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Deformability of discs in turbulence
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The aim of this study is to investigate experimentally the transition from a rigid regime to a
deformed regime for flexible discs freely advected in turbulent flows. For a given disc, the
amplitude of the deformation is expected to increase when its bending modulus decreases
or when the turbulent kinetic energy increases. To quantify this qualitative argument,
experiments are performed where the deformation of flexible discs is measured using three
cameras. The amplitude of the deformation has been characterised by the eigenvalues of
the moment of inertia tensor. Experimental results exhibit a transition from a rigid regime
to a deformed regime that depends on the size, the density and the flexibility of the disc
and the turbulent kinetic energy. The modelling of this transition is a generalisation and
an extension of the previous models used to characterise the deformation of flexible fibres
in turbulent flows.

Key words: particle/fluid flow, homogeneous turbulence

1. Introduction

Modelling the advection of particles in turbulent flows is a fundamental problem with
various applications from the advection of plankton in the ocean (Guasto, Rusconi
& Stocker 2012) to the formation of planet (Pumir & Wilkinson 2016). The particles
considered in these problems have many different sizes, shapes, densities and rheologies.
The roles of size (Qureshi et al. 2007; Cisse, Homann & Bec 2013; Klein et al. 2013),
of the shape (Parsa et al. 2012; Parsa & Voth 2014; Byron et al. 2015; Pujara et al. 2018)
and of the particle to carrying fluid density ratio (Bec et al. 2007; Volk et al. 2008) in the
particle advection have been addressed in several studies since the 2000s. In turbulence,
the first investigations on deformable particles were partly motivated by drag reduction
and focused on bubbles or polymers (Vanapalli, Ceccio & Solomon 2006; Ravelet, Colin
& Risso 2011; van Gils et al. 2013; Loisy & Naso 2017; Lohse 2018; Vincenzi et al. 2021).
The question of the role of flexibility in the advection of fibres in turbulent flows has
been raised recently. The transition from straight to bent fibres is controlled by the ratio of
the fibre length to persistence length. This persistence length depends on the mechanical
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properties of the fibre, on those of the fluid and on the turbulent kinetic energy ε (Brouzet,
Verhille & Le Gal 2014). More recently, it has been shown that, in the flexible regime,
the statistics of the fibre deformations depend on the fibre length (Gay, Favier & Verhille
2018; Sulaiman et al. 2019) and that the dynamics of the deformation is given by the
coherent structures of the flow (Allende, Henry & Bec 2018; Rosti et al. 2018). Moreover,
increasing fibre flexibility leads to an increase of preferential accumulation in high vortical
regions (Picardo et al. 2020). One direct application of the research on deformable objects
is the formation of microplastics in the oceans, a global environmental threat (Andrady
2017). Recent investigations on the fragmentation of brittle fibres in turbulence highlight
the relation between the deformation of these fibres and the fragment size distribution
(Allende, Henry & Bec 2020; Brouzet et al. 2021). A relevant next step would be to
extend these results to two- and three-dimensional (2-D and 3-D, respectively) objects
which constitute the large majority of plastic debris in the ocean (Morét-Ferguson et al.
2010; Cózar et al. 2017). For slender bodies, such as fibres, fluid and particle inertia can
generally be neglected due to the slenderness of the particle, even for particles longer
than the Kolmogorov length (Batchelor 1970; Shin & Koch 2005; Bounoua, Bouchet &
Verhille 2018). However, this assumption does not hold for 2-D or 3-D objects larger than
the Kolmogorov length. Therefore, if for fibres the main contribution of the hydrodynamic
stress tensor is due to the viscous stress, for 3-D objects, such as spheres, larger than the
Kolmogorov scale the hydrodynamic stress tensor is dominated by the pressure term (Volk
et al. 2011). For 2-D objects, such as discs, the modelling of the hydrodynamic stress is
still an open question at moderate to high Reynolds numbers.

In turbulent flows, the dynamics of rigid discs has been mainly investigated numerically
by considering rigid oblate spheroids with a major axis smaller than the Kolmogorov
length (Voth & Soldati 2017). Disc-like particles tend to have their axis of symmetry
perpendicular to the local vorticity, leading to a predominance of tumbling over spinning
(Chevillard & Meneveau 2013; Byron et al. 2015; Pujara et al. 2018). In these works,
the question of disc deformability has never been addressed. Conversely, several studies
investigate the role of the deformation in the motion of a settling disc. Most of these studies
aim to understand the different oscillatory motions of a disc falling in a fluid at rest and
relate the motions to the disc’s wake (Jenny, Duek & Bouchet 2004; Fernandes et al. 2008;
Auguste, Magnaudet & Fabre 2013; Heisinger, Newton & Kanso 2014). The influence
of deformability on the settling of 2-D objects has been investigated both theoretically
(Alben 2010) and experimentally (Tam et al. 2010; Vincent et al. 2020). They all show that
deformability increases the settling speed due to a modification of the shape of the object.
This phenomenon is well known by the fluid structure interaction community where the
object is held fixed in a flow. In that case, the drag reduction is due to the bending of a plate
by the flow (Schouveiler & Boudaoud 2006; Gosselin, de Langre & Machado-Almeida
2010). The transition from flat to bent plate is governed by a Cauchy number defined by
the ratio of the hydrodynamic pressure to the plate rigidity CY ∼ ρf L3U2/B, where ρf is
the fluid density, U its mean streamwise velocity and L and B are the typical length and the
bending modulus of the plate. In these studies, the hydrodynamical constraint is mainly
due to the mean streamwise flow as the turbulent fluctuations are negligible compared
with the mean flow. On the contrary, the settling of rigid discs is still poorly understood
when turbulent fluctuations are important. Some recent results show that the settling speed
increases due to turbulence when the turbulent fluctuations are smaller than the settling
speed of the disc in a fluid at rest (Esteban, Shrimpton & Ganapathisubramani 2019) and
decreases when the turbulent fluctuation are higher (Byron et al. 2019). However, a model
for this phenomenon is still missing.
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Deformability of discs in turbulence

The present study is focused on the deformation of freely advected flexible discs in
turbulent flow. We limit ourselves to the case of low settling rate where the turbulent
fluctuations are of the order of or larger than the settling speed of the disc. In this respect,
this study is closer to the one of Byron et al. (2019) on the settling of hydrogel particles
than the one of Esteban et al. (2019) on the settling of thin rigid discs. The governing
non-dimensional parameter is then expected to be different from the classical Cauchy
number, based on the streamwise velocity, generally used in fluid–structure interaction
community (Tam et al. 2010; Vincent et al. 2020).

In the next section, the experimental set-up, the turbulence properties and the
manufacture of the particles are presented. The main results are presented in the third
section and their interpretation in the fourth. The final section is a discussion of the results
and a conclusion.

2. Experimental set-up

The experiments are performed in a 60 cm cubic tank filled with water. The turbulent flow
is generated by the rotation of eight rotors with a diameter Dr of 17 cm and fitted with six
straight blades 5 mm in height. Each impeller is located at a vertex and points towards the
centre of the cube. The rotation rate Frot of each impeller can be set independently between
5 and 19 Hz. In the present study, they all rotate at the same frequency but with an opposite
direction to their three closest neighbours. An image of the tank can be seen in Oehmke
et al. (2021). The flow properties have been determined by particle image velocimetry
(Xu & Chen 2013). The measurements have been performed in a cubic volume of nearly
10 cm × 10 cm × 10 cm at the centre of the tank where the mean flow is negligible
(Ū2/U2

rms ∼ 10−2, where Urms is the root mean square velocity and Ū the magnitude
of the mean flow). The turbulent dissipation rate ε is given by the structure function
relation Dll(r) = 〈(u(�) − u(� + r))2〉 = C2ε

2/3r2/3 (Frisch 1995). It scales as ε ∼ F3
mot as

expected in von Kármán-like devices (Labbé, Pinton & Fauve 1995; Pinton, Holdsworth
& Labbé 1999; Monchaux et al. 2009). The comparison of the component of the Urms
at different locations of the volume of measurement shows that the turbulence is fairly
homogeneous and isotropic. The relative homogeneity and the isotropy are confirmed
by our previous studies mainly on the rotation of fibres (Bounoua et al. 2018; Bordoloi,
Variano & Verhille 2020; Oehmke et al. 2021). The variance of the tumbling rate and
the correlation times do not depend on the location of the measurements and are equal,
up to the statistical error bars, for the three components of the tumbling vector for all
the particles we have tested. From the measurements of Urms and ε one can deduce the
main time scales and length scales of the turbulence (considering a kinematic viscosity
ν = 10−6 m2 s−1 for pure water): the Kolmogorov length ηK = (ν3/ε)1/4, the integral
length LI = U3

rms/ε, the Taylor length λT = (15νU2
rms/ε)

1/2 and the Reynolds number
based on the Taylor length Rλ = λUrms/ν. The ranges of variation of these quantities are
listed in table 1. These measurements have been validated by our previous studies on the
rotational dynamics of fibres where our measurements were in agreement with different
experiments (Bounoua et al. 2018; Oehmke et al. 2021) and numerical simulations of the
literature (Bordoloi et al. 2020) .

The aspect ratio, the Young’s modulus and the density of the discs have been varied
to investigate their influence on the transition from the rigid regime to the flexible one.
The elastic discs are manufactured in the laboratory with two different silicones from
Esprit Composite, EC00 and R1, having different Young’s moduli. First, silicone is poured
on a glass plate and levelled at the desired thickness e using tape as spacers. The final
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Integral Turbulent Taylor Kolmogorov Kolmogorov Reynolds
length dissipation rate length length time number
LI (cm) ε (m2 s−3) λT (mm) ηK (μm) τK (ms) Rλ

5–7 3.8–1.4 1.5–2.5 29–72 0.8–5.2 300–710

Table 1. Ranges of variation in the main parameters of turbulence in the measurement volume.

Material Symbol Young’s modulus Density Thickness Radius
E (kPa) ρ (kg m−3) e (μm) R (mm)

EC00 50 1190 540 8
EC00 50 1190 220 8
EC00 + Cu 110 2110 240 5
EC00 + Cu 110 2250 390 8
R1 660 1110 190 8
R1 660 1110 350 8
R1 660 1110 350 13
R1 + Cu 1600 2170 270 8
R1 + W 1600 4055 350 8

Table 2. Mechanical properties of the different discs used in this study. Note that the concentration of copper
varies between the two discs made of EC00 + Cu. The standard deviation of the thickness was of the order of
25 μm for all the cases. The symbols correspond to the symbols used for each disc throughout this article.

sheet thickness varies between 190 and 540 μm and was controlled with a 2-D laser
displacement sensor LJ-V7080 from Keyence with a resolution of 1 μm. The discs are
then cut with various hollow punches having different radii R.

To vary the density of the discs, some of them have been made with silicone loaded with
copper or tungsten powder having grain sizes of ∼45 μm and of ∼25 μm, respectively.
The final density was measured by weighing 20 discs of known radius and thickness.
Finally, the stress–strain curve of a silicone stripe (∼10 × 50 mm2) cut in the same sheet
as the discs was measured using a ZwikiLine testing machine from Zwick/Roell company
in order to estimate the Young’s modulus. The mechanical properties of the discs used in
this study are summarised in table 2.

The influence of buoyancy can be estimated by comparing the typical settling velocity
us = ((�ρ/ρf )eg)1/2, where �ρ = ρ − ρf is the density difference between the particle
and the fluid (Jenny et al. 2004; Esteban et al. 2019), with the turbulent fluctuation Urms.
The ratio us/Urms is always small for lighter discs (ρ � 1200 kg m−3) so buoyancy is
always negligible in these cases. For heavy discs this settling velocity might be higher
than Urms at very low rotation rates F < Fmin. To minimise buoyancy effects for these
discs, the minimal rotation rate Fmin investigated here has been chosen so that the root
mean square of the turbulent flow Urms = αDrFrot, where α is a constant, is equal to the
settling speed us: Frot > Fmin = us/αDr. Finally, the disc concentration cd is always very
low, cd = NdπR2e/Vtot � 2.10−5. The interactions between discs and their feedback on
the flow can then be neglected (Elgobashi 1994).

3. From rigid to flexible discs

Determining if an object is bent or not does not require measuring its exact shape. For
instance, Brouzet et al. (2014) quantified the deformability of fibres in turbulence using
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Deformability of discs in turbulence

the distance between the two extremities of the fibre which is smaller than the fibre length
for a bent fibre. Here, a similar approach is used by looking at the global shape of flexible
discs advected in a turbulent flow. Three 1 MP cameras are used to simultaneously image
the volume of measurement. Only the discs seen by the three cameras are reconstructed.
We are not interested in the dynamics of the deformation so the acquisition rate Facq
is purposely low, Facq = Frot. This minimises the correlation between images and the
quantity of data needed to ensure a good convergence of the deformation statistics.
The cameras are modelled by the pinhole model whose 11 parameters (position and
orientation of the camera in the laboratory frame, scaling factors, the skew parameter
and the projection of the principal points onto the image plane) are determined through
a calibration process (Faugeras & Luong 2001; Hartley & Zisserman 2003; Verhille &
Bartoli 2016). The calibration is performed within the fluid to take into account the
variation of the refractive index through the different interfaces (water/Plexiglas/air)
(Agrawal et al. 2012). The shape of the disc is then determined by the convex hull volume
method, also known as the shape from silhouette method in computer vision (Cheung,
Baker & Kanade 2005; De La Rosa Zambrano, Verhille & Le Gal 2018). Here, the volume
of reconstruction is divided into cubic voxels of 500 μm in length. Each voxel is projected
onto each image plane. The voxels for which their projections belong to a disc in all images
are stored. At the end of this stage the deformed disc is made of a group of voxels. As
we aim to reconstruct a surface, voxels which are not at the boundary of the object are
discarded. Moreover, if two voxels are projected identically onto an image, the voxel closer
to the camera is stored and the farther is discarded. An illustration of the voxel selection is
sketched in figure 1(d), and an example of a reconstructed disc from three images is shown
in figure 1(e).

The convex hull volume method only gives access to the convex envelope of the object
and not to its real shape. However, this information is sufficient for determining if a disc is
bent. Here, disc deformations are quantified by the moment of inertia tensor I defined by

Iij =
N∑

k=1

mk

(
|rk|2δij − x(k)

i x(k)
j

)
, (3.1)

where rk = (x(k)
1 , x(k)

2 , x(k)
3 ) is the vector connecting the voxel k to the centre of mass of

the group of voxels and mk is the mass of point k which is constant here, so mk = m. The
shape of the object can be characterised by the three eigenvalues λ1 � λ2 � λ3. These
quantities are extensive, as they depend on the mass of the particle. This prevents an easy
comparison of discs having different sizes. To work with intensive quantities, we define
two shape factors λ1/λ3 and λ2/λ3 independent of the disc size. These shape factors are
not shape specific, meaning that two different objects can have the same shape factors. For
instance, a cuboid of dimension d1 = d2 > d3 and a cylinder of length Lf and radius rf
have the same shape factors if 3d2

3/d2
1 = L2

f /r2
f − 2. A cube (d1 = d2 = d3) and a cylinder

of aspect ratio Lf /rf = √
5 also have the same shape factors. In the plane (λ1/λ3,λ2/λ3),

three points are remarkable: the point (1/2,1/2) which corresponds to a thin disc, (1,0) to a
thin cylinder and (1,1) to a sphere. In figure 2(a) the different shape factors measured for
discs made with the silicone R1 (e = 190 μm and R = 8 mm) at Frot = 19 Hz are shown.
Most of the points stay in the vicinity of the point (0.5,0.5) corresponding to a flat disc.
This shows that, in this case, most of the discs are undeformed. There is also a cluster of
points in the neighbourhood of the point (0,1) corresponding to a cylinder. This suggests
that, at the onset of the transition, deformable discs tend to roll up more than to crumple
like a packed paper sheet.
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Figure 1. (a–c) Typical images with a superposition of the reconstructed disc shown in red dots. (d) Illustration
of the reconstruction process with the voxel selection. Here, for simplicity, the axis of the voxel array is aligned
with the axes of the cameras. (e) Reconstructed object from the convex hull volume method with the voxel
selection detailed in the text. The colour denotes the z coordinate of the voxel
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Figure 2. (a) Ratio of the shape factor λ2/λ3 as a function of λ1/λ3 for all of the reconstructed discs made from
silicone R1 (R = 8 mm, e = 190 μm) at Frot = 19 Hz. The shaded area is an unreachable zone as λ2 > λ1 by
definition. (b) Evolution of the mean shape factor for the same disc at different frequencies. The colour denotes
the frequency. The plain line and the dashed line correspond to theoretical prediction; see text for more details.
(c) Evolution of the mean shape factor as a function of the turbulent dissipation rate for all the discs (for
symbols, see table 2).
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Deformability of discs in turbulence

To characterise the transition from rigid to flexible disc, we focus on the mean shape
factors 〈λ1〉/〈λ3〉 and 〈λ2〉/〈λ3〉, where 〈·〉 is a time and an ensemble average. The
evolution of these parameters when the rotation rate Frot is varied is shown in figure 2(b)
for the same discs as in figure 2(a). One can see that these shape factors are good proxies
for the disc deformability as the evolution of 〈λ2〉/〈λ3〉 and 〈λ1〉/〈λ3〉 is monotonic when
the rotation rate of the impellers increases, and so when the turbulent dissipation rate ε

increases. In the following the disc deformability will be quantified by 〈λ2〉/〈λ3〉 which
increases when the deformation of the disc increases. The evolution of this parameter as
a function of ε is shown in figure 2(c). As expected, the deformability increases with the
turbulent dissipation rate and is higher for discs having a smaller Young’s modulus or a
smaller aspect ratio Λ = e/R.

4. Modelling

4.1. Disc shape
We will first model the evolution of the disc shape. As shown in figures 2(a) and 2(b), at
the onset of the transition, discs tend to wrap and form cylinder like particles. The exact
shape of the disc is given by the equation of elasticity

σ∂ttr + B∇2∇2r = ξ, (4.1)

where r is the position of a point on the disc, ∂tt the second temporal derivative, σ = ρe
the surface density and B = Ee3/12(1 − ν) the bending modulus of the disc, with ν � 0.5
the Poisson coefficient of silicone, and ξ the hydrodynamic stress. The disc being freely
advected and as no external torque is applied at the boundary, the boundary condition is
κ(r = R) = 0.

To model the evolution of the shape, we consider a simple solution where a flat disc lies
in the x–z plane and can only deform in the y direction according to

yd(x) = K0

2
x2

(
1 − x2

6x2
R

)
, (4.2)

where K0 is the curvature at the centre of the disc and xR the lateral extension of the disc.
For an inextensible disc, xR is defined by the arc length which should be equal to the disc
radius

R =
∫ xR

0
ds =

∫ xR

0

√
dx2 + dy2 =

∫ xR

0

√√√√1 + K2
0x2

(
1 − x2

3x2
R

)2

dx. (4.3)

Representations of a flat and a bent disc are shown in figure 3. The (x, y, z) axes being the
principal axes of the object, the eigenvalues of the moment of inertia of the bent disc are
given by

Ix =
∫ xR

xR

dx
∫ ∞

0
dy
∫ zm

−zm

dz(( y − yG)2 + z2)δ ( y − yd(x)) , (4.4)

Iy =
∫ xR

xR

dx
∫ ∞

0
dy
∫ zm

−zm

dz(x2 + z2)δ ( y − yd(x)) , (4.5)

Iz =
∫ xR

xR

dx
∫ ∞

0
dy
∫ zm

−zm

dz(( y − yG)2 + x2)δ ( y − yd(x)) , (4.6)
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Figure 3. Three-dimensional representation of an undistorted disc K0 = 0, (a), and of a bent disc,
K0R = 1, (b).

where zm(x) is the maximum height of the disc at the position x and is given by

z2
m(x) = R2 −

(∫ x

0
ds
)2

, (4.7)

and yG = 3K0x2
R/20 is the y-coordinate of the centre of gravity. The exact expressions of

the moments of inertia are relatively tricky to compute analytically. We then compute the
evolution of the shape factors numerically for different K0, cf. figure 4(a). The theoretical
evolution of the bent disc in the (λ1/λ3, λ2/λ3) plane is represented by the plain line in
figure 2(b). As one can see, the general trend is well captured by this model, but there
is an offset between the measurements and the theoretical prediction. Two sources of
discrepancy can be identified. First, the number of voxels forming the disc is much smaller
than the number of voxels used to compute the theoretical moment of inertia. A second
source of error is related to the convex hull volume method. As detailed previously, for
voxels projecting onto the same pixel only the voxel closest to the camera is stored. The
reconstructed disc is then, in general, not a disc but a partially filled cylinder, as illustrated
by figure 1(d). To estimate the order of magnitude of this last source of error, we can
compute the shape factor of an object made of touching two coaxial cylinders: one filled
of radius R and thickness h, and one empty cylinder of inner/outer radii R1 and R with the
same height h. Here, h is given by the voxel size and we take R1 = R − h. The evolution
of λ2/λ3 for this object is shown in figure 4(b). The value of the shape factor for h = 0 is
equal to the one of a flat disc and increases when h is increased. As mentioned previously,
the exact value of the offset cannot be determined rigorously and has been considered as a
constant free parameter to fit the data. The dashed line in figure 2(b) is obtained by shifting
the theoretical prediction for a disc by 0.1 in the vertical direction (〈λ2〉/〈λ3〉) and 0.01 in
the horizontal direction (〈λ1〉/〈λ3〉). These coefficients will remain fixed in the following
sections.

Here, the agreement between our model and our measurements suggests that near
the transition the disc bend and adopt a U-shape which can be described by (4.2). All
the physics of the deformation are then hidden in the parameter K0, which depends on the
disc deformability and the turbulent intensity. The following sections aim to model these
dependencies.
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Figure 4. (a) Theoretical evolution of the shape factors of a bent disc represented in figure 3 as a function of
the normalised curvature K0R. (b) Evolution of the mean shape factor 〈λ2〉/〈λ3〉 for a partially empty cylinder.

4.2. A power budget argument
As shown in figure 4(a), if K0R � 10−2 the deformations are weak and the disc can be seen
as rigid, whereas if K0R > 10−2 deformations are important and the disc is indeed flexible.
The curvature K0 then plays a role similar to the persistence length �p for the deformation
of worm-like chain polymers. The stiffness of polymers is characterised by the ratio of
their length Lp to the persistence length �p, defined by 〈t(s) · t(s + �)〉 = e−�/�p , where
t(s) is the tangent vector at the position s (Yamakawa 1971). If Lp 
 �p, deformations are
important. On the contrary, if Lp � �p, the polymer remains straight and is considered
stiff. In polymer theory, the order of magnitude of the persistence length is given by the
balance of the thermal energy kBT with the elastic energy Eel ∼ EI/�p, where kB is the
Boltzmann constant, T the temperature and I the area moment of inertia. Brouzet et al.
(2014) draw an analogy between this system and flexible fibres distorted by a turbulent
flow. They showed that the energy balance was not able to capture the transition from rigid
to flexible fibres. The reason is that the correlation time of turbulence is, in general, of
the same order of magnitude as the dynamical time scale of the deformations. Therefore,
contrary to polymers, the forcing cannot be modelled by delta correlated noise. The energy
budget has then to be replaced by a balance of power. Indeed, the deformation of a fibre in
a stationary turbulent flow is an out-of-equilibrium stationary process. The mean elastic
energy stored by the fibre Eel is then constant and

dEel

dt
= Pinj − Pdis = 0, (4.8)

where Pinj is the power injected by the turbulence and Pdis is the power dissipated by
viscosity. For fibres whose lengths are in the inertial range, deformations are due to eddies
of similar sizes. The turbulent power Pturb is then given by Pturb ∼ ρf L3

pε. The dissipative
term should be proportional to the elastic energy Eel stored in the fibre and should depend
on the typical time scale of the deformation τdef . The ratio of these two terms defines
an elastic power Pel. For fibres, they showed that the time scale of the deformation is
given by the relaxation time defined by the ratio of the viscous stress to the bending
stress.
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Figure 5. Evolution of the mean shape factors 〈λ1〉/〈λ3〉 (a) and 〈λ2〉/〈λ3〉 (b) as a function of the normalised
turbulent dissipation rate ε/εv . The dashed line represents the best fit of an ideal bent disc; see text for more
details.

Following a similar argument, one can assume that the transition from a rigid to a
flexible disc is given by the balance of the turbulent power

Pturb ∼ ρf R3ε, (4.9)

and the elastic power

Pel,v = Bκ2R2/τB, (4.10)

where τB is the relaxation time scale of the deformation given by the balance of the viscous
stress ξv with the bending stress B∇2∇2r in (4.1). From dimensional analysis, at small
Reynolds number, ξv scales as

ξv ∼ μ

R
(uf − ∂tr), (4.11)

where uf is the fluid velocity and μ the dynamical viscosity of the fluid. The relaxation
time is then

τB ∼ μR3/B, (4.12)

and, assuming that at the transition κ can be replaced by 1/R in (4.10), the elastic power
scales as

Pel,v ∼ B2

μρf R3 . (4.13)

The balance of power Pturb = Pel,v defines a critical turbulent dissipation rate εv

εv = B2

ρf μR6 . (4.14)

If this model were able to capture the physics of the deformation, the evolution of the mean
shape factors should only depend on the ratio ε/εv . To compare the theoretical evolution
of the shape factor with this prediction one needs to relate the curvature K0 to ε. Using
(4.9), (4.10) and (4.12), which define the turbulent and elastic power, one can show that,
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Deformability of discs in turbulence

near the threshold, the typical curvature κ , and therefore K0, should be proportional to
ε1/2. The comparison of the theoretical and measured evolution of the mean shape factors
as a function of ε/εv is shown in figures 5(a) and 5(b). The dashed line is the best fit of the
experimental measurements considering K0 as a free parameter. Here, the global trend is
well captured by the theoretical prediction. However, the estimation of the threshold with
this model is not valid as evidenced by the scattering of the experimental points around the
theoretical prediction. In particular, the threshold of the discs having the highest densities
(red stars and blue circles) seems to be at least one order of magnitude lower than the
model prediction.

In this model, inertia is always neglected. It is then not surprising that the dependency of
the transition on the disc density is not captured for the higher densities. Another model,
derived by Rosti et al. (2018), considers the density of fibres. The transposition of their
model to discs is presented in the following section.

4.3. A temporal argument
The second model used to quantify fibre deformation is based on a temporal argument. If
the forcing time scale is smaller than the deformation time scale, deformations are weak as
fibres do not have the time to adapt their shapes to the flow. On the contrary, if the forcing
time scale is larger than the deformation time scale, the fibre is distorted by the coherent
structures of the flow.

As for the model presented in § 4.2, the transposition of this idea to the current study
requires an estimation of the deformation time scale of the discs. Two time scales are
relevant depending on the influence of particle inertia. The first one is the relaxation time
scale, as defined by (4.12). It is used to define the Weissenberg number, which generally
quantifies polymer deformations in turbulent flows (Vincenzi et al. 2021). The second
one is the resonant frequency, which has been used by Rosti et al. (2018) to quantify
fibre deformations in the underdamped regime, i.e. when viscous stress is negligible as
compared with particle inertia. As shown previously, the relaxation time is independent of
the particle density. Therefore, a model solely based on this time scale should not be able
to describe our measurements.

The resonant frequency of the disc ωd is given by the equation of elasticity (4.1) by
balancing the inertial term σ∂ttr and the bending term B∇2∇2r

ω2
d = cω

B
σR4 , (4.15)

where cω is a constant which depends on the excited mode. In the following we will
consider the case where cω = 1. When the disc radius R is in the inertial range of
turbulence, the relevant time scale for the forcing τturb is the typical time of eddies of
similar size

τturb ∼ R/uR ∼ R2/3ε−1/3, (4.16)

where uR ∼ (εR)1/3 is the typical velocity at scale R. From these two time scales, one can
define an inertial Weissenberg number Wi = ωdτturb which should be of order unity at the
transition. This defines a critical turbulent dissipation rate εr above which a disc can be
bent

εr = B3/2

σ 3/2R4 . (4.17)
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Figure 6. Evolution of the mean shape factors 〈λ1〉/〈λ3〉 (a) and 〈λ2〉/〈λ3〉 (b) as a function of the normalised
turbulent dissipation rate ε/εr. The dashed line represents the best fit of an ideal bent disc; see text for more
details.

Contrary to the previous model, this model cannot predict the evolution of the mean
curvature κ as a function of ε. There was relatively good agreement between the shape of
the theoretical prediction and the global trend of the measurement in the previous scaling
argument, so we will assume that κ ∼ ε1/2. Once again, K0 will be considered as a free
parameter in order to fit the experimental data.

The measurements and the theoretical predictions are compared in figures 6(a) and
6(b). As for the previous case, there is a scattering of the experimental points around the
theoretical prediction for both shape factors. The failure of this approach is not surprising
as it was derived to describe the transition between two modes of deformation of fibres: the
excitation of the first bending mode if ωdτturb � 1 and the deformation dependent upon
the coherent structures of the flow if ωdτturb 
 1 (Rosti et al. 2018). On the contrary, we
focus here on the transition from rigid to flexible discs which should occur at smaller ε.

4.4. An inertial power balance argument
In the first model presented in § 4.2, the transition from rigid to flexible discs was modelled
using a balance between the turbulent power Pturb and the elastic power Pel = Bκ2R2/τel
assuming that the time scale of the deformation τel was the relaxation time scale, cf. (4.12).
In the second model (§ 4.3), we introduce a second time scale for the deformation: the
frequency of the first bending mode, cf. (4.15). The relevance of each time scale depends
on the importance of the disc inertia in the equation of elasticity (4.1). This is quantified
by the ratio of the inertial term σ∂ttr ∼ σω2

f ζ , where ωf is the forcing frequency and ζ the
typical displacement, to the viscous term μ∂tr/R ∼ μωf ζ/R. This ratio defines an elastic
Stokes number Std

Std ∼ ρ

ρf

(
e

ηK

)4/3 (R
e

)1/3

. (4.18)

Here, we have assumed that the forcing time scale is given by the eddies at the scale of
the disc ωf ∼ uR/R. In this study, Std varies between 14 and 320. Inertia is then larger
than the viscous dissipation and the time scales of the deformation should be given by ωd.
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Figure 7. Evolution of the mean shape factors 〈λ1〉/〈λ3〉 (a) and 〈λ2〉/〈λ3〉 (b) as a function of the normalised
turbulent dissipation rate ε/εr. The dashed line represents the best fit of an ideal bent disc; see text for more
details.

This regime corresponds to the underdamped regime investigated by Rosti et al. (2018) for
fibres. Replacing the relaxation time scale by ω−1

d in the definition of the elastic power
leads to

Pel,w ∼ B3/2κ2

σ 1/2 . (4.19)

As for the first model, balancing this elastic power with the turbulent power Pturb = ρR3ε,
we find that κ ∼ ε1/2 near the threshold. Moreover, the critical turbulent dissipation rate
εw can be estimated by defining the threshold of the transition by κ ∼ 1/R

εw = B3/2

ρf σ 1/2R5 . (4.20)

The evolution of the shape factors as a function of the normalised turbulent dissipation
rate ε/εw is shown in figures 7(a) and 7(b). There is now a good agreement between the
measurements and the theoretical predictions for all the discs except for the most flexible
ones. In that case, deformations probably involved several modes of bending. This cannot
be captured by our model and will be discussed in the following section.

5. Discussion and conclusion

We have presented here an experimental investigation of the deformation of discs within
a turbulent flow. The disc deformations have been measured using the convex hull volume
method and quantified by the evolution of the shape factors 〈λ1,2〉/〈λ3〉, where λi are the
eigenvalues of the moment of inertia tensor. We showed that, near the threshold of the
transition, the discs adopt a ∪ shape with a maximum curvature κ located at the centre
and which scales as κ ∼ ε1/2. The threshold of the transition is given by an equilibrium
between the turbulent power Pturb and the elastic power Pel defined by the ratio of the
elastic energy to the time scale of the deformation which is here given by the frequency of
the first bending mode. This time scale depends on the elastic Stokes number Std, which is
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Figure 8. Evolution of the deflection y(xR) = δ (a) and the radial extension xR (b), see (4.3), as functions of
the curvature K0.

relatively large in this study. When Std � 1, i.e. when e/ηK � (R/e)1/4, viscous stress is
dominant and the time scale should then be given by the relaxation time τB, cf. (4.12), as
it was for fibres (Brouzet et al. 2014). More studies are needed to understand the influence
of the Stokes number on the time scale of the deformations and, hence, on the onset of the
deformation.

In our modelling we compare the disc deformation with a folded disc shown in figure 3.
For this simple shape the variation of the curvature and of the deflection at the extremity,
given by yd(xR) = 5K0x2

R/12, evolves linearly with K0 for small deformation, as shown
in figure 8(a). The agreement between the experiments and this simple model calls into
question the term ‘transition’ we use throughout this paper, which suggests that two
different states exist: the rigid and the flexible regimes. In fact, the existence of two
different regimes can be seen in the radial extension xR of the disc, cf. figure 8(b), and
in the evolution of the shape factors, cf. figure 7. For K0R � 1, xR ∼ R so the shape
of the disc is well approximated by a flat disc. For K0R � 1, xR < R, meaning that the
radial extension in the x direction is smaller than in the z direction, cf. figure 3. In this
regime, deformations cannot be neglected and should impact the disc dynamics. Moreover,
investigation of the fragmentation of brittle fibres shows evidence that the critical length
�p, defined by the balance of power, plays a major role in the fragmentation process
(Brouzet et al. 2021). Extrapolating this result to brittle discs allows us to define a critical
size above which deformations, and the following fragmentation, are important for 2-D
objects

Rc = B3/10(
ρf σ 1/2ε

)1/5 . (5.1)

This length scale could be relevant to determine the size of microplastic fragmented in
the ocean. Considering a plastic bag made of polyethylene with a Young’s modulus of
500 kPa and a thickness of 80 μm within a turbulent flow with ε ∈ [10−1; 102] m2 s−3,
typical during a storm (Gemmrich & Farmer 2004), the critical size Rc varies between
3.2 mm and 790 μm. These values show that the plastic bag can easily be deformed within
the turbulent ocean. Moreover, these length scales are compatible with field measurements
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where the fragment size distribution exhibits a maximum for microplastic particles around
1 mm (Cózar et al. 2014).

Finally in § 4.3, we claimed that the critical value εr derived from the temporal argument
(Wi = 1) should be larger than εw. In fact, εr characterises a transition where the topology
and the dynamics of the deformation are given by the coherent structures of the flow and
not by the eigenmode of the disc. To fully validate this claim more measurements are
needed. However, we can compare the two thresholds εr and εw

εw

εr
= σ

ρf R
= ρ

ρf

e
R

. (5.2)

In the case of the most flexible discs investigated here (purple diamonds), this ratio is
of the order of 1/30. As the threshold of the transition from flat to bent disc occurs for
ε/εw ∼ 3, cf. figure 7, the second regime of deformation where coherent structures of the
flow are responsible of the disc deformation occur then at ε/εw � 90, as it is the case
here, cf. figure 7. In general, when ρ ∼ ρf , for 2-D objects where e � R, the transition
derived from the temporal argument occurs at higher turbulent dissipation rate ε than
the one corresponding to the excitation of the bending mode. When the particle and the
carrying fluid have very different densities, like a plastic bag advected in air, this ratio
can be of order unity (for a plastic bag with a thickness e = 80 μm and of typical size
20 cm εw/εr ∼ 2). In that case, the deformation should directly be driven by the coherent
structures of the flow. Further investigation is needed to validate this point.
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