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Abstract Sea balls also called aegagropila, can be found on Mediterranean beaches.

They are made of Posidonia fibers, which aggregate on the seabed due to the sea

motions. To understand the mechanism of aggregation and compaction of these struc-

tures, we have performed a laboratory investigation on the dynamics of aggregation

of fibers by surface gravity waves generated in a water tank. Amazingly, depend-

ing on the flexibility of the fibers, two different sites of aggregation are observed.

Following our experiments, we propose an analytical derivation of the clustering of

particles by the Stokes drift. This theoretical calculation is quite general and empha-

sizes the respective roles of the Stokes number and the density of the particles; it

also underlines the importance of the fiber flexibility in their drift and explains our

experimental observations.
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1 Introduction

Aegagropila are sea balls composed of Posidonia fibers, which can be found along the

Mediterranean beaches. Posidonia are aquatic plants that fade in autumn. Their roots

then release on the seabed a large quantity of fibers that will get caught by the sea water

flows and waves. After a certain time (still unknown), clusters of entangled fibers are

deposited on the beaches in the form of compact balls. These structures have a large

size dispersion (a few millimeters for the smaller ones to about ten centimeters for

the larger ones). Figure 1a presents a photograph of these sea balls constituted by one

to two centimeter long fibers having a diameter around 100 µm. A statistical study of

the size and mass of aegagropila shows that these distributions obey a lognormal law,
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Fig. 1 a Photographs of Posidonia aegagropila (Plage du Prophète, Marseille). b Close up of the

extremities of a marine rope piece, where some fibers have been agglomerated on the nylon fiber

bundles. c Two aegagropila that have aggregated on a textile thread

Fig. 2 a Photograph of a bottlebrush flower (Marseille). b Bottlebrush flower stamens fallen on

the floor in the course of aggregation under the action of a turbulent wind. c An aggregate of bottle

brush flower fibers

which is compatible with an aggregation of fibers trapped randomly by the forming

balls [1]. Some of these fiber aggregates can also be encountered around Posidonia

rhizome fragments or even foreign bodies as it is the case in Figs. 1b, c, where the

fibers have been trapped on the extremities of a marine rope piece or along a textile

thread. These examples show if the aggregation process does not need any nucleus,

some of the sea balls possess synthetic or natural nuclei that may help their formation.
More generally, natural fibers have the tendency to agglomerate to form bundles

or balls when agitated by fluid turbulent motions. Figure 2 presents an example

of aggregation of fibers in air: under the action of wind, bottlebrush (Callistemon)

flower stamens whose length is around 3 cm for a diameter about 300 µm aggregate

when they fall on the floor. Figure 3 gives another example of natural fiber accretion

by the sea, but this time of living seaweeds. Contrary to the short fibers of Posidonia

or bottlebrush flower fiber aggregates, in the case of these long seaweeds, fiber self-

entanglements are certainly at the origin of the bundles that can be seen along the

shore.

These different structures pose several questions ranging from their formation

(physical mechanisms, duration of the aggregation process, etc.) to the understanding

of the observed size distributions. In the absence of in situ measurements, we propose

to study in the laboratory, the dynamics of formation of fiber clusters in a simple

flow generated by the periodic excitation of surface waves in a tank. Then, we will
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Fig. 3 Photographs of seaweed aggregates along the Pacific seashore (Gator beach, San Diego,

California). The length of the seaweeds, between ½ and 1 m, enhances self-entanglements that

sustain the aggregates (pen length ~15 cm)

propose a nonlinear model that explains the observed transport of the fibers by a

flow.

2 Experimental Observation of Fiber Aggregation in a Flow

2.1 Experimental Device

In order to stay close to the back and forth movement that exists at the bottom of the

sea, we choose to study the dynamics of fibers in a flow induced by the oscillation of

a plate in a basin of length L � 80 cm (along the x direction). The basin is 28 cm wide

(y direction) and 40 cm deep in the vertical z direction. When oscillating at angular

frequency ω, the plate drives a stationary wave in a h � 10 cm deep layer of water.

The two-dimensional flow field can then be approximated by a periodic potential φ:

φ � U0cos (kx) cosh ((z + h) /λ) sin (ωt) , (1)

where k � 2π /λ is the wave number of the surface gravity wave and λ its wavelength.

The resonance frequency of the basin is close to 0.8 Hz. In order to test the influence

of fiber stiffness on the formation of aggregates, we used two types of fiber material:

nylon and cotton. The length of the threads is around 5 cm and the diameter of the

cotton threads is 150 and 400 µm for the nylon threads. Therefore, the aspect ratio of

the fibers that we use in the experiment is between 100 and 300, i.e., in the same order

of magnitude of the aspect ratio of the Posidonia fibers found in natural aegagropila

(50–100). The cotton fibers are very flexible and can be easily deformed in the flow

while the nylon fibers are rigid and do not deform. In both cases, the density of the

fiber material is greater than the one of the fluid and since the flow velocities are

relatively small, all the dynamics occurs on the smooth bottom of the basin. Finally,

only a unique concentration of threads (500 threads in total) will be considered here.
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Fig. 4 Comparison of the dynamics of rigid fibers (a) and flexible fibers (b) in the experiments.

Above and below on each side, are the initial and final conditions of the experiment, respectively.

In the center, the space-time diagrams visualize the dynamics of fiber agglomeration toward the

quarter and three-quarters of the basin for the rigid nylon fibers and toward the center for the flexible

cotton fibers

2.2 Localization of the Fiber Aggregates

Consider first, a forcing frequency below the resonance frequency. The amplitude

of the surface wave at the free surface is around 1 cm with a wavelength of 0.8 m.

At initial time, the threads are arranged randomly (in position and orientation) on

the bottom of the basin. After several hours, once the equilibrium is reached, we

see in Fig. 4 that the threads have migrated toward some particular locations in the

basin: the rigid nylon fibers (on the left of Fig. 4) are mainly located at a quarter and

three-quarters of the tank length, whereas the flexible cotton fibers (on the right of

Fig. 4) go mainly to the center of the basin. It is found that in both cases, at least

during the 5–10 h of the experimental run duration, the clusters are not very tight

and compact.

In order to understand the localization of these clusters, we propose in the follow-

ing a one-dimensional model since Fig. 4 shows that the system is almost invariant

over the width of the tank (this is expected because of the symmetries of the forcing

and because of the random initial conditions). Because each fiber is first rapidly

oriented in the flow before it drifts, it is fully justified to model it by a point particle

moving in a velocity field as described by the potential flow given by Eq. (1). By

neglecting the history terms (Basset terms) and the interactions between particles,

the equation of evolution of the velocity of a spherical particle νp is simply [2]:

dvp/dt � αDu/Dt +
(

u − vp

)

/St, (2)

where d/dt and D/Dt represent the Lagrangian derivative when following a solid

particle and the Lagrangian derivative when following a fluid particle, respectively.

The density coefficient α is equal to 3ρ f / (2ρ f + ρp), where ρ f and ρp are the fluid and

the solid particle density. When α is less than unity the particles sink at the bottom of

the fluid layer contrary to the cases when α is larger than 1, where particles float on

the fluid surface. The Stokes number characterizes the relative importance of inertia
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to viscous effects. For instance, for a spherical particle of radius a, immersed in a

fluid of kinetic viscosity ν f , the Stokes number reads:

St � 2a2ω/3vf α

In Eq. (2), all magnitudes are made dimensionless using the wavelength λ for

the lengths, the inverse of the angular frequency 1/ω for the time and U0 for the

velocities. Thus, the forcing velocity field at a fixed depth z near the bottom of the

tank is simply u � sin(x) sin(t). Using these quantities, and the fact that the flow is

essentially one-dimensional at the bottom of the basin along its length, the Lagrangian

total derivatives can be cast under the form:

d/dt � ∂t + εvp∂x and D/Dt � ∂t + εu∂x,

where ε is equal to U0/ωλ. Using the orders of magnitude of the experimental

parameters (observed velocity U0 ~ 1 cms−1, frequency ω ~ 1 Hz and λ ~ 1 m),

we can estimate that the order of magnitude of ε is around 10−2. Therefore, ε can

be considered as a small parameter and this will allow studying the solutions of the

particle transport Eq. (2) and their stability by making a perturbative development in

power of ε:

vp � v0
p + εv1

p + ε2v2
p + . . .

At order 0 in ε, introducing the shape of the fluid velocity field in Eq. (2), leads

to the determination of v0
p with the condition that νp � 0 at initial time:

v0
p � (A sin t + B (cos t − e−t/St))sinx, (3)

where the analytical expressions of the coefficients A and B are:

A � (1 + αSt2)/(1 + St2), B � St(α − 1)/(1 + St2)

The two first terms in (3) represent the stationary oscillatory response of the

particle to the oscillatory forcing of the flow. This stationary oscillation will be

reached after a transient represented by the third term, which is parametrized by the

Stokes number St. We can see on formula (3) that the fixed points, i.e., the positions

in the basin, where the particles will always stay at the same place are xe � 0 or xe

� ± π , thus at the center and near the sidewalls of the tank. At this order, we can

also see that after the transient, the time-averaged velocity of any particle will be

zero: 〈v0
p〉 � 0. The drift of the particles, which is here at the origin of aggregation

in our experiment does not appear at this zero order in ε and will only be recovered

when taking into account the nonlinearity of Eq. (2) as expected for a Stokes drift.

The integration of Eq. (2) at first order in ε, leads to the analytical expression of v1
p:

v1
p � sin 2x[St(α − A2 − B2)/2 + C cos 2t + D sin 2t
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+ (B2sint + 2 AB cost + δ) e−t/St + e−2t/StB2St/2)]/2

with the following constants:

C � [4ABSt2 + St(A2 − B2 − α2)]/2(1 + 4St2),

D � (A2 − α − B2St2 − ABSt)/2(1 + 4St2)

and δ, a constant of integration that allows to set vp � 0 at initial time.

The transients having disappeared, the mean velocity in time 〈v1
p〉 is non zero

now because of the first term in the expression of v1
p . This nonzero drift velocity

Vs � 〈v1
p〉 gives rise to what is classically called the Stokes drift of the particles.

The physical meaning of this drift comes from the fact that the oscillating flow is

nonhomogeneous as its amplitude varies along the x axis of the tank. Therefore, after

one period of oscillation, a particle never comes back exactly at the same position in

space and as a consequence slowly drifts in time. This phenomenon should be similar

to the drift of sand grains by steady streaming that forms seabed ripples under shallow

water waves [3, 4]. In our case, this drift velocity can be analytically calculated:

V s � sin2x(1 − α)(αSt2 − 1)/4
(

1 + St2
)2

So, depending on the sign of Vs, the equilibrium positions xe � 0 or xe � ± π can

be either stable or unstable. The calculation of the sign of Vs leads to the diagram

presented in Fig. 5 that presents the repulsive or attractive characteristics of the

positions xe as a function of St and α. When α < 1 (particles denser than the fluid),

the aggregates are located in xe � 0 or xe � ± π , that is at the center and the

sidewall of the container. This case is stable for St2 < 1/α (white area on Fig. 5) and

corresponds to the situation, where the friction force (u-vp)/St acting on the particle

is greater than the pressure force. In the opposite case, the drift of the particle is

dominated by inertia effects (gray areas). Note that this criterion is exactly the same

as the one found by Xu and Nadim in the case of the drift of particles under the action

of the Coriolis force in a librating flow [5].

The numerical integration of the particle dynamics Eq. (2) confirms the previous

stability analysis result. As an initial condition, we consider 128 particles homo-

geneously distributed on a line between −π and π . Integration in time of Eq. (2)

reproduces the two cases that we have discovered analytically. In the first case, where

the equilibrium positions are stable, we observe that the particles slowly drift and

merge at the expected locations xe � 0 or xe � ± π . The numerical space-time

plot of Fig. 5a illustrates this case. In the other case, when the drift velocity expels

the particles from the equilibrium positions xe, we found that the nonlinear solu-

tion converges toward limit cycles, where the particles oscillate indefinitely around

xc � ± π /2. Figure 5b illustrates this computation.

The comparison of the space-time diagrams of Figs. 4 and 6 shows that the dynam-

ics of the rigid nylon fibers correspond to case, where xe � 0 or xe �±π are repulsive,

whereas the dynamics of the flexible (cotton) fibers correspond to that of the case,
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Fig. 5 Stability diagram of the equilibrium positions xe as function of the Stokes number St and

the density parameter α. The gray areas correspond to cases, where xe are unstable and the white

areas to cases, where xe are stable

Fig. 6 Numerical simulations of the drift of 128 particles (without interaction) in a periodic flow

U0 sin(x) sin(t). Space-time diagram of the dynamics: a attraction of the particles in locations

xe � 0 or xe � ± π ; b repulsion of the particles from locations xe � 0 or xe � ± π and attraction

by limit cycles around xc � ± π /2

where xe � 0 or xe � ± π are attractive. Since the geometry and density of the

two types of fibers are very close (ρp ~ 1.2 kg m−3 for nylon and ρp ~ 1.4 kg m−3

for cotton), it seems that the difference in behavior is more likely associated with

the stiffness of the two different fibers. Indeed, we think that flexible fibers are less

sensitive to inertia effects as they can deform under the action of pressure forces.

Therefore, it is logical to observe the drift of the flexible cotton fibers toward xe. On

the contrary, the rigid, nondeformable nylon fibers are more sensitive to pressure,

and thus drift away from xe as expected from the model.
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Fig. 7 Pictures of the initial and final states in the case of compaction of rigid nylon fibers (left)

and flexible cotton fibers (right). Corresponding spatiotemporal diagrams revealing the compaction

dynamics

Let us consider now a forcing with a frequency ω around the resonance frequency

resulting in a wave having an amplitude larger than in the previous experiments.

Moreover, a transverse mode of oscillation appears also in the tank. We see in Fig. 7

that relatively compact clusters are formed now and that whatever the nature of the

fibers, these balls stand in the center of the basin after the experiments have run

several hours. The associated space-time diagrams of Fig. 7 show, however that, in

the case of the rigid nylon wires, the aggregation occurs initially (and as before) at

xc � ± π /2 before the cluster drifts to the equilibrium location xe � 0. This original

phenomenon can be understood using our model as presented earlier. A time t � 0,

the rigid nylon fibers are expelled from the fixed points toward attractors located at

xc � ± π /2. The forcing being sufficiently strong this time and three-dimensional

because of the presence of basin transverse mode, the fibers will form a deformable

cluster of fibers, which in consequence increases the influence of the viscous force

and reduces the effects of pressure. After a certain time, the cluster behaves as

a deformable particle and migrates as a whole to the fixed equilibrium points as

expected for flexible particles by our model and as observed in the experiments.

Finally, to follow the compaction rate in time, we have defined the ratio β of the

projected areas occupied by the fibers on the bottom of the tank (the black pixels on

the video images) to the total horizontal section of the basin. β is a function of time

and the ratio of β by the initial β0 represents the compaction rate of the system. The

temporal evolution of the averages on ten independent realizations of the ratio β/β0

is represented in Fig. 8 for both cotton and nylon fibers. As can be seen, clear power

laws are visible for both rigid fibers and flexible fibers clustering. Power laws fit of
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Fig. 8 Evolution of the

compaction rate β/β0 as a

function of time. An average

of 10 independent

realizations have been

performed. Power laws are

clearly visible in both cases

with a transition in the

exponent values

the experimental curves give an exponent close to −1/8 at the beginning of the run

(up to 10 s for the flexible fibers, and up to 100 s for the rigid ones). A transition then

occurs and a regime with power laws with an exponent equal to −1/2 takes place in

both cases. We suspect that the appearance of fiber interactions to be at the origin of

these power laws that escape our modeling.

3 Conclusion

Inspired by the observation of natural aggregates formed by the motions of air or

sea water, our studies on the dynamics of formation of fiber aggregates show that

the Stokes drift is at the origin of the movement of the fibers and finally of their

clustering in our set-up. The location of the clusters in the experiment is understood

by the study of the stability of the fixed points of the particle dynamics equation

when forced by a simple periodic (in space and time) fluid velocity field. A criterion

based on the relative magnitude of the pressure effects compared to the viscous drag

is deduced from a simple one-dimensional point particle model. This criterion based

on the zeroing of the Stokes drift is quite general and may be useful to understand

and even promote particle segregation. Our experiments, using flexible or rigid fibers

confirmed the predicted attractive (where the aggregates form) or repulsive locations.

This model even leads to the interpretation of the difference in behavior between rigid

and flexible fibers. Finally, we observe that the aggregation process obeys temporal

power laws that escape our modeling and are probably related to fiber interactions.
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