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We describe, for the first time, an experiment devoted to the study of the spatial conformation of a
flexible fiber in a turbulent flow. We propose a model for the transition from rigid to flexible regimes as the
intensity of turbulence is increased or the elastic energy of the fiber is decreased. This transition occurs for a
fiber typical length which is observed experimentally and recovered by our analysis. We also demonstrate
that the conformations of flexible fibers in a turbulent flow are analog to conformations of flexible polymers
in a good solvent. This last result opens some new and creative ways to model flexible fiber distortions in
turbulent flows while addressing fundamental problems in polymer dynamics.
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The understanding of inertial particle dynamics in
turbulent flows is a fundamental issue of hydrodynamics
with various applications going from the dispersion of
pollutants in air [1] to the transport of pulp fibers in the
paper-making industry [2]. Until now, most fundamental
works focused on spherical particles and only a few
investigations have been done on anisotropic particles such
as spheroids, fibers, etc. Moreover, these investigations
were mainly concerned with rigid bodies and focused on
particle orientation dynamics or on its statistical distribu-
tion [3–5] for particles smaller or of the order of the
Kolmogorov length ηK ¼ ðν3=ϵÞ1=4, where ϵ is the injected
power by unit mass and ν the kinematic viscosity of the
fluid. However, for an anisotropic particle with high aspect
ratio, its flexibility may strongly affect its motion as the
bending energy scales as Ed4=L [6], where d and L are the
diameter and the length of the particle. To understand
the particle dynamics, we need not only to study the
evolution of its orientation and its center of mass but also
analyze and model its spatial conformation. In this Letter,
we address several questions: What is the minimal length
for a fiber to be distorted by a turbulent flow? When can we
neglect its flexibility in turbulence? How can we model its
distortion? To answer these questions, we claim that a long
enough flexible fiber in a turbulent flow behaves in a
similar way to a polymer in a good solvent [7].
The turbulent von Kármán flow used here to generate

turbulence is created by the counterrotation of two disks of
diameter2R ¼ 17.2 cm, fittedwith six straight blades (5mm
high). These disks are set 17.6 cm apart at the ends of a
cylindrical 18 cm diameter container [cf. Fig. 1(a)]. The
mean flow is composed of two toroidal cells rotating in
opposite directions separated by an intense shear layer in the
midplane. Centrifugal forces close to each disk add two
poloidal recirculations [8]. To avoid optical distortions at the
air-cylinder interface, this cylinder is immersed inside a
cubic box, filled with the working fluid (water if not
specified). Experimentally, the rotation frequency F varies

between 2 and 30 Hz so that the integral Reynolds
number Re ¼ 2πR2F=ν ranges from 105 to 1.4 × 106.
The Kolmogorov length ηK determined by the measurement
of the injected power ϵ ranges between 12 and 91 μm.
Different fibers, whose characteristics are given in Table I,
are then introduced individually inside the turbulent flow.
The filament is advected by the flow at large scale and is
distorted by the turbulent flow. All of the analysis will be
performed on fibers located in the central part of the flow
where turbulence is nearly homogeneous and isotropic [9];
see Fig. 1(b). Increasing the length of the fiber from 1 to
18 cm allows the observation of two regimes: the rigid

FIG. 1 (color online). (a) Experimental setup. (b) Definition of
the working area: only images where the center of mass of the
fiber is outside of the shaded regions are considered. (c),
(d) Superimposition of all conformations of a type II fiber,
5 cm long, at F ¼ 4 Hz (rigid regime) and 16 cm long, at
F ¼ 16 Hz (flexible regime). The color is proportional to the
probability of finding an element of the fiber at the considered
position.
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regime for the shortest fibers and the flexible regime for the
longest ones. To understand the transition between both
regimes, a systematic study is performed by changing the
mechanical properties of the fiber, cf. Table I.
The end-to-end vector R⃗e;3D, defined as the vector

linking the two ends of the filament, is used to characterize
the evolution of fiber conformation as its length L or the
rotation frequency F is increased. This vector is widely
used in polymer science where several models have been
drawn to characterize its evolution when the number N of
monomers increases [10,11]. In our experiment, only the
projection of this vector on the (x-y) plane is measured,
cf. Fig. 1(a), with an IDS UI-5240CP 1.3 Mpixel camera.
The exposure time is set to 0.2 ms and the acquisition rate is
equal to the rotation frequency F, as we are only interested
here in the conformation statistics. The fiber is thus easily
detected by a classical contrast threshold technique. As the
turbulent forcing is invariant by any rotation around the x
axis [cf. Fig. 1(a)], it is natural to assume that the statistics
of the end-to-end vector shares the same symmetry.
Consequently, measuring the end-to-end vector in the
(x-y) plane is enough to determine the statistics of the
fiber conformations. To validate our assumption, we super-
impose all the recorded projected conformations of a
filament of a given length and for a fixed frequency where
its barycenter is moved to the origin of the (x-y) plane.

Two typical examples are shown in Figs. 1(c) and 1(d)
which exhibit a quite good isotropy. This result proves first
the homogeneity and isotropy of the turbulence in the
working area which is reflected on the symmetry of the
system, then that statistically the projection of the center of
mass is also the barycenter r⃗b of the filament projection.
First, we focus on the evolution of the mean square value

of the end-to-end vector hR2
ei when the fiber length L is

increased whereas the rotation frequency F is fixed; here,
h·i corresponds to a time average. It is easy to show that the
mean value in the 2D plane is proportional to the real norm
hR2

e;3Di. Indeed, the mean value of the norm hv22Di of the
projection in the (x-y) plane of a random isotropic vector
v⃗ ¼ ðv sin θ cos φ; v sin θ sin φ; v cos θÞ is

hv22Di ¼
1

4π
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v2sin3θdθdϕ ¼ 2

3
v2: (2)

We used here spherical coordinates for simplicity: θ is
defined by the angle between v⃗ and the z axis and φ by the
angle between the projection of v⃗ in the (x-y) plane and the
x axis. In Fig. 2(a), one can see that the smallest fibers
(L≲ 3 cm) behave in a rigid manner, implying that
hR2

ei ¼ 2L2=3, as shown by the dashed line. If the length
of the fiber is increased, this linear behavior no longer
holds, as hR2

ei1=2 is always smaller than the fiber length L.
This reflects the distortion of the fiber by turbulent
fluctuations. Similar results can be drawn if we
consider the radius of gyration Rg defined by R2

g ¼
ð1=LÞ R ðr⃗ − r⃗bÞ2ds, where r⃗ is the current position along
the filament in the (x-y) plane [see Fig. 2(a)] and r⃗b the

FIG. 2 (color online). (a) Evolution of hR2
ei (♦) and hR2

gi (⋆) as a function of the fiber length L (type I) at F ¼ 20 Hz. Dashed and solid
lines represent the prediction for rigid fibers and the fit from the wormlike chain model, respectively. (b) Evolution of the persistence
length lp as a function of the rotation frequency. (c) Evolution of the experimental persistence length lp as a function of the characteristic
length lPp for F ≥ 4 Hz. Dashed line is a guide to the eye with a slope of 1.9. F (▪) type I fiber, for (●) type II fiber, (▾) type III fiber, (▵)
type III fiber in Ucon þ water mixture.

TABLE I. Mechanical properties of fibers, with E the Young
modulus, ρf the density, d the diameter, and L the length.

Type Material E (MPa) ρf (kg · m−3) d (μm) L min–max (cm)

I Silicone 21 1350 900 1.1–17.6
II Silicone 15 1350 620 1.1–16
III Nylon 1240 1240 410 1.1–17.6
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position of the projected barycenter as defined earlier and
taking into account the 2=3 correction. In order to draw an
analogy with polymers, the evolution of the end-to-end
vector is compared to predictions of polymer models. After
the classical random walk model of an ideal chain, which
gives hR2

ei1=2 ∝ N1=2, where N is the number of monomers
in the chain, the most popular model is the self-avoiding
random walk derived by Flory which predicts a scaling
hR2

ei1=2 ∝ N3=5 [12]. However, this model is not totally
satisfactory here, as it requires a very long chain, which is
not the case in our experiment as the fiber length stays close
to the transition length. Kratky and Porod proposed a
wormlike chain model for short semiflexible polymers
[13], which seems much more appropriate to describe our
system. In the limit of a continuous polymer, the end-to-end
vector R⃗e;3D can be characterized by a persistence length lp:

hR2
e;3Di ¼ 2lpL − 2l2p

�
1 − exp

�
− L
lp

��
: (3)

A similar formula can be calculated for hR2
gi [11] and gives

here the same value of the persistence length. In polymer
theory, lp is the correlation length of the orientation along
the polymer chain and is characteristic of the polymer
flexibility: lp ¼ κ=kBT, where κ is the bending modulus of
the polymer and kBT the thermal energy. For short chains,
L ≪ lp, hR2

e;3Di ¼ L2, the polymer is similar to a rigid rod.
Whereas for long chains, L ≫ lp, hR2

e;3Di ¼ 2lpL, which
corresponds to a pure random walk (ideal chain model). In
our case, Eq. (3) has to be multiplied by 2=3 to take into
account the projection. The persistence length is a free
parameter used to fit experimental data which depends on
the turbulence intensity lpðFÞ. A very good agreement
between the wormlike chain model and our experimental
data is shown in Fig. 2(a). It proves that a flexible fiber in a
turbulent flow wriggles as a wormlike-chain polymer in a
good solvent.
To go further in the analogy, we will focus on the

evolution of the persistence length when the turbulence
intensity is increased. As we saw previously, in polymer
theory, this length is defined by the balance of thermal
energy and elastic energy. If it was the case here, turbulent
fluctuations would play the role of thermal fluctuations and
kBT should be replaced by the turbulent energy at scale l
El ≃ 1

2
ρl3ϵ2=3l1=3. In both cases, the bending energy is

EbðlÞ ¼ κ=l, where for a fiber, κ ¼ EI with I the area
moment of inertia (I ¼ πd4=64 for a cylinder of diameter d
[6]). So, the persistence length would be defined by ElEp ¼
EbðlEpÞ and so lEp ¼ ð2EI=ρÞ3=14ϵ−1=7. Unfortunately, the
analogy is not so straightforward as lEp does not depend
on the dynamic viscosity of the fluid η contrary to
experimental measurements, cf. Fig. 2(b) for nylon
fibers in water (▾) and in a water þ Ucon mixture with
viscosity η ¼ 100� 12 mPa · s ð▵Þ.

This dependence can be taken into account by consid-
ering the characteristic times of both the fiber relaxation
and the turbulent forcing. Indeed, in polymer theory, as the
thermal forcing is delta correlated, it exists only one time
scale due to the polymer relaxation. On the contrary, the
forcing due to turbulence is not delta correlated and we
have to take into account another time corresponding to the
lifetime of an eddy of size l. This argument leads us to
consider the power needed to bend a fiber in a flow instead
of the required amount of energy. The relaxation time of the
fiber can be estimated from the elastica equation:

ρfS∂tty⃗þ EI∂ssssy⃗ ¼ F⃗D þ F⃗H; (4)

where y⃗ is the displacement from the equilibrium
position, s the curvilinear coordinate along the fiber,
ρf the fiber density, S its cross section, and F⃗D and F⃗H
are, respectively, the drag force and all other hydro-
dynamics forces such as the added mass term, the Faxén
force, and the history term. The relaxation time is only
related to the dissipation of energy and thus to the drag
force. Because the Reynolds number Red based on the
slip velocity u⃗ − ∂ty⃗ and the diameter d of the fiber is
relatively small, Red ¼ ju⃗ − ∂ty⃗jd=ν≃ ðd=ηKÞ4=3 ≲ 300,
a first-order approximation is to assume that the drag
force is proportional to the velocity as it is the case in the
viscous regime. Therefore, Eq. (4) becomes

ρfS∂tty⃗þ α∂ty⃗þ EI∂ssssy⃗ ¼ αu⃗þ F⃗H; (5)

whereα ∝ η [14].Equation (5) is aLangevinequationsimilar
to the one used to describe polymer dynamics [15] but with a
random forcing αu⃗þ F⃗H correlated in space and time.
The relaxation time is given by τ ¼ αl4=EI ∝ ηl4=EI,
and so the power needed to bend the filament scales as
PbðlÞ ¼ ðEIÞ2=αl5. Note that we consider here an inexten-
sible filament because the relaxation time scale of the strain is
ðd=LÞ2 smaller than the relaxation timescaleofbending[16].
Following polymer theory, the persistence length is then
proportional to lm defined by the balance between the
turbulent power Pl ∼ ρl3ϵ and the bending power Pb; thus,

lPp ∝ lm ¼ ðEIÞ1=4=ðρηϵÞ1=8: (6)

As can be seen in Fig. 2(c), this scaling law that takes into
account the fluid viscosity is in good agreement with the
experimental data presented in Fig. 2(b). Similarly toworm-
like-chain polymers, the persistence length lPp characterizes
here the transition between the rigid regime for short
filaments and the flexible regime for long ones. The dashed
line in Fig. 2(c) has a slope of 1.9. This factor is related to the
orientation correlation along the fiber: if we consider the
simplestdeformationofa fiberof lengthlwithasingle radius
of curvature lm, the correlation function is sin x=x, with
x ¼ l=lm having a correlation length lp ≃ 1.9lm.

PRL 112, 074501 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

21 FEBRUARY 2014

074501-3



As can be seen in Fig. 1, the shape of the filament
superimpositions is different for the rigid regime [1(c)]
and the flexible one [1(d)]. To compare these fluctua-
tions to the Gaussian distribution observed for the end-
to-end vector of a flexible polymer [17], we study the
evolution of the probability density function (PDF) of
R⃗e across the transition. As it was validated earlier,
we still assume that the orientation and the norm of
the end-to-end vector are independent. In that case,

the PDF PR2
e
for a rigid fiber of length L is PR2

e
¼

1=2L2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2

e=L2
p

¼ 1=ð2L2j cos θjÞ [18], where θ is
the angle between R⃗e and the z axis (Re ¼ L sin θ, in
the rigid case), whereas in the flexible regime, if the
PDF was Gaussian, PR2

e
¼ expð−R2

e=hR2
eiÞ=hR2

ei. In
Fig. 3(a), the PDF for the shortest length of the type
II fiber is shown. It is in good agreement with the
predicted PDF of rigid rods for each rotation frequency
F. This behavior is expected as the fiber length L is
smaller than the persistence length lp. On the other
hand, Fig. 3(b) represents the PDF for one of the longest
fibers, which is always in the flexible regime for any F.
As can be seen in the figure, PDFs are close to the
Gaussian distribution, as is the case in polymer theory.
For an intermediate length, Figs. 3(c)–3(e) show that the
PDF changes continuously from the rigid regime PDF to
the Gaussian distribution depending on the value of
L=lpðFÞ. This Gaussian behavior in the flexible regime
is consistent with the statistics of turbulence at large
scales.
In conclusion, we have shown that the flexibility of a

filament in a turbulent flow is negligible when its length is
smaller than a typical length lp. This persistence length, as
it is called in polymer theory, depends on the fiber stiffness,
the fiber relaxation time, and the injected power in the

turbulent flow. In the flexible regime, several similarities
with a polymer in a good solvent have been enlightened. In
particular, when the length of the fiber is increased, we
proved that the evolution of the end-to-end vector or of the
radius of gyration is identical to what is observed for
wormlike-chain polymers. This similarity extends to the
PDF of the end-to-end vector, at least when the length of
the filament is close to the integral scale of the flow, as it
was the case here. All presented results concern stationary
statistics; the next step in considering a wriggled filament
as a macroscopic polymer is to extend this analogy to its
conformation dynamics. Additionally, this experiment
might also permit us to tackle open questions in polymer
science, such as the transition from the ideal chain model to
the Flory regime [19], for instance.
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