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We simultaneously measure both spinning and tumbling components of rotation for long 7

near-neutrally buoyant fibers in homogeneous and isotropic turbulence. The lengths and 8

diameters of the measured fibers extend to several orders of the Kolmogorov length of 9

the surrounding turbulent flow. Our measurements show that the variance of the spinning 10

rate follows a −4/3 power-law scaling with the fiber diameter (d) and is always larger 11

than the variance of the tumbling rate. This behavior surprisingly resembles that observed 12

previously for sub-Kolmogorov fibers. These observations suggest that long fibers prefer- 13

entially align with vortex filaments that can be as long as the integral length of turbulence. 14

We compute the Lagrangian timescale and the distribution of both tumbling and spinning 15

that supports this outlook. Our measurements also allow us to quantify the importance of 16

the Coriolis term on the rotational dynamics of fibers in turbulent flows. 17

DOI: 10.1103/PhysRevFluids.00.004600 18

I. INTRODUCTION 18

Since 2010, an increasing number of studies have been devoted to the understanding of rotation 19

of anisotropic particles in turbulent flows. The growing interest in this research can be attributed to 20

the numerous applications of such particles found in the environment as well as in industries. The 21

tumbling of elongated fibers is important in paper-making processes. Examples of such applications 22

are also found in polymer processing [1], fiber-reinforced-composite molding [2], turbulent drag 23

reduction strategies [3], etc. 24

In real applications, most particles are anisotropic ranging from simpler ones, such as rods and 25

discs to much more complex shapes [4]. Considering one of the simplest scenarios of an axisymmet- 26

ric fiber, the rotation can be decomposed into two motions: the tumbling, which corresponds to the 27

rotation of the axis of symmetry of the particle, and the spinning, which corresponds to the rotation 28

about that axis. The evolution of the variance of the tumbling rate as a function of fiber length (L) 29

has been studied in detail in several experimental and numerical works. These studies show that the 30

variance of the tumbling rate for near-neutrally buoyant fibers scales as �−4/3 when the fiber length 31

is longer than ∼10 Kolmogorov lengths. The typical length scale � corresponds to the fiber length 32

L for an aspect ratio � = L/d larger than ∼3 [5,6]. For smaller aspect ratios � ∈ [1; 4], Bordoloi 33

and Variano [7] proposed that the pertinent length scale is based on the volume of the particle: 34

� ∼ (d2L)1/3. This scaling was shown to be valid for various shapes with similar aspect ratios [8]. 35

When the fiber inertia cannot be neglected, a filtering effect appears to decrease the variance of the 36

tumbling rate [9,10]. 37

Because of the implicit difficulty in resolving both components of rotation, the research 38

heretofore is mainly limited to the tumbling rate. Using refractive-index-matched Particle Image 39

Velocimetry (PIV) and, by analyzing the shape of the ellipse produced by the laser sheet intersecting 40
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a cylinder, Bordoloi and Variano [7] reported the decomposition of the two components of rotation41

for cylinders of aspect ratio, � = 4. However, since their experiment was limited only to a single42

aspect ratio, a complete understanding of the mechanism of rotational partitioning is missing.43

The problem also bears an important aspect of fluid mechanics that relates the rotational dynam-44

ics of anisotropic particles to the velocity gradient tensor in turbulence [4]. Although most studies45

to date have primarily focused on the dynamics of rigid particles smaller than the Kolmogorov46

length (η) [4,11–13], some have extended this interest to rigid inertial fibers [5–7,9,10] as well as to47

flexible fibers [14–19]. Previous theoretical and numerical studies on inertialess fibers shorter than48

the Kolmogorov length η have shown that such small particles strongly align with the local vorticity49

[11,13]. As a consequence, small fibers spin more than they tumble [4,12,20]. For fibers longer than50

the Kolmogorov length η, such preferential sampling of the velocity field has not been investigated51

in details. Pujara et al. [21] showed numerically that when the fiber length L exits the viscous52

regime (L < η) and enters the inertial regime (L > η), the preferential orientation switches from53

the local vorticity to the most extensional eigenvector of the coarse-grained strain rate tensor. This54

could suggest that the spinning rate of a long fiber should decrease with length, as the preferential55

orientation with the vorticity is lost when the fiber length is in the inertial regime. On the contrary,56

by studying preferential sampling of both flexible and rigid fibers, Picardo et al. [18] showed that57

long fibers tend to be preferentially trapped within the vortex tubes in turbulence. In that case, the58

rate of spinning would increase and might exceed that of tumbling.59

The goal of this paper is to report direct simultaneous measurements of both spinning and60

tumbling rates of long inertial fibers in turbulent flows. In the following section, Sec. II, we discuss61

the experimental apparatus and the postprocessing methods used to compute the two components62

of rotation. In Sec. III, we present the evolution of the tumbling and the spinning rates of these63

fibers. We analyze and discuss these results in the context of preferential alignment, fiber inertia,64

timescale of rotation, and turbulence intermittency in three subsequent subsections. In the final65

section, Sec. IV, we conclude with a summary of the key findings of this investigation.66

II. EXPERIMENTAL SETUP AND METHODS67

The turbulence is generated by strategically stirring the water filled inside a 60 cm × 60 cm ×68

60 cm cubic tank. At each corner, an impeller (diameter = 17 cm) with eight straight blades of69

thickness 5 mm is driven independently using a 1.5 kW brushless motor. Each impeller is set to70

rotate at the same frequency but in a chirality opposite to its three nearest neighbors as shown in71

Fig. 1. The intensity of turbulence inside the tank is set by the impeller frequency between 5–15 Hz.72

In this configuration, PIV measurements show that the turbulence is homogeneous and isotropic73

in a cubic subvolume of ≈ 10 cm × 10 cm × 10 cm, centered at the center of the tank. The74

homogeneity of the turbulence is confirmed by the fact that when dividing the main volume in75

nine equal subvolumes the statistics of tumbling and spinning are independent of the considered76

box (up to the statistic convergence of our measurements). The mean flow is also negligible (the77

kinetic energy of the mean flow is around 100 times smaller than the kinetic energy of the turbulent78

fluctuations). All the measurements presented in this paper are performed in this region. Each axis79

of the reference frame points toward a window and the z axis is parallel and opposite to the direction80

of gravity, cf. Fig. 1.81

We use two different fluids (pure water and a mixture of water and Ucon) to vary the kinematic82

viscosity ν and hence the Kolmogorov length η and time τ on wide ranges. We mix Ucon with83

water at two concentrations (approximately 8% and 11% by volume) to increase the liquid viscosity84

by a factor of 6 or 11 from that of water. At the highest concentration used, the fluid density85

increases to ρ f = 1.015 kg · m−3, which is within 2% of water density. This change of fluid density86

is relatively small and is assumed negligible in the present paper. For all tested configurations,87

the viscous boundary layer on the impeller is smaller than the height of the blade. Hence, in this88

range of viscosity, the forcing is always an inertial forcing and the dissipation rate ε is independent89

of the kinematic viscosity [22]. The Kolmogorov time and length and the Taylor length in the90

004600-2



SPINNING AND TUMBLING OF LONG FIBERS IN …

FIG. 1. (a) Photograph of the experimental setup. The cubic tank has a side length of 60 cm. Seven of the
eight motors are visible. + or − indicates the direction of the rotation of each impeller. The three cameras are
visible along the x, y, and z axes. The lightning used here is different from the one used for the experiments for
artistic reasons. On the bottom of the image, the three different kinds fibers 10, 7, and 5 mm from left to right
are shown. (b) Example of 3D trajectory of a 10-mm fiber. The color of the trajectory codes the spinning rate
of the fiber (in s−1). (c) Sketch representing the different notations used for the 3D reconstruction.

mixture of water and Ucon are determined from the measurement in water and by replacing the 91

kinematic viscosity of water by the one of the mixture. Main statistical quantities of turbulence 92

in the volume of measurement are given in Table I. These values have been validated during our 93

previous studies [9,23] by comparing the evolution of the normalized variance and the correlation 94

time of the tumbling rate, which are in good agreement with other studies. 95

We use polystyrene fibers with diameter d = 0.93 mm and density ρp = 1.04 kg.m−3, cut to 96

lengths L = 5, 7 or 10 mm. Both the length and the diameter are in the inertial range of turbulence. 97

To measure the spinning, a regular helix is printed on the fiber with a pitch of 2.5 mm (see Fig. 1). 98

The tumbling Stokes number, quantifying the influence of fiber inertia on the tumbling rate, StT = 99

(ρp/ρ f )(d/ηK )4/3(d/L)2/3, defined in Bounoua et al. [9], is always smaller than 2 ×10−2, such that 100

TABLE I. Turbulence properties for the different experiments presented in this paper.

Integral length Taylor length Reynolds number Kolmogorov length Kolmogorov time
LI λ Rλ ηK τK

[cm] [mm] [μm] [ms]

7 1.7 − 9.7 90 − 630 34 − 434 1.2 − 17.1
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the inertia of the fiber is negligible at least for tumbling. When the carrying fluid is the mixture101

of water and Ucon, the fiber was coated with a transparent varnish paint (Luxens) to avoid the102

dissolution of the ink into the fluid. The layer of the paint was thin enough to neglect the modification103

of the diameter and of the density. In all cases, fibers are slightly heavier than the carrying fluid.104

However, the settling velocity US ∼ (ρp − ρ f )d2g/16μ, where g is the acceleration due to gravity105

and μ the dynamic viscosity of the fluid, is at least one order of magnitude smaller than the turbulent106

fluctuations. Hence, buoyancy effects are negligible here. The volumetric concentration of fibers φ107

is small (φ < 10−7), so interaction among fibers and the modification of turbulence by fibers are108

negligible.109

We image the fibers using three high speed cameras (Phantom VEO 710L) with resolution of 1110

MPix triggered simultaneously at a frame rate of 1000-3000 fps. The images are captured through111

a 50 mm lens (Zeiss Planar T 1.4/50) mounted on each camera. The fibers are backlit by an LED112

panel for the camera pointing along the z axis. Two additional LED spot lights of 6600 lumen are113

used to visualize the pattern printed onto the fiber with the two cameras parallel to the x and y axes.114

Postprocessing115

Lagrangian time-series of 3D position and the orientation of each fiber are determined by116

analyzing the three sets of images. To obtain the 3D reconstruction, we determine the translation117

vector (T ) and the rotation matrix (R) that transform a virtual fiber initially located at the center118

of the cube (X0 = [0; 0; 0]) with its axis of symmetry parallel to the z axis to the location and the119

orientation of the fiber imaged by each camera. In the fiber frame of reference, the axes of the virtual120

fiber are denoted as [e1, e2, e3], such that initially these axes coincide with the laboratory axes (i.e.,121

e1 = ex, e2 = ey and e3 = ez). We define a set of points along the virtual helix as Xh.122

The cameras are modeled with the classical pinhole model. In this model, a camera is char-123

acterized by 11 parameters: the position and the orientation of its frame in the laboratory frame124

(determined by three angles of rotation), its focal distances, the coordinates of the projection of125

the pinhole onto the image, and the skew parameter (for details, see, for instance, Refs. [24–26]).126

These parameters are determined during a calibration process where a sphere is moved to a known127

set of locations and imaged by the three cameras. The calibration is performed with the fluid inside128

the cube to take into account the variation of refractive index between the fluid and the air. As the129

axis of the camera is perpendicular to the viewing window, the distortions of the ray light due to the130

refraction at the fluid/plexiglass/air interfaces can be neglected [27]. We also ensure that the optical131

distorsions of the lenses are negligible.132

Using homogeneous coordinates, as is classically done in computer vision, the coordinates of a133

set of points after a rotation by a matrix R and a translation by a vector T is given by134

Q f ∝

⎛
⎜⎝ R T

0 0 0 1

⎞
⎟⎠Q0, (1)

where Q0 = (x0, y0, z0, 1)† and Q f = (x f , y f , z f , 1)† are the homogeneous coordinates of a set of135

points corresponding to the Cartesian coordinates (xi, yi, zi ) before (i = 0) and after (i = f ) the136

rotation/translation [24–26]. We reconstruct each fiber by determining a translation vector T and a137

rotation matrix R as described below.138

The rotation matrix can be decomposed into two terms: R = RT RS , where RS is the rotation139

matrix for spinning (that is, rotation parallel to the z axis), and RT is the rotation matrix for140

tumbling. Each matrix is determined independently in two steps. First, we characterize the fiber141

based on a position vector T0 and an orientation matrix RT,0 determined from a Shape from142

Silouhette algorithm, also known as the convex hull volume method [28]. In this method, a fiber143

is reconstructed as a set of voxels. T0 is determined from the center of mass of the group of voxels,144

and RT,0 is the rotation matrix which rotates ez into the vector n connecting the extremities of the145

004600-4



SPINNING AND TUMBLING OF LONG FIBERS IN …

FIG. 2. Time evolution of the three components (x blue, y red, z green) of e1 (left) and e3 (right) for the raw
trajectory (top), after the flipping step (middle), and the final smoothing process (bottom).

group of voxels. In the second step, the position and the orientation of each fiber is optimized 146

through an optimization process similar to Bounoua et al. [9]. The cost function to be minimized 147

during the optimization process is the distance between the projection of the reconstructed fiber and 148

the location of the real fiber detected on each image. 149

The rotation matrix of spinning RS is determined similarly by minimizing the cost of projection 150

of the virtual helix (Xh) onto the two images from the cameras parallel to the x and y axes. To perform 151

this optimization, only the points of the helix visible to each camera should be considered. These 152

points can be selected knowing the parameters of the camera and the position and the orientation 153

of the fiber. At the end of the optimization process, we use the Rodrigues’ rotation formula, which 154

allows conversion of the rotation matrix R around an axis kr by an angle θ , into a Rodrigues’s vector 155

xr = θkr , and vice versa. We store the translation vector T and the Rodrigues’s rotation vector xr 156

for further analysis. 157

Once all images are postprocessed, we extract the trajectories of individual fibers using the 158

method of the nearest-neighbor described in Ouellette et al. [29]. As the concentration of fiber 159

is very low (<1 × 10−7) and the camera acquisition rate is high enough, only the criterion of 160

fiber-fiber distance is used. If several fibers along the trajectory satisfy this criterion, the fiber with 161

the orientation closest to that of the previous time stamp is selected as a candidate for the trajectory. 162

Figures 2(a), 2(b) show the time evolution of the three components of e1 and e3 vectors in the 163

laboratory frame, respectively, for a sample raw trajectory. 164
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In Fig. 2(b), the peaks on the trajectory of e3 are due to the ambiguity in the direction (positive165

versus negative) of the axis of symmetry (e3) between two successive time stamps. We overcome166

this ambiguity via a consistency check, such that the direction of e3 of the fiber is flipped if the dot167

product between e3(t ) and e3(t − dt ) is negative (see Figs. 2(c), 2(d)).168

As the thickness of the helix is of the order of one or two pixels, the amplitude of the noise169

is higher on e1(t ) and e2(t ) than on e3(t ), as seen in the middle panel of Fig. 2. One approach170

would be to filter ei(t ) for i = 1, 2, and then to compute the statistics on the filtered data e f
i (t ). This171

approach, however, does not guarantee that the three vectors e1, e2, and e3 form an orthogonal basis.172

To overcome this difficulty and increase the precision of the measurement, the dynamics of e1(t )173

are filtered by applying a Gaussian filter whose standard deviation is less than 2τK . The amplitude174

of noise being very small for e3(t ), at each time step we determine an optimal Rodrigues vector175

that minimizes the distance between e1(t ) and e f
1 (t ) with a constraint that e3(t ) remains unchanged.176

Finally, the temporal derivative of the different vectors is computed by fitting locally the trajectory177

with spline function of order 3 (Figs. 2(e) and 2(f)). The number of points used to compute the178

spline corresponds to the standard deviation of the Gaussian kernel used to filter the data e1(t ). We179

have checked that the different results presented here do not depend on this value [30].180

To obtain convergence in the statistics, only trajectories longer than 100 frames (between 6 and181

30 Kolmogorov time, depending on the rotation frequency and the fluid viscosity) are used. The182

longest trajectory is of the order of several seconds for each case, representing several integral183

times.184

The tumbling is determined from the variation of the orientation vector e3 using a central185

difference scheme (ė3) for each fiber. In the laboratory reference frame, the tumbling vector �T186

can be computed by solving187

ė3 = �T × e3 and �T · e3 = 0. (2)

Contrary to the tumbling rate, the spinning rate cannot be determined directly from the temporal188

evolution of e1 or e2, as they depend on both tumbling and spinning. Therefore, the determination of189

the spinning rate requires the removal of the contribution from tumbling. The rotation matrix RT (t )190

related to tumbling is given by the evolution of e3(t ) as191

e3(t ) = RT (t )e3(0), (3)

enforcing that the rotation axis associated to this matrix is perpendicular to both ez and e3. Knowing192

this matrix RT , one can define the spinning rotation matrix RS = R−1
T Ropt. The spinning rate (�S) is193

then determined from the spinning vector eS (t ) = RS (t )e1(0) in the fiber frame, using194

ėS = �S × eS. (4)

Another possibility is to compute directly the total rotation vector � from the temporal evolution195

of the fiber frame: ėi = � × ei for i = 1, 2, 3. The spinning vector corresponds then to the third196

component of � and the tumbling to the two first components. We checked that the presented results197

are comparable with both methods. However, the amplitude of the noise was smaller with the first198

method.199

III. RESULTS AND DISCUSSION200

A. Variances of tumbling and spinning rates201

Figure 3 presents the normalized variance of the tumbling rate (〈�T �T 〉τ 2
K ) with respect to the202

normalized fiber length (L/η). These results are compared with those from Parsa and Voth [5] who203

studied similar cases. Results from both sets of experiments overlap and show an evolution of the204

variance of the tumbling rate, as 〈�T �T 〉 ∼ (L/η)−4/3τ−2
K , in agreement with the slender body205

prediction. In this model, fiber inertia is neglected so the global torque 
 applied on the fiber is206

equal to 0. Considering only the viscous torque [9], the total torque applied on the fiber can be207
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FIG. 3. Dimensionless variance of tumbling rate of inertial fibers against dimensionless fiber length. The
prefactor in the −4/3 power-law is obtained from a least-squares fit of the experimental data.

modeled by 208


 =
∫ L/2

−L/2
μug × sds = 0, (5)

where μ is the dynamical fluid viscosity, ug = u f − v is the slipping velocity, with u f and v denoting 209

the fluid and the fiber velocities, respectively. The notation s represents the curvilinear coordinate 210

along the fiber whose origin is at the center of mass. As the fiber is rigid, the velocity of the fiber 211

in the frame attached to the fiber can be written v = s�T . Hence, the average tumbling rate from 212

Eq. (5) scales as 213

�T ∼ 1

L3

∫ L/2

−L/2
u f × sds. (6)

In the framework of Kolomogorov 1941 (K41) theory, only the structure whose length is comparable 214

to the fiber length contributes to the torque. The fluid velocities (uL) at this scale are constant over the 215

fiber length so the integral in Eq. (5) vanishes. This integral also vanishes for velocities at a scale 216

much smaller than the fiber length as they are not correlated along the fiber. Hence, the integral 217

reduces to the slender body scaling, 〈�T �T 〉 ∼ (uL/L)2 ∼ ε2/3L−4/3. 218

Following this framework, spinning is forced by the local vorticity at the scale of the diameter: 219

ud (s) ∼ d∇d u f (s), where ∇d is a coarse grained gradient at scale d . The spinning rate vector should 220

therefore scale as 221

�S ∼ 1

Ld

∫ L/2

−L/2
ud (s)ds. (7)

As the increment of velocity ud is assumed to be correlated on scale d � L, the integral should 222

vanish for long aspect ratios. Hence, the spinning rate is expected to be null or at least much smaller 223

than the tumbling rate (�T ) for long fibers. Below, we report our experimental measurements of the 224

spinning rate and test this assumption. 225

Figure 4(a) shows the normalized variance of the spinning rate (〈�S�S〉τ 2
K ) as a function of the 226

normalized fiber length (L/ηK ). The global trend for the three aspect ratios (�) is a decrease of 227
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FIG. 4. (a) Dimensionless variance of spinning rate and (b) the ratio between the variances of spinning and
tumbling rates with respect to dimensionless fiber length.

the spinning rate with increasing the normalized fiber length. However, compared to 〈�T �T 〉τ 2
K228

(see Fig. 3), the data points for 〈�S�S〉τ 2
K are largely scattered about the −4/3 power-law fit.229

This suggests that the fiber length is not or not the only controlling parameter of the spinning230

rate. This is even more evident in the ratio R� between the variances of spinning and tumbling231

R� = 〈�S�S〉/〈�T �T 〉 of rotation plotted against the normalized fiber length [see Fig. 4(b)]. R�232

increases with �, showing the importance of the fiber diameter (d). Figure 4(b) also shows that233

the variance of spinning rate is always larger than that of the tumbling rate. This contradicts the234

expectation from K41 theory discussed in Sec. III A.235

These observations raise two important questions. First, what is the mechanism of forcing behind236

the spinning of long fibers in turbulence? Second, what is the consequence of the amplitude of the237

spinning rate on the global rotation dynamics of fibers in turbulence? In earlier studies [4,9], the238

Coriolis term � × I� was always neglected when modeling the tumbling rate of long fibers. Our239

current observation urges an investigation related to the validity of this assumption. We address240

these two questions in the following two sections.241

B. Spinning rate and preferential alignment242

We examine here two mechanisms that could possibly induce spinning in a long fiber. In the243

first, the spinning is forced by the coarse-grained vorticity at the scale of the fiber length L. This244

scenario is incompatible with the results of Pujara et al. [21], where they showed that the alignment245

of fibers with vorticity decreases when fiber length is increased. Moreover, this scenario requires the246

spinning rate to scale with the fiber length L, which is not compatible with the scattering observed247

in Fig. 4(a). The second scenario postulates a preferential alignment with structures that imposes a248

velocity difference at the scale of the fiber diameter coherent along the fiber length as proposed in249

Picardo et al. [18]. To test this scenario, we show the evolution of the normalized variance of the250

spinning rate as a function of the normalized fiber diameter in Fig. 5(a). Results indicates that the251

scattering of the data points is reduced compared to that in Fig. 4(a). This suggests that the spinning252

is indeed due to the shear at the scale of the fiber diameter:253

〈�S�S〉 ∼ (ud/d )2 ∼ (d/η)−4/3τ−2
K . (8)

254
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FIG. 5. (a) Dimensionless variance of spinning rate as a function of the dimensionless fiber diameter and
(b) a compensated ratio between the variances of the spinning and the tumbling rate (R�/�4/3) against fiber
length L normalized by Taylor length λ.

The evolution of the spinning rate with the fiber diameter discussed above cannot be explained 255

only on the basis of the classical K41 approach. Indeed, within this framework, a structure of size � 256

is correlated over the size of order �. Therefore, the integral over a length greater than � vanishes, 257

as 〈u�〉 = 0. This is obviously not the case here. The observed scaling of the spinning rate implies 258

that fibers might be preferentially aligned with elongated structures where transverse increments of 259

velocity are correlated over a longer length scale. In turbulent flows, such structures exist typically as 260

the filaments of coherent vorticity as first evidenced by Douady et al. [31]. These coherent structures 261

can be very long, up to the integral length of the flow but are generally twisted and randomly 262

oriented. The forcing of the spinning is then only possible as long as the fiber length is smaller or 263

of the order of the correlation length of the axial vorticity of these filaments. Jiménez and Wray 264

[32] showed numerically that this correlation length is given by the Taylor length scale λ. Such 265

preferential alignment of elongated particles with coherent vortices has also been recently reported 266

by Picardo et al. [18] for flexible fibers. To relate our work to that of Pujara et al. [21], our results 267

suggest that the rotational dynamic of fibers is not only governed by a coarse grained velocity field 268

at the scale of the fiber length L but by a bandpass filtered velocity field bounded by the fiber length 269

L and diameter d [33]. At a first-order approximation, the normalized fiber length (L/ηK ) governs 270

the tumbling and the normalized diameter (d/ηK ) governs the spinning. 271

We examine this hypothesis in Fig. 5(b), which shows the evolution of the compensated ratio 272

R�/�4/3 with respect to fiber length (L) normalized by the Taylor length scale (λ). Results show 273

that R�/�4/3 is nearly constant and equal to 0.2 up to L ∼ 2λ, after which it continues to decrease. 274

This supports the argument that the forcing of the spinning is due to coherent structures whose 275

correlation length scales with the Taylor scale. 276

Figure 6(a) shows the normalized variance of total rotation rate, 〈��〉τ 2
K = 277

(〈�S�S〉 + 〈�T �T 〉)τ 2
K with respect to the normalized fiber diameter (d/ηK ). Combining the 278

scalings of the variances of spinning and tumbling rates with respect to fiber diameter and length, 279

the variance of total rotation rate can be expressed as 280

〈��〉1τ
2
K = 〈�S�S〉τ 2

K + 〈�T �T 〉τ 2
K

= CS (d/ηK )−4/3(1 + CT /CS�
−4/3). (9)

281
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FIG. 6. Dimensionless variance of total rotation rate against dimensionless (a) fiber diameter based on
Eq. (9), (b) spherical volume equivalent diameter based on Eq. (10) and the evolution of the ratio between the
two variances as a function of aspect ratio in the inset.

Here, CT = 4.06 and CS = 0.77 are the two constants of proportionality corresponding to the282

best fit shown on Figs. 3 and 5(a). Equation (9) suggests that 〈��〉 follows a −4/3 power-law283

with respect to d/ηK , and the prefactor depends on the aspect ratio �. For the three aspect ratios284

considered in this paper, the prefactor varies between 1.1 and 1.63.285

Bordoloi and Variano [7] found empirically that the evolution of the variance of the total rotation286

is well described by a power law 〈��〉 ∼ τ−2
K (deq/ηK )−4/3, where deq ∼ d�1/3 is the volume287

equivalent spherical diameter. This relation can be rewritten as288

〈��〉2τ
2
K = C(d/ηK )−4/3�−4/9. (10)

Figure 6(b) shows also a relatively good agreement to the deq/ηK scaling for the aspect ratios (� =289

5.4, 7.5, 10.8) considered in these studies and the aspect ratio presented in Bordoloi and Variano290

[7] (� = 1, 4). The solid line in this plot shows the power law fit 1.98(deq/ηK )−4/3 proposed in291

Bordoloi and Variano [7]. It is in better agreement with low aspect ratio (� = 5.4) data sets of292

our experiment. The equivalence of these two scaling laws is captured by the ratio 〈��〉2/〈��〉1293

shown in the inset of Fig. 6(b). For the � values considered in these studies, the ratio between the294

two variances is close to 1, such that 〈��〉2/〈��〉1 ranges between 0.5–0.84 for � = 1 − 10. For295

larger aspect ratios, we expect that the scaling previously proposed by Bordoloi and Variano [7]296

underestimates the total rotation 〈��〉.297

C. Lagrangian timescales and intermittency298

Given that the variance of the spinning rate of a fiber scales with the fiber diameter (d/ηK ) and299

not the fiber length (L/ηK ), the goal here is to probe if such scaling also exists for the correlation300

time of the spinning rate. Following the method described in Bordoloi et al. [23], we compute301

two timescales, namely, the zero-crossing time (τ0) and the integral time (τi), based on the mean302

autocorrelation of the spinning and the tumbling rates from approximately 1500 trajectories. The303

details of this computation can be found in Bordoloi et al. [23].304

Figure 7(a) recovers the trend observed in Bordoloi et al. [23] and shows that the evolution of305

the normalized correlation times (τ0,t/τK and τi,t/τK ) of the tumbling rate with the normalized fiber306

length (L/ηK ) collapses on a power-law, τi/τK ∼ τ0/τK ∼ (L/ηK )2/3. This result reemphasizes that307

the fiber length (L/ηK ) characterizes not only the variance but also the Lagrangian timescale of the308
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FIG. 7. Evolution of the zero-crossing time for (a) tumbling rate as a function of the normalized fiber
length (L/ηK ) and (b) spinning rate as a function of the normalized fiber diameter (d/ηK ). Each inset shows
the evolution of the integral correlation timescale for the respective component of rotation.

tumbling rate, and that the fiber diameter (d/ηK ) has no significant role when StT < 1. A similar 309

2/3 power-law scaling is recovered for the normalized correlation times (τ0,s/τK , τi,s/τK ) of the 310

spinning rate when plotted with respect to the normalized fiber diameter (d/ηK ) [see Fig. 7(b)]. We 311

do not observe any systematic deviation from the power-law scaling in the correlation timescales 312

of the spinning rate for all tested diameters, unlike the correlation timescales of tumbling rates in 313

Bordoloi et al. [23], which depend on a tumbling Stokes number. Nonetheless, this result confirms 314

that the normalized fiber diameter is an important length scale of the coherent structures that force 315

spinning. 316

Figures 8(a) and 8(b) present the probability density function (PDF) of the tumbling and the 317

spinning rates, respectively. Each distribution is mean centered and normalized by the rms of the 318

respective component. The mean spinning and tumbling rates are close to zero and much smaller 319

than the respective variance. The distributions are independent of their Cartesian components and, 320

hence, only their vertical component is shown for tumbling. 321

In the range of fiber sizes tested here, we do not observe a significant effect of the fiber size on 322

the shape of the PDF for both tumbling and spinning within the error bar of our measurements. 323

For the tumbling rate, the PDFs are symmetric and they show exponential decay. This shape is 324

compatible with the one observed by Parsa and Voth [5], who presented the PDF of the norm of 325

tumbling rate. Its kurtosis, Fx = 〈(x − 〈x〉)4〉/(〈x − 〈x〉)2〉2, is nearly constant within the error bar 326

of our measurements with a mean value 〈FT 〉 = 7.7 ± 0.2, cf. Fig. 8(c). By contrast, the PDFs of 327

spinning rate are relatively wider for small rotation rates, with a sharp decay appearing at spinning 328

rates larger than ∼3�rms
S . This is accompanied by the corresponding values of kurtosis smaller 329

than those for tumbling rates as can be seen in Fig. 8(c). This might seem contradictory with our 330

previous interpretation that spinning is forced by smaller scales than tumbling. Indeed, turbulence 331

intermittency is responsible for the broadening of the PDF of the velocity increments δl u with 332

decreasing length scale � [34]. We interpret the small value of the kurtosis of spinning rate based 333

on the correlation of the forcing along the fiber length. The structures responsible for the tails of the 334

PDF of velocity increment correspond to high intensity structures. The size of coherent structures is 335

known to decrease when their intensity increases [35,36]. At some point, their size becomes smaller 336

than the fiber length and they can no longer contribute statistically to spinning. This is supported by 337

Fig. 8(c), where the flatness of the spinning is constant for long fibers L � 2λ but increases when 338
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FIG. 8. PDF of mean-subtracted (a) tumbling and (b) spinning rates normalized by their respective rms
for fibers of various lengths and diameters. The color-scheme varies from blue to red with increasing L/ηK

and d/ηK for tumbling and spinning, respectively. (c) Evolution of the kurtosis of spinning (top) and tumbling
(bottom) rates as a function of the fiber length normalized by the Taylor length λ. The inset shows the evolution
of the kurtosis of spinning rate as a function of the normalized diameter d/λ.

the fiber length is decreased for L � 2λ. Therefore, we expect that the shape of the PDF of spinning339

rate will be closer to the shape of the distribution of the velocity increments at small scales when340

the fiber length is decreased.341

D. Rotation rate and fiber inertia342

Finally, we examine the validity of the classical assumption of neglecting fiber inertia in343

estimating the rotational dynamics of fiber. The general equation of conservation of the angular344

momentum is345

∂I�

∂t
+ � × I� = 
 (11)
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Ideally, it is necessary to compare each term of the left-hand side of the equation to the global torque 346

on the fiber. This requires measuring the flow field around the fiber, which is beyond the scope of 347

this paper. Therefore, we will use the previous scaling laws to estimate each term. 348

For the temporal term ∂t I�, we define a spinning Stokes number comparing the relaxation time 349

of spinning τS ∼ IS/μLd2, where IS is the moment of inertia for spinning, to the forcing timescale 350

τd ∼ d/ud (see Bounoua et al. [9] for an equivalent definition of the tumbling Stokes number). As 351

IS = πρpd4L/32 for a homogeneous fiber, the spinning Stokes number scales as 352

StS = τS

τd
∼ π

32

ρp

ρ f

(
d

ηK

)4/3

. (12)

The spinning component of the second inertial term � × I� is null for a homogeneous cylin- 353

drical fiber. This is not the case for tumbling and this term scales as (IS − IT )�S�T , where IT 354

is the moment of inertia for tumbling. For fibers with IS/IT ∼ (d/L)2 � 1, the leading order term 355

therefore scales as IT �S�T . This term, compared to the viscous torque for tumbling defined Eq. (6), 356

is negligible if 357

�SτT � 1, (13)

Here τT is the relaxation time of tumbling, defined by the balance of the viscous relaxation term 358∫
μL�T × sds and the temporal term, and scales as τT ∼ IT /μL3 [9]. Invoking the scaling for the 359

spinning rate as �S ∼ ud/d ∼ (d/ηK )−2/3τ−1
K into Eq. (13), we can show that this term is negligible 360

as long as StS is small. In this study, for StS between 0.25 and 8.2, we do not observe any influence of 361

the fiber inertia on the evolution of the variance of spinning rate, the corresponding correlation time, 362

and the PDF. This suggests that the threshold in StS is at least one order of magnitude higher than 363

unity, which can be compensated by introducing a prefactor to Eq. (12). Measuring this prefactor 364

deserves further investigation, which has to be done in a setup where the separation of scales 365

between the fiber length scales and the flow length scales satisfy ηK � d < L � λ to remove the 366

influence of the correlation of the forcing along the fiber length. This separation of scales is beyond 367

our current setup with the fibers used in this study. 368

Nonetheless, an important message that falls out of the above analysis is that, contrary to the 369

tumbling Stokes number, the spinning Stokes number does not depend on the aspect ratio of the 370

fiber and can be significantly large even for a slender body if d 	 η [see Eq. (12)]. Therefore, 371

for fibers with d > ηK and � 	 1, although the temporal inertial term ∂T IT �T can be ignored in 372

Eq. (13), the second inertial term that couples the tumbling and the spinning motions cannot always 373

be neglected. 374

IV. CONCLUSION 375

We experimentally resolve both components of rotation (spinning and tumbling) of inertial fibers 376

(L 	 ηK ; d > ηK ) in homogeneous isotropic turbulence. Our measurements show that fibers tend to 377

spin more than to tumble. We show that the variance of the spinning rate follows a power law scaling 378

with respect to the fiber diameter, such that 〈�S�S〉τ 2
K ∼ (d/ηK )−4/3. This contradicts the classical 379

view based on K41 theory, where the spinning rate of an inertial fiber is considered negligible 380

compared to the tumbling rate. This scaling implies that fibers are preferentially trapped within 381

elongated coherent structures where the transverse increments of velocity are correlated over lengths 382

of the order of Taylor scale of turbulence. We show the importance of the fiber aspect ratio (� = 383

L/d) via a rescaled ratio (〈�S�S〉/�4/3〈�T �T 〉) between the variances of the spinning and the 384

tumbling rates. For a fiber shorter than a few Taylor scales (L � 2λ), this ratio is nearly constant 385

but decreases rapidly with increasing fiber length. In the future, it would be useful to extend this 386

study to oblate anisotropic particles, such as discs, to examine if the major axes of all anisotropic 387

inertial particles tend to align with the vorticity, similar to sub-Kolmogorov scale particles [4,13]. 388
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Besides, it would also be interesting to study such phenomena for flexible fibers that can conform389

to the topology of a vortex tube, in the vein of Picardo et al. [18].390

In addition, we compute the Lagrangian timescales of spinning and tumbling by analyzing the391

autocorrelation of the respective components. Both timescales follow the scaling τS/T ∼ (l/ηK )−2/3,392

where l = L and d for tumbling and spinning, respectively. We do not observe any obvious393

deviation from this scaling for spinning even for high Stokes number StS ∼ 8. Further, the PDF394

of spinning rate shows suppression of extreme events beyond 3�rms
S , leading to a smaller flatness395

factor (FS < FT ). We hypothesize that this result is due to the lengthwise decorrelation of local396

forcing responsible of the stronger spinning events. From a modeling point of view, our results397

show that an inertial fiber in turbulence experiences a velocity field smoothed by a bandpass filter398

whose length scales are given by its length (related to tumbling motion) and its diameter (related to399

the spinning motion).400

The measurement of the spinning rate also allows us to estimate the importance of the coupled401

inertial term in the rotation equation which was generally assumed negligible in earlier studies of402

fiber rotation in turbulence. We show that this assumption should hold only when the spinning403

Stokes number StS is small enough.404
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