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Gautier Verhillea,1, Sébastien Moulinetb, Nicolas Vandenberghea, Mokhtar Adda-Bediac, and Patrice Le Gala
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Fiber networks encompass a wide range of natural and man-
made materials. The threads or filaments from which they are
formed span a wide range of length scales: from nanometers,
as in biological tissues and bundles of carbon nanotubes, to mil-
limeters, as in paper and insulation materials. The mechanical and
thermal behavior of these complex structures depends on both
the individual response of the constituent fibers and the den-
sity and degree of entanglement of the network. A question of
paramount importance is how to control the formation of a given
fiber network to optimize a desired function. The study of fiber
clustering of natural flocs could be useful for improving fabrica-
tion processes, such as in the paper and textile industries. Here,
we use the example of aegagropilae that are the remains of a
seagrass (Posidonia oceanica) found on Mediterranean beaches.
First, we characterize different aspects of their structure and
mechanical response, and second, we draw conclusions on their
formation process. We show that these natural aggregates are
formed in open sea by random aggregation and compaction of
fibers held together by friction forces. Although formed in a nat-
ural environment, thus under relatively unconstrained conditions,
the geometrical and mechanical properties of the resulting fiber
aggregates are quite robust. This study opens perspectives for
manufacturing complex fiber network materials.
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Aegagropilae are a natural aggregate of fibers produced by
the decomposition of leaves and roots of Posidonia ocean-

ica. The fibers are entangled by sea motion until the clusters
reach the shore (1) (Fig. 1). P. oceanica is an endemic plant of
the Mediterranean Sea with very long and thin leaves (about
1-m long, 1-cm wide, and less than 1-mm thick). The name aega-
gropilae originates from the Greek [αίγαγρoς (wild goat) and
πι̃λoς (fur)] and refers to the resemblance between the shape of
these balls and those regurgitated by goats. Natural fiber clus-
tering occurs for different species of aquatic plants, such as the
so-called seaballs that can be found on the Atlantic Ocean and
lake shores (2, 3).

P. oceanica meadows play an important ecological role in the
preservation of Mediterranean coasts. They constitute plant bar-
riers that promote sediment trapping and oxygen production in
seabed, and the accumulated remains protect the beaches from
erosion. Moreover, aegagropilae fibers are suitable materials for
insulation in construction and automotive industries. After sub-
mitting them to various tests, they recently landed in the market-
place under the name of Neptutherm. Beyond the curiosity that
these natural objects can provoke, aegagropilae samples found
on beaches raise several fundamental questions. The first set of
questions is on their formation process. How can fibers be entan-
gled and packed by a flow without any confinement? How long
does it take to form a cluster? Can one explain the size distri-
bution of these aggregates? The second set of questions is on
the cohesion of these structures. How can we relate the appar-
ent stiffness of these balls to the interaction of the fibers and the
topological properties of the network?

Natural and manmade fiber networks are abundant structures
and arise on a wide range of length scales. Examples may be
found in both biological systems, such as the cytoskeleton of a
cell (4), blood clots (5), and biological tissues (6), and technol-
ogy, such as nanotube bundles (7), paper (8), textiles, and felts
(9–11). The mechanical response of fiber assemblies depends
on both the properties of the elementary thread and the den-
sity, connectivity, and ordering of the network. Therefore, the
functional properties of these materials can be tuned by con-
trolling their formation processes. The manufacturing of some
athermal networks, such as paper, involves transport of fibers
in a fluid flow (8). During this process, fibers are advected and
deformed elastically, and they interact through interfiber friction
(12, 13). From this perspective, aegagropilae are an archetype of
these fiber networks, and understanding the clustering mecha-
nism can shed light on the fundamental aspects of fiber aggre-
gation dynamics. Here, we perform various measurements on
aegagropilae to characterize their structural and mechanical
properties. Our observations provide a qualitative understand-
ing of the formation process of this fiber network.

Structural Properties of Aegagropilae
Aegagropilae were collected at two different locations of the
Mediterranean shore: at Six Fours, France (43◦06′03′′ N,
5◦49′20′′ E) and on Porquerolles Island, France (43◦00′02′′ N,
6◦13′38′′ E) with the authorization of Port-Cros National Park.
On the first beach, nearly 2,000 samples were collected to deter-
mine their size and mass distributions. To avoid any bias in the
sampling caused by damage of aegagropilae by human activity,
all samples were collected on a morning in winter, the day after
a storm. Moreover, only balls found at a distance less than 10 m
from the sea were collected, assuming that the ones located far-
ther away from the sea might have been released by a precedent
storm. At the second spot, few samples were picked up in seabed
to investigate the geometrical and mechanical properties of fiber
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Fig. 1. Aegagropilae formed from aggregation of P. oceanica. (A) Sam-
ples of aegagropilae of various shapes and sizes collected on the beach and
placed on millimeter paper. (B) Aegagropilae trapped in the seabed at the
verge of a Posidonia meadow (top right) located at 2-m depth and 20 m
from the shore.

aggregates and the influence of aging and drying on cluster
compaction.

Mass and Size. The set of 2,000 samples was dried at room tem-
perature for 2 wk to remove the water trapped inside the aggre-
gates. Then, the mass of each aegagropila was measured using an
analytical balance (MXX-123; Denver Instrument) with a reso-
lution of 1 mg. Approximating the balls with ellipsoids of revolu-
tion (Fig. 1), we have measured the length of their principal axes
a , b, and c (a>b>c) by fitting with ellipses images taken from
the top and the side.

The scatterplot of mass as a function of volume of all collected
samples is reported in Fig. 2A and shows that their densities are
distributed around the average density. This result confirms that
the mass and volume of the aggregates are correlated positively.
Moreover, the probability density functions (pdfs) of the mass
and size have been computed and superimposed on a log-normal
probability distribution P(x ) given in ref. 14:

P(x ) =
1

xσ
√

2π
e
− (log x−µ)2

2σ2 , [1]

where the parameters µ and σ were determined from the mea-
sured mean and variance of the corresponding distribution,
respectively (Table 1). Fig. 2 B and C shows that both mass and
size distributions are accurately represented by log-normal laws.
The distributions of the diameters show a predominance of pro-
late spheroidal shapes: the geometric mean of a is twice as large

as those of b and c (Fig. 2D and Table 1). Moreover, as evi-
denced by the values of SD in Table 1, the dispersion of the
data is approximately equal for all lengths. This result suggests
the existence of a “state variable” that selects both geometry and
mass distributions of the aggregate and allows for a positive cor-
relation between size and mass of the aggregates (in agreement
with Fig. 2A). Indeed, Eq. 1 shows that linear transformations of
the variable x preserve both log-normal behavior and the geo-
metric SD. The formation process of the aggregate could be the
underlying mechanism that provides such a state variable and in
turn, controls size and mass distributions of aegagropilae.
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Fig. 2. (A) Scatterplot of mass vs. volume of the collected balls. The solid
line denotes an average density of 128 kg m−3. (B and C) The pdfs of the
mass of aegagropilae and the main axes of the ellipsoid that characterizes
their shapes (details are in the text). Dots represent experimental data, and
solid lines are the corresponding log-normal distributions with parameters
µ and σ given in Table 1. (D) 2D histogram of the aspect ratios (a − b)/a
and (b − c)/a, showing that the most probable shape is a prolate ellipsoid
of revolution with b ' 0.50a and c ' 0.45a.
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Table 1. Geometric mean (eµ) and geometric SD (eσ) of the
actual distributions

x Mean SD

Mass (g) 0.212 1.458
a (cm) 2.681 1.436
b (cm) 1.449 1.47
c (cm) 1.146 1.458

Log-normal distributions arise in the description of many
phenomena that involve either growth or division mechanisms.
Examples may be found in nature, social sciences, technology,
biology, and medicine (15–19). The reason is that, for many nat-
ural processes of growth, relative growth rate is independent of
size (16). Moreover, hierarchical processes in fragmentation are
known to end up with a log-normal distribution of the fragment
sizes (15). The question of whether aegagropilae fiber networks
are generated by a division or a growth process arises. If growth
is the underlying mechanism, the evolution of the mass m(t) of
the aggregate would obey the following equation:

dm
dt

= k(t)m(t), [2]

where k(t) is a relative growth rate that is generally independent
of size but may evolve in time (16). Eq. 2 can be rewritten as

log
m(t)

m0
=

t∫
0

k(t ′)dt ′, [3]

where m0 is an initial mass from which growth proceeds. Because
k(t) may fluctuate randomly in time because of external forces
acting on the cluster (flow, topography of the seabed ...), the mass
m(t) is log-normally distributed if the central limit theorem can
be applied on the distribution of k(t).

Eq. 3 shows that this formation process needs a nucleus
from which growth initiates. We have disentangled hundreds of
samples and indeed, found inside some of them rhizome frag-
ments (20%) and foreign bodies (plastic, textile, wood frag-
ments ...; 20%) that may serve as an initial seed for aggrega-
tion. Nonetheless, it is worth noticing that most of the samples
(60%) do not present any specific seed, indicating that aggre-
gation may initiate without external nucleus (20, 21). There-
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D

Fig. 3. Results of X-ray tomography for nearly spherical aegagropilae of radius R ≈ 15 mm and mass 2.56 g. (A) A typical tomography image (here at the
equator of the sphere). In red is a sketch of the definition of the distance r to the center of mass and the angle φ between a fiber and the radial direction.
(B) Local density ρ(r). The red curve is obtained by integrating over the whole solid angle of the sphere. Gray curves are obtained for six different conical
sectors with a 20◦ summit angle. The black dashed curve is a quadratic fit ρ(r) = ρ0(1 + αr2) of the measured local density for r ≤ 10 mm. (C and D) The
pdfs of the orientation φ in the core and crust region represented in B by green and pink, respectively. The black curves show the function P(φ) = sinφ
expected for a statistically homogeneous distribution. The widths of the gray areas are the SDs σ for a random sampling over the same number of fibers
detected in the region. Because the crust is denser than the core, σ is smaller in D than in C.

fore, the log-normal behavior of the probability distributions of
mass and size is not sufficient to unravel aegagropilae forma-
tion process and discriminate between fragmentation and growth
mechanisms.

X-Ray Tomography. To characterize the internal structure of aega-
gropilae, we performed X-ray tomography on several samples
collected on the beach with a resolution of 18 µm and studied
their density distributions and fiber orientations. Fig. 3A displays
an example of the equatorial section of a nearly spherical sample
(the complete tomography is shown in Movie S1). In addition, we
performed a tomography on a ball collected underwater and kept
inside a water container; then, a second tomography was made on
the same ball after it dried. The structural properties of this sam-
ple were similar to balls collected on the beach, and neither size
nor concentration field have been significantly distorted during
drying. The result that all clusters share the same qualitative fea-
tures confirms that the structural properties of aegagropilae are
inherited during their formation in the seabed.

Fig. 3B shows that the distribution of fibers in the aggregate is
inhomogeneous. The fiber concentration increases quadratically
with the distance to the center and reaches a maximum in the
vicinity of the border. Similar concentration fields, with a dense
shell surrounding a loose core, are observed when slender elastic
objects are tightly confined, such as a thin sheet crumpled into a
ball (22, 23) or a long steel filament packed in a container (24). In
these cases, the process of packing involves forces applied on the
external surface of the folded object. The similarity of the density
distributions suggests that a comparable compaction mechanism
takes place after the aggregate has been already formed.

Moreover, fiber orientation is accessible from the tomography
of aegagropilae by fitting a virtual cylinder (length of 270 µm
and diameter of 36 µm) inside the full 3D image of a fiber aggre-
gate. This operation is performed around each voxel, with the
gray level indicating that it belongs to a fiber. The orientation
is then characterized by the angle φ∈ [0, π/2] between the axis
of the cylinder and a line joining this voxel to the center of the
mass of the sample (Fig. 3A). To probe any effect of the inho-
mogeneous density distribution on fiber orientation, we focused
our study on two regions: the “core” (around the center of mass)
and the “crust” (dense shell near the surface) of the aggre-
gate. In the example reported here, Fig. 3C (Fig. 3D) shows the
orientation distribution in a core (crust) for which r . 6.8 mm
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(r & 11.7 mm) compared with a homogeneous orientation distri-
bution. Although fiber orientations in the core are found to be
isotropic, within the fluctuations expected at this density, the dis-
tribution in the crust shows an excess of orthoradial fibers, but
the deviation from the isotropic distribution remains very weak.
Such features are also observed with sheets or filaments packed
in a container (23, 24). These observations suggest that aega-
gropilae are formed by aggregation of randomly oriented fibers
followed by a compaction of the resulting floc, probably caused
by sudden changes in sea motion.

Fiber Properties. The connectivity and mechanical response of
aegagropilae depend on the nature of their constituent fibers. To
this purpose, we visually analyzed Posidonia fibers using SEM
images near the surface of the aggregate. A typical example is
shown in Fig. 4A, in which one observes that the fibers are slen-
der objects with a typical cross-section of 100-µm width. Except
for the presence of small asperities on the fibers made of salt
crystals formed during the evaporation of sea water, the fiber
surface is relatively smooth. Fig. 4A also shows that a few fibers
have broken into a disordered bundle of smaller fibers. However,
these fibers are mainly localized at the surface, and their damage
is probably caused by the action of the surrounding environment
(e.g., during their transport to the shore). Therefore, it is unlikely
that these scarce asperities play a role in the formation process
or influence the contact behavior between fibers.

To further characterize the individual fibers, we carefully dis-
entangled a seaball of size 32 × 15 × 14 mm3 by avoiding fiber
breakage during the separation process and measured lengths L
and curvatures κ. Fibers were extracted both near the surface of
the seaball (324 fibers) and deeper inside it (340 fibers). No dif-
ference in fiber morphology was detected between the two sam-
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Fig. 4. Morphology of individual fibers. (A) SEM image of fibers close to
the surface of aegagropilae. (B) The pdf of fiber lengths obtained from a dis-
entangled seaball. The weighted average length of the distribution 〈L2〉/〈L〉
is 7.7 mm.

ples. We also analyzed in situ 40 fibers from X-ray tomography
and found similar properties. The pdf of fiber lengths reported
in Fig. 4B shows a large distribution that ranges from 0.5 to
20 mm with a predominance of short fibers and a weighted aver-
age length 〈L2〉/〈L〉 = 7.7 mm. Moreover, we measured the
maximum deflexion ∆ of each fiber and estimated its typical cur-
vature as κ ≈ ∆/L2. Our results show that most fibers satisfy
κL . 0.5.

Therefore, the constituent fibers can be considered as straight
slender objects with a geometric aspect ratio close to 80 and
lengths smaller than the seaball characteristic size. Our mea-
surements show that fiber self-entanglement is unlikely and sug-
gest that the cohesion mechanism within aegagropilae is domi-
nated by fibers elasticity and frictional contacts between them.
As observed in wool felts (11) or artificial aggregates (20), these
two ingredients are sufficient to make stable and cohesive spher-
ical flocs.

Mechanical Properties of Aegagropilae. The dense structure of
aegagropilae provides them with a high stiffness: some balls
can resist finger pressure. To quantify this feature, balls were
indented using a stainless steel bead of radius Rind = 2.3 mm.
The position δ of the indenter is controlled by a translation stage,
and a dynamometer allows for the measurement of the reaction
force F experienced by the indenter with an accuracy of 10−3 N.
A typical experiment consists of approaching the indenter until
it touches the sample (δ = 0), loading it over a depth δmax, and
then unloading it. To probe the mechanical response of the crust
region only, the maximum displacement is fixed to 5% of the size
of the ball, which also allows us to satisfy δmax � Rind for all stud-
ied balls. A typical curve F (δ) is displayed in Fig. 5A and shows a
hysteresis between loading and unloading cycles: during the first
stage of unloading, the force abruptly decreases, and the con-
tact is lost at a position δ 6=0, indicating a permanent irreversible
deformation.

The material response of aegagropilae is probed at relatively
small strains: for a displacement δ � Rind, the radius of the
contact area is a ≈

√
2δRind, and the typical strain is then

ε ∼ δ/a ≈
√
δ/2Rind. For a typical displacement δ = 500 µm,

one has ε ≈ 0.3. Therefore, the elastic response of the ball can be
assumed to be linear, and the force F (δ) is expected to follow a
Hertzian contact law: F (δ) ∝ δ3/2. This assumption is confirmed
experimentally (Fig. 5A) and allows us to estimate an effective
Young modulus E of the fibrous material using ref. 25:

F =
4

3
ER

1/2
ind δ

3/2. [4]

Eq. 4 applies for elastic materials with zero Poisson ratio, a prop-
erty that is often encountered in hollow materials (26). This
property is confirmed for the studied samples, because no mea-
surable lateral expansion was detected during indentation. Fig.
5B summarizes the moduli measured for 26 different samples as
a function of their mean density. The results are quite dispersed:
even on a single sample, Young moduli measured at different
points can vary by a factor of three. This variability confirms the
disparity of the samples and the inhomogeneity within a given
ball as expected from a random natural process. Nevertheless,
Fig. 5B shows a trend of a Young modulus E to scale as ρ̄3,
where ρ̄ is the mean density of the ball. Such a behavior relat-
ing the elasticity of the network and its density occurs generically
in the mechanics of fiber aggregates (27, 28) within the assump-
tion that the network responds to applied small deformations
by storing elastic energy in the fibers without major topological
reorganization.

The structural study of aegagropilae is consistent with a cohe-
sion ensured by interfiber contacts. Therefore, one can assume
that the fiber aggregate is a 3D assembly of slender rods of typi-
cal length L, diameter d , and bending stiffness Bf ∼ Ef d

4. The
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Fig. 5. Mechanical response of a seaball. (A) Indentation curve F(δ) of a
seaball of mass 2.95 g and mean density of 275 kg m−3. The dashed line is a
fit F ∝ δ3/2 law expected for a Hertzian contact. Using Eq. 4 yields a Young
modulus E = 1.16 MPa. (B) Young moduli of the studied aegagropilae as
function of their mean density ρ̄ = 6m/πabc. The gray line is E ∝ ρ̄3 power
law fit.

resulting network is characterized by a coordination number Nc

(average number of contacts on a fiber) and a typical distance
between contact points on a fiber `∼L/Nc . At the level of one
fiber, the bending energy associated with a transverse displace-
ment δ is Uf ∼ Bf (δ/`2)

2
L. To compute the effective modulus

E of the assembly, the standard form of the elastic energy of
a homogeneous body U = E(δ/`)2Ω, where Ω is a given vol-
ume, should be balanced with the bending energy nEf of n fibers
within this volume. Using n ∼ φΩ/(d2L), where φ is the volume
fraction, the effective modulus writes

E ∼ Ef φ

(
d

`

)2

∼ Ef φ

(
Ncd

L

)2

. [5]

The coordination number Nc is a key quantity to estimate the
mechanical properties of the fiber network. For an assembly of
randomly oriented slender rigid fibers, one finds Nc = 2φL/d
(27, 29), and the linear behavior with φ seems to be a robust
result (30). Substitution in 5 yields the simple scaling E ∼ Ef φ

3.
Moreover, assuming that the volume fraction of a seaball is well-
approximated by φ = ρ̄/ρf , with ρf being the density of the ele-
mentary fibers, one deduces the scaling behavior (27)

E ∼ Ef

(
ρ̄

ρf

)3

, [6]

which is in agreement with experimental results in Fig. 5B.
Although a detailed analysis on a model system is certainly
needed to reach a better insight, it is worth comparing the order
of magnitude of the predicted effective modulus with the mea-
surements in Fig. 5B. Using a typical Young modulus Ef = 1 GPa
and (the measured) ρf = 1.4 × 103 kg m−3, one finds that a
prefactor of order 0.1 in the scaling law (6) enables us to achieve
correctly the order of magnitude of the experimentally measured
Young moduli.

The previous modeling addressed the stiffness of aegagropi-
lae during a loading cycle and for small applied deformations.
However, it does not probe the nature of the interaction between
fibers. Nevertheless, the presence of irreversibility in the unload-
ing phase is a signature of frictional dissipation that accompanies
local sliding at the contact points during the reorganization of the
network.

Discussion
The study of structural and mechanical properties of aegagropi-
lae allows us to draw a reliable scenario of their formation pro-
cess. First, these seaballs are formed underwater without being
reshaped during their transport or stay on the beach. They are
mainly composed of smooth fibers produced by the decomposi-
tion of the seagrass P. oceanica. Second, the isotropic orienta-
tion of the fibers confirms that an aggregation mechanism takes
place. Indeed, field observations suggest that aegagropilae are
formed in submarine hollows, allowing for isotropic mixing and
aggregation. This result is also in agreement with the measured
log-normal distribution of mass, which is reminiscent of an aggre-
gation or fragmentation process. Third, the density profile within
a single seaball indicates that the dense outward shell is built on
a compaction process. The small orthoradial excess in fiber ori-
entation at the surface is also in favor of this chronology.

Notice that a compaction scenario on the basis of hydrody-
namic forces (without collisions) is unlikely, because the mag-
nitude of hydrodynamic forces is not sufficient to compact the
aggregate. A possible mechanism that drives the compaction is
repeated collisions of a seaball with the seabed. Let us estimate
the deformation induced by this mechanism. When an elastic
sphere of radius R, density ρ, Young modulus E , and Poisson
ratio ν = 0 impacts a rigid wall at a speed V , the maximum pen-
etration δmax that it experiences is given in ref. 25:

δmax = R

(
5πρV 2

4E

)2/5

. [7]

An estimation using E ≈ 105 Pa, R ≈ 15 mm, ρ = 103 kg m−3

(the density of a soaked seaball), and V = 10 cm s−1 (esti-
mated from field observations; in agreement with the order of
magnitude of the terminal velocity of a sinking seaball) yields
δmax ≈ 650 µm. This value is of the same order of magnitude as
the penetration for which we observed an irreversible deforma-
tion (Fig. 5). Therefore, collisions may induce the formation of
an outward dense shell, which in turn, inhibits addition of mate-
rial. The timescale for compaction should be small compared
with the one for aggregation. Aggregation is indeed a long pro-
cess because of the weak motion of water and root decomposi-
tion (which allows the fibers to be spatially localized), whereas
compaction necessitates a stronger agitation induced by a sud-
den change in sea motion or seabed topography.

A thorough understanding of size distribution of such fiber
network requires additional investigations. A fundamental issue
is the effect of turbulence on the aggregation process and its satu-
ration. Turbulent fluctuations take place at scales larger than the
Kolmogorov scale, which can be a few millimeters in the ocean.
The largest aegagropilae collected for this study have a major
axis of approximately 9 cm, whereas the largest ever reported
aegagropilae have a diameter around 20 cm. The existence of
a maximal size raises the question of the influence of a sur-
rounding turbulent flow on aggregation and fragmentation of
objects of sizes in the inertial range of turbulence scales, whereas
most of previous studies were dealing with sub-Kolmogorov flocs
(31, 32).

Other than the peculiar application of seaballs, deriving a
generic model that takes into account turbulent stress and fiber
interactions inside the cluster would allow for a better understand-
ing of floc formation in the paper industry and also, prevention of
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this phenomenon in other applications. Finally, we showed that
the weak forces that are at the origin of the compression of fiber
network lead to a strong inhomogeneity of the density profile. This
particular organization is probably at the origin of the surprisingly
high stiffness of these seaballs. This feature may open perspectives
to design materials with large weight to strain ratios.
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19. Straňák V, et al. (2011) Size-controlled formation of cu nanoclusters in pulsed mag-
netron sputtering system. Surf Coat Technol 205:2755–2762.

20. Soszynski R, Kerekes R (1988) Elastic interlocking of nylon fibers suspend in liquid.
Part 1. Nature of cohesion among fibers. Nord Pulp Pap Res J 4:172–179.

21. Cannon J (1979) An experimental investigations of Posidonia balls. Aquat Bot 6:407–
410.

22. Deboeuf S, Katzav E, Boudaoud A, Bonn D, Adda-Bedia M (2013) Comparative study
of crumpling and folding of thin sheets. Phys Rev Lett 110:104301.

23. Cambou AD, Menon N (2011) Three-dimensional structure of a sheet crumpled into a
ball. Proc Natl Acad Sci USA 108:14741–14745.

24. Courtois L, et al. (2012) Mechanical properties of monofilament entangled materials.
Adv Eng Mater 14:1128–1133.

25. Landau LD, Lifshitz EM (1986) Theory of Elasticity (Pergamon, New York), 3rd Ed.
26. Greaves GN, Greer AL, Lakes RS, Rouxel T (2011) Poisson’s ratio and modern materials.

Nat Mater 10:823–837.
27. van Wyk C (1946) Note on the compressibility of wool. J Text Inst 37:T285–T292.
28. Poquillon D, Viguier B, Andrieu E (2005) Experimental data about mechanical

behaviour during compression tests for various matted fibres. J Mater Sci 40:5963–
5970.

29. Toll S (1998) Packing mechanics of fiber reinforcements. Polym Eng Sci 38:1337–
1350.

30. Masse J, Salvo L, Rodney D, Brechet Y, Bouaziz O (2006) Influence of relative density
on the architecture and mechanical behaviour of a steel metallic wool. Scr Mater
54:1379–1383.

31. Pumir A, Wilkinson M (2016) Collisional aggregation due to turbulence. Annu Rev
Condens Matter Phys 7:141–170.

32. Bache DH (2004) Floc rupture and turbulence: A framework for analysis. Chem Eng
Sci 59:2521–2534.

6 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1620688114 Verhille et al.

http://www.pnas.org/cgi/doi/10.1073/pnas.1620688114

