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Architecture of a self-fragmenting droplets cascade
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We report quantitative imaging experiments describing the three-dimensional (3D) bursting cascade of
droplets from a liquid melt reacting with the oxygen of air which explode sequentially to produce ever smaller
fragments. The 3D space-time resolved trajectories of the fragmenting drops reveal an arborescent structure of
branchings defining the cascade steps, each random in direction and shortening along the cascade, in a way we
determine. The phenomenon is a unique and prototypical illustration of the so-called Richardson regime, namely,
an accelerated cascade towards smaller scales. The phenomenon, which coincides with the early time dispersion
period of a Brownian motion, featuring here ever shrinking steps, is well captured by a Langevin dynamics.
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The notion of cascade is a convenient mental image to
represent the dynamics of a number of phenomena. For in-
stance, the direct cascade of energy and enstrophy fluxes
towards dissipative scales or the inverse cascade of energy
are well-know paradigms in fluid turbulence [1–4]. It is,
also, sometimes an explicitly observable physical reality as
in viscous filaments undergoing an iterated fission cascade
of capillary instabilities [5], or for rough liquid ligaments
breaking up after an inverse cascade of aggregations, not to
mention size-reduction of solids by sequential crushing and
grinding [6] (see Ref. [7] for a critical review about cascades
in fragmentation phenomena). Here, a three-dimensional (3D)
cascade is obtained by firing a Senkou-Hanabi, a traditional
hand-held firework known since the Edo period (1603-1868)
in Japan. It consists of light streaks similar to branched pine
needles, with ever smaller ramifications. These streaks are the
trajectories of incandescent reactive liquid droplets bursting
from a melted powder (so-called “black powder,” a mixture
of carbon, C; sulfur, S; and potassium nitrate, KNO3). Inoue
et al. [8] have uncovered the detailed sequence of events,
which involve a chemical reaction with the oxygen of air,
thermal decomposition of metastable compounds in the melt,
gas bubble nucleation and bursting, and formation of liquid
ligaments and droplets, all this occurring in a sequential fash-
ion proceeding over many generations. Like in atom fission
[9], droplets divide sequentially and self-similarly, down to an
elementary brick; the cascade ends when heat losses overcome
chemical heat release, quenching the reaction.

Using an original high-speed 3D tracking method, we
reconstruct the trajectories of the drops to investigate the
nature of the cascade arborescence which results from the
randomness of the nucleation sites in each drop. This unique
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underlying dynamics offers the opportunity to address a num-
ber of fundamental paradigms like Brownian motion with
shrinking steps [10,11] and the concrete realization of an
accelerated Richardson cascade [12], for example.

The trajectories are measured using three non-coplanar
synchronized Phantom fast cameras. The firework arbores-
cence is probed using the convex hull volume method [13,14]
where the reconstructed volume is discretized in voxels, with
only those detected by the three cameras simultaneously being
stored. Two sets of experiments are presented (Fig. 1). In the
first, the bursting dynamics of individual drops is investigated
with a total reconstruction volume of the order of 1 cm3 and
a resolution (the voxel size) of 30 μm. The second, which
is intended to measure the global architecture of the cascade,
has a reconstruction volume of the order of 125 cm3 and a
resolution of 150 μm.

At each cascade step, a mother drop containing C reacts
with the O2 of air through a strongly exothermic reaction,
heating the liquid which nucleates gas cavities of endothermi-
cally decomposing, volatile substances and bursts (see Ref. [8]
and Fig. 1). The process repeats sequentially with the typical
time between two bursting events given by the drop heating
time:

τn ∼ R2
n/κ (1)

= τ0β
2n, with Rn = βRn−1 = R0β

n, (2)

where Rn is the radius of the drop at step n and κ is the thermal
diffusivity of the molten mixture. This interbursting time is
the time interval between the appearance of the drop at the nth
generation and its division into daughter droplets at generation
n + 1. The cascade is self-similar for a constant size reduction
factor of β < 1, for which the interbursting time τn decreases
exponentially [Eq. (2) and Fig. 2(b)].

Between two bursts, the drop evolves mainly ballistically
modulo an evanescent viscous damping correction discussed
later, as shown on the reconstructed trajectory in Fig. 1. At a
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FIG. 1. The 3D reconstruction of the trajectories’ arborescence
of bursting drops in a firework, obtained from regularly spaced snap-
shots of three non-coplanar, synchronized, high-speed cameras (see
movie in Supplemental Material [15]).

bursting event, mass and impulse conservation are such that

MV =
(

M −
∑

i

mi

)
V ′ +

∑
i

mivi, (3)

where M and V are the mass and the velocity of the mother
drop before burst, V ′ is its velocity after, and mi and vi are the
masses and velocities of the i (a few units) ejected daughter
drops. The ejection of drops results in a force, f , communi-
cated to the mother drop:

f = mv

�t
, (4)

where mv = ∑
i mivi and �t ∼ √

ρR3
n/σ is the (short com-

pared to τn, see Ref. [8]) duration of a bursting event, with
ρ and σ being the density and surface tension of the melt,
respectively. This force is responsible for diverting the drop
from its rectilinear trajectory, which is intermittently reori-
ented, at a mean pace given by τn. As seen in Fig. 2(a), the
sizes of the daughter drops are usually much smaller than the
size of the mother drop, so that

∑
i mi/M � 1, this fraction

being constant along the cascade [8]. Denoting �V = V ′ − V
the mother drop velocity change, we thus have approximately

�V ≈ m

M
v � v. (5)

FIG. 2. (a) Drop trajectory from the 3D reconstruction featuring
n = 6 steps (left) and from a 1/25 s exposure picture, where the
mother Senkou-Hanabi drop is visible (right). (b) Bursting time τn;
the red line is from Eq. (2) with β = 0.9. (c) Mean squared velocity
〈V 2〉 through the cascade; the red line is from Eq. (11). (d) Distri-
bution of the velocity P (V ) averaged over the entire cascade; the
dashed line is from Eq. (20) and the solid red line is from Eq. (21).
(e) Mean squared drop position 〈R2〉 versus cascade step n; the red
line is from Eq. (16) and the dashed line is ∼n3.

Before we proceed with the consequences of this local dynam-
ics on the fate of a mother drop in the firework arborescence,
we need to wonder about the isotropy of the ejection process.

The ejection direction of the daughter drops [Fig. 3(a)] has
an angle, θ , defined by V · vi = V vi cos θ . If the emission
of the daughter drops is isotropic, the probability distribution
function (pdf) of the angle θ should be such that Pisodθ is the
ratio of the solid angle 2π sin θdθ to the solid angle of the
sphere 4π [16]; that is,

Piso = 1
2 sin θ. (6)

This relation slightly underestimates the probability of small
angles θ < π/2, the actual distribution being more skewed
[Fig. 3(b)]. A possible reason for this asymmetry is that the
nucleation of gas bubbles in a mother drop occurs preferen-
tially at the front of the drop, in its forward direction. Bubbles
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FIG. 3. (a) Measurement definition of the ejection angle θ be-
tween a mother drop and its daughter at burst. (b) Distribution of
the angle θ ; red line is from Eq. (7) with ε = 0.7 and the dashed
line is from Eq. (6). (c) In-flight drop surface temperature measured
by two-color pyrometry [8] averaged over many drops 35 ms after
ejection, showing the rear (θ = π ) and front (θ = 0) asymmetry.
(d) Drop temperature as a function of time illustrating the gradual
increase between front and rear temperatures.

nucleate faster in the hottest regions of the drop and the oxy-
gen flux feeding the exothermic reaction is higher in the region
around the drop where the boundary layer is thinner, hastening
there the diffusion-limited reaction [8]. Measurements of the
surface temperature of flying droplets indeed show a slight
but clear asymmetry in temperature of about 20 K higher at
the front of the drop compared to the rear, superimposed on a
global increase as the drop heats up [Figs. 3(c) and 3(d)].

This temperature difference can be explained thanks to the
3D reconstruction. Indeed, the Reynolds number Re = V R/ν,
with R ∼ 50 μm being a typical drop radius measured in
Inoue et al. [8], V ∼ 1 m/s its typical speed, as shown in
Fig. 2, and ν ∼ 10−5 m2/s the kinematic viscosity of air, is of
the order of Re ∼ 5. Because symmetry is broken by the drop
translation, the kinematic boundary layer thickness, whose or-
der of magnitude is δ0 ∼ √

νR/V , has an angular dependence
of δ ≈ δ0(1 + ε θ2), making it thinner at the drop front (see,
e.g., Ref. [17]). Since the oxygen flux is inversely proportional
to δ, it is higher at the front than at the rear, thus explaining the
temperature difference which induces more frequent ejections
at the front, that is, for small θ . We may thus expect

Pskew ∝ (1 − ε θ2) sin θ, (7)

in qualitative agreement with the measured distribution, as
seen in Fig. 3(b). Similar symmetry breakings have been iden-
tified in chemistry [18] and in the Marangoni stresses directed
motion of droplets [19,20].

Having quantified the ejection isotropy bias which is no-
ticeably, weak, we proceed further with the caricature of the

drop motion in Eq. (5) by considering a limit where v is a
random variable with zero mean, thus reflecting isotropy. In
this simple model, the drop experiences a velocity increment
given by Eq. (5) at each step n of the cascade, each being
independent of the others so that, up to constant factors,

dV
dn

= v, (8)

〈v〉 = 0, and 〈vn · vm〉 = v2
n δ(n − m), (9)

with v2
n ∼ σ/ρRn, (10)

where δ(.) denotes the Dirac delta function, and vn is the
mean amplitude of the daughter drop ejection velocity [8]
with radius Rn given in Eq. (2). The random velocity v is the
analog of a “Langevin force” [21], whose correlation intensity
increases here, by contrast with standard Brownian processes,
along the cascade. The above system solves in

〈V 〉 = 0 and 〈V 2〉 ∼ 2v2
0 (β−n − 1), (11)

meaning that the drop velocity first diffuses 〈V 2〉 ∼ 2v2
0 n

along n for −n ln β � 1 (the mean translation is obviously
zero) and then increases exponentially as 〈V 2〉 ∼ 2v2

0β
−n for

−n ln β 	 1, both trends being not incompatible with those
reported in Fig. 2(c), with β given by the evolution of the
interbursting time. As the step number n increases, the ampli-
tude of the drop velocity diverges, while its exploration radius
R remains finite: These hand-held fireworks are localized
“balls” with a finite radius (∼5 cm) even if made of a very
large number of uncorrelated ever finer segments [8] because
the drop change of direction is increasingly frequent as the
interbursting time decreases. In this respect, they represent an
ideal random walk [10] with shrinking steps [11]. The limited
resolution of the camera prevents an accurate measurement
of the whole trajectories; the measurements are made in a
localized subvolume in the frame of the first drop entering this
volume, named the mother drop. The drop position is ruled by

dR
dt

= V , (12)

with t being the current time which is related to the cascade
step n by

t =
n−1∑
i=0

τi = τ0

n−1∑
i=0

β2i ∼ τ0(1 − β2n), (13)

emphasizing the acceleration of the cascade since dt/dn ∼
τ0β

2n decays with n. We thus have

R = 2τ0

∫ n

0
V (n′)β2n′

dn′, (14)

with 〈R〉 = 0 since 〈V 〉 = 0: The arborescence expands, but
does not translate. The squared exploration radius

〈R2〉 = 8τ 2
0

∫ n

0
dn′

∫ n′

0
dn′′〈V n′ · V n′′ 〉βn′+n′′

(15)

derives from an integration [22] of the velocity correlation
function 〈V n′ · V m′ 〉 ∼ 2v2

0 (β−n′ − 1), leading to

〈R2〉 ∼ (v0τ0)2

3
β4n(β−n − 1)3(3 + 5β−n), (16)
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a relation again in relatively good agreement with our mea-
surements in law and absolute value. As expected, the
exploration radius has a finite limit of 〈R2〉 ∼ (v0τ0)2/3 at
infinite cascade steps (−n ln β 	 1) despite the velocity di-
vergence, but more interestingly, its early steps behavior
(−n ln β � 1) displays a superballistic dependence since we
have 〈R2〉 ∼ (−n ln β )3. This 〈R2〉 ∼ n3 regime [see Fig. 2(e)]
is called, in turbulence, the “Richardson regime” [12] and is a
signature of the early time (here, small step number n), diffu-
sive type of correlation of the velocity (i.e., 〈V 2〉 ∼ n, see also
Ref. [23] for a more involved formulation and Ref. [24] for
a different context). As such, it is not particular to turbulence
since it has been witnessed in standard Brownian motion [25],
and is well known to be a feature of the Langevin model for
an initially zero (like in the present problem) particle velocity
[22,26,27]. It is nevertheless remarkable that, in the present
variant of active Brownian motion [28–30], a feature routinely
associated with high Reynolds number turbulence, or colloidal
particles, is here observed in a mesoscopic object involving
neither external stirring [31] nor thermal noise.

Interestingly, viscous drag from the outside air is subdomi-
nant, and its relative strength is not reinforced as the drops get
smaller, lighter (mass Mn ∼ ρR3

n), and faster. Adding a Stokes
linear drag force of −αnV from air with αn = 6πηaRn (air
viscosity ηa) in Eq. (17) leads to

dV
dn

= v − V
N

, (17)

with N = Mn

αn(dt/dn)
∼ ρ

ρa

κ

νa
. (18)

The factor N is constant, independent of n, and with κ ∼
10−6 m2/s and νa = ηa/ρa ∼ 10−5 m2/s, we have N =
O(102) 	 1. Air drag is always negligible; however, viscous
dissipation does occur during the ejection stage, since the
mother drop deforms considerably to release a ligament (see
Fig. 1). The corresponding viscous dissipation time R2

n/ν

where ν is now the viscosity of the melt becomes shorter than
the capillary ejection time �t ∼ √

ρR3
n/σ above for

n� ∼ ln

(
σR0

ρν2

)/
ln

1

β
. (19)

These melts are known to be appreciably viscous and cohesive
(η ≈ 10−2 Pa s, σ ≈ 0.1 N/m, see [32,33]), giving n� ≈ 10
for binary fission (β = 0.5) and n� ≈ 65 for β = 0.9 (Fig. 2),
a threshold never met in the present case, the cascade being
interrupted earlier at nc = O(10) by chemical quenching [8].

Access to a multiplicity of drops trajectories in the firework
allows for the study of distributions, a natural aspect of a
complete physical description [34]. Droplets are too small
for our measurement technique to document their sizes, and
the number of individual drop trajectories is not numerous
enough to study statistics within single trajectories. However,
ensemble averages, accumulating over the whole set of tra-
jectories within a firework are possible, notably concerning
the distribution of velocity V = |V |. In a 3D set of isotropic
trajectories uniformly distributed, we know from Maxwell
that [34,35]

F (V, n) ∼ V 2

〈V 2〉3/2
e
− V 2

2〈V 2〉 (20)

is the droplets velocity distribution for a given variance 〈V 2〉
(a function of temperature in gases), depending here on the
generation step n, and we have seen that in the Richardson
regime 〈V 2〉 ∼ n, in units of v0.

At a given maximal cascade step, 0 < n < nc, the observed
velocity distribution averages over drop trajectories with dif-
ferent ages or step numbers. The drops formed by a mother
drop at step n′ have further divided themselves a number
n − n′ of times. Let N (n′) = eγ n′

be the number of trajectories
at step n′ (we have γ = ln 2 for binary fission), then the
velocity distribution averaged over the drop trajectories of the
entire firework is

P (V ) =
∫ nc

0
N (n′)F (V, n − n′)dn′

∼ γVe−2V
√

γ

{
erfc

(
V − nc

√
γ√

nc

)

+ e4V
√

γ erfc

(
V + nc

√
γ√

nc

)}
, (21)

in agreement, when γ � ln 4 and nc � 13 have been properly
adjusted, with Fig. 2(d). These values are compatible with our
observations and the fact that the number of ejected drops
is typically larger but of the order of 2 (see Fig. 1 for ex-
ample). This completes the study of this original direct (as
opposed to inverse [7]) chemically induced capillary cascade
architecture, which displays a unique case of a Brownian
motion with shrinking steps and also features an accelerated
Richardson-like underlying dynamics, two cornerstones of
statistical physics, and turbulence.
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