the rotation rate scales as hΩiΩii ∼ ðdeq=ηKÞ−4=3 where
d3eq ¼ Ld2 is a characteristic length defined from the
volume of the fiber. This experimental law can be written
as hΩiΩii ∼ Λ8=3ðL=ηKÞ−4=3. This suggests that for a given
length L the rotation of the fiber should increase as the
diameter decreases. To understand the role of the particle
aspect ratio and the difference between these two studies,
we have studied the tumbling rate of fibers varying inde-
pendently the length L and the diameter d of the fibers.
From our measurements we derived a model underlying the
role of the fiber inertia which allows to collapse the three
studies on a master curve.
The experiments are performed within a cubic tank of

60 cm of side filled with water. The turbulence is generated
by the rotation of 8 disks, one at each corner, of 17 cm in
diameter fitted with blades. The impellers are set inde-
pendently into motion with 1.5 kW brushless motor. Here,
all the disks rotate at the same frequency F but in opposite
direction, cf. Fig. 1. The turbulence has been characterized
by classical two-dimensional particle image velocimetry
(2D PIV) [16,17] and the main characteristics are given in
Table I. The rigid fibers are cut at the desired length L from
polystyrene rod with a diameter d varying between 500 μm
and 2.5 mm. Here, the length varies from 3.2 to 40 mm
leading to aspect ratio Λ between 2.5 and 80. Higher aspect
ratio was not tested to avoid fiber deformations due to
turbulent fluctuations [18]. The concentration of fibers is
always very small (less than 0.01%) so the interaction
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between fibers and their action on the turbulence can be
neglected. The density of the polystyrene is ρ ¼ 1.04 so
buoyancy forces are negligible compared to hydrodynam-
ical forces.
Two 1 MP high speed cameras are used to image the

particles at a frame rate of 500 or 1000 frames=s depending
on the impeller rotation frequency F. The light is produced
by a LED panel placed in front of each camera (back
lighting). The 3D reconstruction is performed with MATLAB

in two steps. First, the extremities of each fiber are deter-
mined on each of the images and triangulated. Then, an
optimization is performed on the position and the orientation
of each fiber tominimize the distance between the projection
of the reconstructed particle and the edges of the fiber on
each image. An example of trajectory is presented in Fig. 2.
The volume of reconstruction is approximately a cube of
∼13 cm in length centered on the center of the device. 2D
PIV measurements in the midplane of this volume show that
the turbulence is homogeneous and isotropic in a good
approximation. At least five thousand of the trajectories are
then stored and used to compute the rotation statistics. Here,
we focus on the evolution of the variance of the tumbling
rate h _pi _pii, where h·i corresponds to a time and ensemble
average. To get rid of the experimental noise, the variance is
estimated by the technique proposed by [19,20]. The signal
pðtÞ is filteredwith aGaussian filter ofwidthσG. Thevariance
of the filtered signal is computed for each case and the

tumbling rate h _pi _pii is determined by extrapolating the value
for σG ¼ 0.
We test on Fig. 3 the two predictions from the two

previous studies. The main figure shows the evolution of the
tumbling rate as a function of the fiber length L. As one can
see the global behavior of the measurements is relatively
well described by the SB prediction for fibers with random
orientation given in [12] [h _pi _pii ∼ ðL=ηKÞ−4=3]. However,
our measurements are always smaller than the prediction
and this difference increases with the Reynolds number Rλ.
This suggests that the normalization by the Kolmogorov
time τK ¼ ðν=ϵÞ1=2 and the Kolmogorov length ηK does not
capture all the physics of this problem. The inset represents
the evolution of the tumbling rate as a function of the
equivalent diameter deq proposed by [11]. As one can see the
scattering is larger than for the previous case and the global
behavior is not captured by this model.
To understand the scattering of the experimental points,

we will derive a model close to the SB approximation but
taking into account the fiber inertia. In the frame of the fiber
the conservation of the kinetic momentum is given by

I _ΩþΩ × ðI ·ΩÞ ¼ Γ; ð1Þ

where I is the moment of inertia tensor, Ω the rotation rate
of the fiber, _Ω its derivative with time, and Γ is the torque
applied on the particle [4]. The maximal Reynolds number
based on the fiber diameter Red ∼ ðd=ηKÞ4=3 [21] is of the
order of 300. Even if this value is relatively high, we will
assume that the torque is a viscous torque (linear in
velocity) and not a turbulent torque (proportional to the
square of the velocity) [22]. Then, in first approximation,
the torque is given by Γ ¼ R

4πηus × sds, with us the slip

FIG. 1. The cube facility. The motor tagged with a þ
(respectively, −) rotates in clockwise (respectively, counterclock-
wise) direction.

FIG. 2. Example of trajectory reconstructed in the cube for a
fiber with a diameter of 650 μm and a length of 10 mm. The axis
units are in mm (the particle is not at scale) and this trajectory last
more than 20 turnover time.

TABLE I. Characteristics of the turbulence in the cube facility.

Rotation frequency F 5–15 Hz
Reynolds number Rλ 350–610
Integral scale LI 6 cm
Taylor microscale λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

15=νϵ
p

u2rms 1.5–2.5 mm
Kolmogorov length ηK 34–78 μm
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velocity and s the curvilinear coordinate with s ¼ 0 at the
center of the fiber and η the dynamical viscosity of the
fluid. Note that rigorously, the viscosity η should be
replaced by a tensor with different values for the parallel
and the perpendicular components of the slipping velocity.
However, this anisotropy should not play a major role here,
as only the perpendicular component is concerned for the
torque, and will be neglected here such as the logarithmic
correction [23]. In the fiber frame, the slip velocity scales
as us ∼ ðuf − s ×ΩÞ where uf is the fluid velocity, and so,
the torque as Γ ∼ −4πηL3Ω=3þ 4πη

R
uf × sds. The fluid

velocity uf is a noise with spatiotemporal correlation.
However, a scale selection occur with the integral. Hence,
the scales smaller than the fiber length do not contribute to
the torque as they are not correlated on the fiber length.
Similarly, the large scales do not contribute for the rotation
either as the velocity is homogeneous at the scale of the
fiber (they should only contribute to the translation).
Therefore, the viscous torque at the origin of the tumbling
can be approximated by

Γ ∼ −
4π

3
ηL3Ωt þ 4πηL2uL; ð2Þ

where Ωt is the tumbling rate ( _p ¼ Ωt × p) and uL ∼
ðϵLÞ1=3 is the typical velocity at scale L. Note that the
scaling h _pi _pii ∼ ðL=ηKÞ−4=3 is derived from this expres-
sion. As the fiber inertia is neglected for the classical
slender body approximation (I ¼ 0), the torque vanishes
Γ ¼ 0. So, h _pi _pii ∼ ðuL=LÞ2 ∼ ðL=ηKÞ−4=3. In our model,
the fiber inertia is taken into account (I ≠ 0) but not the

Coriolis term Ω × ðI ·ΩÞ. Considering the tumbling, this
nonlinear term can be written ItΩtΩs, where Ωs is the
spinning rate and It the moment of inertia of the fiber for
the tumbling [It ¼ mð3d2=4þ L2Þ=12 for a homogeneous
fiber of mass m, length L, and diameter d]. Neglecting the
Coriolis term is then valid if the spinning rate is small
compared to the characteristic time of evolution of the
tumbling rate τr ∼ It=4πηL3 (Ωsτr ≪ 1), defined by the
ratio of the inertial term I _Ω and the viscous term 4πηL3Ω.
We will discuss this assumption in the conclusion of
the Letter.
With these different assumptions, the evolution of the

tumbling rate can be written

_Ωt þ
1

τr
Ωt ¼

1

τr

uL
L

: ð3Þ

This equation is a Langevin equation excited by a colored
noise ξ ¼ uL=L and with a response time τr. This equation
shows that the fiber acts as a lowpass filter for the turbulent
fluctuations. The variance of the tumbling rate is then
directly given by the spectrum of the excitation jξðωÞj2:

hΩtΩti ¼
Z ���� 1

1þ {τrω

����
2

jξðωÞj2dω: ð4Þ

Currently, there is no theoretical prediction for the spectrum
ξðωÞ. As ξ is a colored noise with a characteristic time
τL ¼ L=uL, the spectrum should be peaked around the
frequency ωL ¼ 1=τL. Hence, in the first approximation,
the spectrum can be approximated by a Dirac function
ξðωÞ ¼ ϵ1=3L−2=3δðω − ωLÞ. Then, the tumbling rate is
given by

hΩtΩti ∼
1

1þ St2t
τ−2K

�
ηK
L

�
4=3

; ð5Þ

with Stt ¼ ωLτr defining a tumbling Stokes number,
comparing the forcing timescale τL, and the relaxation
timescale of the tumbling rate τr. For Stt ≪ 1, Eq. (5) is
similar to the SB prediction, whereas for Stt ≫ 1, the
variance of the tumbling rate is smaller than the SB
prediction as the forcing evolves on a timescale much
smaller than the response time of the fiber. For a cylindrical
fiber of diameter d, length L, and density ρ, the tumbling
Stokes number is equal to

Stt ¼
1

48

ρ

ρf

�
d
ηK

�
4=3

�
d
L

�
2=3

�
1þ 3

4

�
d
L

�
2
�
; ð6Þ

where ρf is the fluid density. For a given ηK and d, the
tumbling Stokes number decreases when the fiber length
increases. This corresponds to the classical intuition that
for a slender body the fiber inertia is negligible [15].
This phenomenon is directly related to the forcing timescale
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FIG. 3. The main figure represents the evolution of the variance
of the tumbling rate as a function of the fiber length for the
different particle tested here. The dashed line represents the SB
prediction [12]. In the inset, the tumbling rate is plotted as a
function of the equivalent diameter deq, the dot-dashed line
represents the prediction done in [11].
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which decreases when L increases τL ∼ L−2=3, whereas the
tumbling timescale is independent ofL. On the contrary, for a
given L, Stt increases with the fiber diameter as the response
time of the particle increases with the fiber diameter
(τr ∼ d2), whereas the forcing timescale is independent of
d. Figure 4 represents the evolution of the normalized
variance of the tumbling rate h _pi _pii=τ−2K ðηK=LÞ4=3 as a
function of the rotational Stokes number Stt. One can see that
our measurements and the ones of the literature [11,12]
follow the same master curve and they are well fitted by the
transfer function given in Eq. (5) (plain line on Fig. 4). This
observation validates our different assumptions: mainly the
Coriolis term can indeed be neglected and the viscous torque
assumption hold even for the largest diameter used here. The
plateau at low Stt corresponds to the domain of validity of
the slender body theory. The amplitude found here is ∼30%
smaller than the prediction of the SB model for fibers with
random orientation [12].
In conclusion, we studied experimentally the tumbling

rate of fibers with various aspect ratio and various length in
turbulence. We have introduced a new tumbling Stokes
number Stt which characterizes the tumbling rate of a fiber.
For low Stt the slender body approximation is valid and
the tumbling rate evolves as ðL=ηKÞ−4=3. For high Stt the
particle inertia cannot be neglected anymore and is at the
origin of a filtering of the turbulent fluctuations and so to a
reduction of the rotation rate. To fully characterize the
rotation of rigid fiber in turbulent flows several questions
still need to be investigated. First, it is known that fiber
smaller than the Kolmogorov scale spins more than tumbles
[4]. From our modeling, the net torque for the spinning is
null for random orientation as the increments of velocity at
the scale of the diameter ud are not correlated at the scale of

the fiber length L. Therefore, the spinning might be a tool
to probe the preferential alignment of inertial fibers in
turbulence. Then, the statistics (probability density function
and correlation function) of the rotation and the translation
should be investigated. At a low Stokes number, measuring
these different quantities might be used to investigate the
inertial range of turbulence especially the coarse grained
velocity gradient tensor.
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